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Abstract: In this paper, we detail two side-channel attacks against the McEliece
public-key cryptosystem. They are exploiting timing differences on the Patterson
decoding algorithm in order to reveal one part of the secret key: the support permu-
tation. The first one is improving two existing timing attacks and uses the correlation
between two different steps of the decoding algorithm. This improvement can be
deployed on all error-vectors with Hamming weight smaller than a quarter of the
minimum distance of the code. The second attack targets the evaluation of the error
locator polynomial and succeeds on several different decoding algorithms. We also
give an appropriate countermeasure.
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1 Introduction

In the history of cryptography public key schemes are quite recent. In the classic era both
encryption and decryption algorithms are symmetric, that is why having access to the keys gives
a total control on both encryption and decryption steps. These types of schemes are called
symmetric cryptosystem and are still widely used.

Nonetheless several security properties can hardly be achieved with the use of symmetric
cryptography. That is the main reason public key cryptography appeared. The first public key
cryptosystem was invented by Diffie and Hellman [5]. But despite the fact that public key schemes
are rather new, they are widely spread in practice. Moreover there are few constructions to be
used in practice and they are all based on number theory problems, more exactly the hardness
of factoring and discrete logarithm problem. But this is rather concerning since there is little
theoretical support indicating that these problems are indeed hard. One of the main threats
for these schemes is the arrival of the quantum computer. Peter Shor has shown that both
computation of discrete logarithm and factoring problem can be done in polynomial time on a
quantum machine [13].

In reaction to this thread, several solutions have been proposed, such as hash-based cryp-
tography, code-based cryptography, lattice-based cryptography, and multivariate cryptography.
The new facts concerning the post-quantum cryptography are well discussed in [2]. Code-based
cryptosystems were introduced in 1978 by Robert J. McEliece [8]. But many variants were at-
tacked and partially or totally broken. Up to now, none of the proposed variants seemed as
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strong and secure as the original McEliece public-key cryptosystem (PKC) using Goppa codes.
Structural attacks managed to reveal the secret key and totally break variants that used the
generalized Reed-Solomon codes [15] or QC-LDPC codes [10] and many other variants.

As the Goppa codes still resist to structural attacks, they present a real interest in our
approach. So we focus our attention on the cryptanalysis of the McEliece PKC using Goppa
codes. More exactly on the side-channel attacks using time differences between two executions
of the same task. The interest of timing attacks is both practical and theoretical: we avoid
unsecured implementations and discover new attacks succeeding in a polynomial time. The main
purpose of these type of attacks is to reveal a part of the secret key and a breaking point of an
algorithm. The authors of such exploits usually end up by giving the necessary countermeasures
and the secure variant of the algorithms.

In the case of the McEliece PKC using Goppa codes, most of the timing attacks were dis-
covered since 2008. Falko Strenzke’s articles mention several weak points mostly situated in the
decoding algorithm [14, 16, 18, 19]. Some of these can be repaired by an intelligent and cau-
tious way of the programming manner where countermeasures were proposed in [1, 3, 19]. All
of the mentioned attacks were realised on a McEliece PKC implementation using the Patterson
algorithm (cf. Fig. 1) for decoding Goppa codes. The number of error corrections in the Patter-
son algorithm is bounded: up to t errors can be corrected, where t is the degree of the Goppa
polynomial.

Our contribution is to reveal a new timing attack against the error-locator polynomial (ELP)
evaluation and to improve two existing attacks. In our new version of the two existing attacks
combined, we detail how the relation between the two attacks is crucial in order to avoid eventual
errors. The attacks are executed on the extended Euclidean algorithm (EEA) and exploit the
number of iterations. As the authors mentioned, the initial attacks are limited and may not
allow the total break of the permutation. This limit is situated in the number of equations
detected by their attack. We will use a new relation between the number of iterations in the two
steps in order to expand the system and to fully determine the secret permutation. We will also
give a single countermeasure, which is efficient to all types of attacks exploiting the EEA in this
particular manner.

The second contribution is in giving a new timing attack against the ELP evaluation. The
importance of this new attack is that it operates on the polynomial evaluation, applied in several
decoding algorithms as the Patterson algorithm, Berlekamp-Massey algorithm or any general
decoder for alternant codes. We will show that this attacks succeeds on several variants of the
polynomial evaluation.

2 Background

For all the necessary background on coding theory we address the reader to any book in this
field, for example [7]. Nevertheless we give here the details concerning binary Goppa codes.

2.1 Goppa codes

Definitions and Properties

We will focus exclusively on binary Goppa codes in this paper, but it is easy to generalize
our results to q-ary codes:
-Goppa polynomial: g(x) is a polynomial over F2m [x] with deg(g) = t.
-Goppa support: L = {α0, α1, .., αn−1} subset of F2m s.t. g(αi) 6= 0.

The syndrome polynomial associated to c ∈ Fn2 : Sc(x) =
n∑
i=1

ci
x+αi

.
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Definition 1 (Binary Goppa code). Given g(x),L and Sc(x) the binary Goppa code is defined
as:

Γ(L, g) = {c ∈ Fn2 | Sc(x) ≡ 0 mod g(x)}.

Among the most important properties that a Goppa code satisfies we recall the followings:

Proposition 2. A Goppa code Γ(L, g) is a linear code over F2. Its length is given by n = |L|,
its dimension is k ≥ n−mt, where t = deg(g) and its minimun distance d ≥ t+ 1.

The syndrome polynomial Sc(x) satisfies the following property:

Sc(x) = ω(x)
σ(x) mod g(x),

where σ(x) =
t∏
i=1

(x + ai) is called the error locator polynomial (ELP) and the elements ∀i ∈

{1, . . . , t}ai ∈ L are the error positions.
Irreducible binary Goppa codes are defined by an irreducible Goppa polynomial g and admit

the maximum length n = 2m. We use this type of codes in the rest of the paper and adopt the
following notations:

• For the permutation of the support elements:
Π(L) = L′ = (Π(0),Π(1), . . . ,Π(αi), . . . ,Π(αn−2)). where Π is an element of the symmetric
group.

• Let P (x) be a monic polynomial of degree t over F2m with t roots denoted ai:

P (x) = xt + Stt−1x
t−1 + Stt−2x

t−2 + . . .+ St2x
2 + St1x+ St0,

where the coefficients Si ∈ Fm2 are the elementary symmetric functions:

Stt−1 =
t∑
i=1

ai, Stt−2 =
t∑

i=1,j=1
i6=j

aiaj , . . .,

St1 =
t∑

j=1

t∏
i=1
i 6=j

ai and St0 =
t∏
i=1

ai.

Alternant decoders

For the (irreducible) binary Goppa codes, we can use (at least) three different decoding algo-
rithms: 1. the extended Euclidean algorithm (EEA); 2. the Berlekamp-Massey algorithm; 3. the
Patterson algorithm.

Extended Euclidean Algorithm (EEA). The first decoding algorithm can correct up to t
2 errors.

We can increase the error-correction capabcity and correct up to t errors when the syndrome
associated to g2 is used. Unfortunately, the corresponding parity check matrix has two times
more rows and the construction is more complex.

The Berlekamp-Massey algorithm. Similarly as the EEA, the Berlekamp-Massey algorithm
has to use g2 in order to decode t errors. The advantage of this algorithm is that it isn’t
vulnerable to several existing timing attacks and it allows a fast and constant-time computation.
Some advantages are listed in [3].

The Patterson algorithm. The Patterson algorithm offers another solution for the syndrome
decoding. The decryption described in [12] permits to correct up to t errors by using the syndrome
associated to g but not to g2.
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2.2 The McEliece Cryptosystem

The McEliece PKC [8] is composed by the three following algorithms.
Key generation:The first step is to generate the support (the set of n = 2m elements) and

the Goppa polynomial g of degree t. Then, the parity check matrix can be built and brought
to a systematic form: [In−k|R] in order to recover a generator matrix G of the Goppa code.
We randomly choose a non-singular k × k matrix S and a n × n permutation matrix Π, and
compute the public k × n generator matrix G = SGΠ . The key generation procedure outputs
sk = (Γ(L, g), S,Π) and pk = (n, t,G).

Message encryption:

• Inputs: message m ∈ Fk2,
public key pk = (n, t, RT ).

• Output: ciphertext z ∈ Fn2 .

1. Randomly choose an n-bit error-vector
with weight wt(e) = t;

2. Encode z = mG ⊕ e;

3. Return z.

Message decryption:

• Inputs: ciphertext z ∈ Fn2 ,
secret key sk = (Γ(L, g), S,Π).

• Output: message m ∈ Fk2.

1. Compute z′ = zΠ−1;

2. Find m′ = mS from z′ ⊕ e using
Decode(z′) with the secret code;

3. Compute m = m′S−1;

4. Return m.

Decode(.) is an alternant decoder (presented in
the previous subsection).

Existing side-channel attacks There are several papers on side-channel attacks against the
McEliece PKC and a quick review must be done in order to clear up the reader’s understanding.
Most of the attacks target the Patterson decoding algorithm and exploit several weaknesses.

Table 1: Patterson algorithm: existing timing attacks and countermeasures

Step Ref. Countermeasure
¶ z′ = zΠ−1

· Sz′(x) = H′z′(xt−1, . . . , x2, x, 1)T

¸ Sz′(x)−1 mod g(x) via EEA [18] control flow

¹ τ(x) =
√
x+ Sz′(x)−1

º b(x)τ(x) ≡ a(x) mod g(x) [14, 16] in EEA make sure
deg(a) ≤ b t2c ; deg(b) ≤ b t−12 c deg(ri) = deg(ri−1)− 1

via EEA and deg(τ) = t− 1

» σ(x) = a2(x) + xb2(x)

¼ e = (σ(α0), σ(α1), . . . , σ(αn−1))⊕ (1, . . . , 1) [1, 17,19] the non-support or
make sure deg(σ) = t

½ e′ = eΠ

¾ z = z′ ⊕ e′
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There are mainly two types of attacks classified by their goal:
1. Attacks recovering the secret message m [1, 17, 19]; 2. Attacks recovering (fully or partially)
the secret key sk [14, 16–18].

The attacks on steps ¸ and º are able to determine some relations on the support elements
by counting the number of iterations in the EEA. We improve it in Section 3.

The attack on step ¼ reveals error positions using timing differences in the ELP evaluation.
The attacker is able to find the error-vector with a certain non negligible probability. The basic
idea is that two different polynomials, with some different degrees, are not evaluated in the same
time. So the timing difference gives some information on the error-vector. We improve this
attack in Section 4.

In the rest of this paper, we assume that an attacker chooses a weight 0 < r < t for the
error-vector e and we use the following notations: deg(g) = t and wt(e) = r.

In the next Sections we will detail the complexity analysis of these attacks as well as adapted
parameter values.

3 Timing attack against double using of the EEA

Goal: The attacker’s goal is to recover the secret permutation Π.

Identification of a leakage: The leakage is identified at steps ¸ and º of the Patterson
algorithm. This type of attack was already published in [16, 18]. The two steps using the EEA
are considered as independent parts. In this section, we propose to show the relation existing
between both steps and thus attack them. In fact, the main problem of previous attacks is the
limited number of cases that can be exploited. They just can be applied on wt(e) ∈ {2, 4} as
shown in [16] or wt(e) ∈ {2, 4, 6} as presented in [18].

The problem comes from a simple fact: the number of iterations is given by two conditions.
One of the condition is that all of the quotients in the EEA must be polynomials of degree equal
to one. So when this condition is not fulfilled the number of iterations could not be any longer
controlled by the attacker. We will use N¸ and Nº as notations for the number of iterations in
the 3rd step ( respectively 5th step) of the Patterson algorithm.

Motivations of our attack: We will show that using the relation between both steps will
allow us to fully control the number of iterations. The other contribution is in finding the relation
between both steps and in using it for building a larger set of equations. We will show that we
are able to extend the limited equation number of the system up to wt(e) = deg(g)

2 .
The main interest is that instead of finding only equations involving the permutation of 2,

4 or maybe 6 elements, we can extend it as much as necessary in order to discover the secret
permutation.

In terms of complexity, instead of enumerating all possible permutations, i.e. n! permutations,
we reduce the complexity to the following expression:

p∑
i=3

(
n

i

)
, where p ≤ deg(g)

2
− 1

Hence for small values of p, we have:

p∑
i=3

(
n

i

)
≤
(
n

p

)
× (p− 2) ≤

(
en

p

)p
× (p− 2)
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(where e = 2.718281828 . . . is the basis of the natural logarithms).
In order to make clear the difference between the naive attack and our attack, we propose to

give a lower bound for the complexity of the naive attack:(
n

e

)n
≤ n!

Finally:
p∑
i=3

(
n

i

)
≤
(
en

p

)p
× (p− 2) <<

(n
e

)n
≤ n!

So the naive attack would be exponential in the length of the code as a timing attack would
only have a complexity exponential in the maximum of the error-vector’s weight needed for the
attack (often extremely small in comparison with the code’s length).

Scenario: The attacker proceeds in the three following steps:

1. He chooses a random message m and computes c = mG;

2. He randomly chooses an error-vector e of small weight wt(e) < t (t is the correction capacity
of the code) and computes z = mG ⊕ e;

3. He sends z to an oracle (O), which outputs the message m and the number of iterations in
steps ¸ and º of the Patterson algorithm from Fig. 1.

Main idea: For wt(e) = 2p with p ∈ N, the attacker will find equations having the following

form:
wt(e)∑
i=1

Π(αi) = 0. He will be able to build this type of equations with 0 < wt(e) < deg(g)
2 .

We will denote by N¸ the number of iterations in the ¸ step.

Conditions: The general assumption is that the attacker knows the public key pk, the order of
all elements in the support L (L is supposed to be public, for example in the lexicographic order)
and has access to an oracle O. These assumptions are the same as in previously mentionned
works. We improve the attack in the same context. The oracle O is also able to give some extra
informations: the timing for the whole particular algorithm or just one step. We assume that
the attacker can violate the procedure by adding wt(e) < t errors. The attacker is able to choose
the number and the positions of errors.

3.1 Step ¸ in the Patterson algorithm

It was shown in [18] that the syndrome inversion leaks some information. The attack is based
on the number of iterations used in the EEA, in order to compute the inverse of the syndrome
polynomial S(x) modulo the Goppa polynomial g(x). It uses the following properties:

N¸ ≤ deg(σ) + deg(σ′), for wt(e) < deg(g)
2 .

We will not detail here all conditions, as they are well explained in [18], but we only give some
important facts in order to make things clearer and to prepare the attack. Let us consider the
ELP

σ(x) = xr + Srr−1x
r−1 + Srr−2x

r−2 + · · ·+ Sr2x
2 + Sr1x+ Sr0 ,

with r ≡ 0 mod 2. Then σ′(x) = Srr−1x
r−2 + · · ·+ Sr3x

2 + Sr1 .
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In this case the maximum number of iterations is given by the coefficient Srr−1 =
r∑
i=1

ai. So

if Srr−1 6= 0, we obtain N¸ = 2r − 2 and all quotients have a degree equal to 1. If Srr−1 = 0,
Srr−3 6= 0, then N¸ = 2r − 4 and all quotients have a degree equal to 1.

3.2 Step º in the Patterson algorithm

Locate the leakage: Two observations have to be done in order to understand and to locate
the leakage point. The first one is about the number of iterations. It was proven (in [14]) that
this number is (with a high probability):

Nº =
Nº∑
i=1

deg(qi) = deg(b).

In the following paragraph, we will give some relations between τ(x), b(x), a(x) and σ(x)
(given in steps ¹, º and » in Fig. 1). We will prove some new relations. The new relations
between these polynomials allow us to build the attack in such a manner that previous ambigu-
ous cases were eliminated. These relations are crucial for better understanding of the entire
decryption algorithm as they influence each step of the process and each particular form of the
involved polynomials.

There are some useful properties that are going to be used in our approach:

Proposition 3. 1. If r ≡ 0 mod 2, then deg(a) = r
2 see [14].

2. If r ≡ 1 mod 2, then deg(b) = r−1
2 see [14].

3. If deg(τ) ≤ b r2c, then deg(a) = deg(τ) + deg(b).

4. If deg(τ) ≤ b r2c and deg(τ) 6= 0, then wt(e) ≡ 0 mod 2.

Fact:

• When wt(e) is odd: For an error-vector with Hamming weight wt(e) = 2k + 1, with
k ≤ p− 1, we have the following relations:

deg(b) = k, deg(a) ≤ k and deg(τ) ≥ 2p− k.

• When wt(e) is even: For an error-vector with Hamming weight wt(e) = 2k, with k ≤ p,
we have the following relations:

deg(a) = k, deg(b) ≤ k − 1 and deg(b) = 0⇔ deg(τ) = k.

3.3 Number of iterations

We saw that the number of iterations in the EEA equals deg(b) so we will focus on the form
of the polynomial b(x). More exactly, in the case when r is even. Let:

σ(x) = x2p + S2p
2p−1x

2p−1 + S2p
2p−2x

2p−2 + S2p
2p−3x

2p−3 + . . .+ S2p
2 x

2 + S2p
1 x+ S2p

0 .

We separate odd powers from even ones and get:

σ(x) = (x2p + S2p
2p−2x

2p−2 + . . .+ S2p
2 x

2 + S2p
0 )

+(S2p
2p−1x

2p−1 + S2p
2p−3x

2p−3 + . . .+ S2p
1 x)

σ(x) = (xp +
√
S2p
2p−2x

p−1 + . . .+
√
S2p
2 x+

√
S2p
0 )

2

+x(
√
S2p
2p−1x

p−1 + . . .+

√
S2p
1︸ ︷︷ ︸

b(x)

)
2
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So deg(b) is given by the coefficients S2p
2i−1 with i ∈ {1, 2, . . . , p}. Therefore the number of

iterations could be given by the same coefficients under an extra condition: all of the quotients
have a degree equal to one. So we can distinguish p−1 possible cases depending on the coefficients,
if the degree of the coefficients is equal to 1 in each iteration. Therefore:

Nº = p− 1 if S2p
2p−1 6= 0

Nº = p− 2 if S2p
2p−1 = 0 and S2p

2p−3 6= 0

Nº = p− 3 if S2p
2p−1 = 0 S2p

2p−3 = 0 and S2p
2p−5 6= 0

...

In all cases, the same assumption is made: the degree of the quotient equals 1 in each iteration.
It means that we might have the number of iterations without any condition on the coefficients.

3.4 Attack against the pair (N¸, Nº)

How it works. In this paragraph, we will explain how our attack works. We start by presenting
the general relation for the pair (N¸, Nº). Using 3.1 and 3.2 we get the following property:

Proposition 4. Let wt(e) = 2p < t/2.

(N¸, Nº) = (4p− 4, p− 2)⇒
2p∑
i=1

ai = 0

with probability Psuccess.

We will give a snapshot of each step in the attack and give some information on the success
probability.

1. Find the position of Π(0) (see [14]).

2. Set wt(e) = 4:

Fix Π(0) ∈ {error-vector} and find
3∑
i=1

ai with ai 6= 0.

Fix Π(0) 6∈ {error-vector} and find
4∑
i=1

ai with ai 6= 0.

3. Set wt(e) = 6:

Fix Π(0) ∈ {error-vector} and find
5∑
i=1

ai with ai 6= 0.

Fix Π(0) 6∈ {error-vector} and find
6∑
i=1

ai with ai 6= 0.

4. . . .

5. Set wt(e) = b t2c:

Fix Π(0) ∈ {error-vector} and find
wt(e)−1∑
i=1

ai with ai 6= 0.

Fix Π(0) 6∈ {error-vector} and find
wt(e)∑
i=1

ai with ai 6= 0.

In Appendix 1, a toy example is presented for a better comprehension.
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3.5 Success probability

The success probability Psuccess is described by the following event: {All the quotients have
a degree=1}. If we consider all elements of our support as uniformly distributed variables and
the independence of each step inside the EEA, under the initial assumptions we have:

Psuccess = P({N¸ = 4p− 4} ∩ {Nº = p− 2})
= P({N¸ = 4p− 4})P({Nº = p− 2})
= (1− 1

n)N¸+Nº .

Experimental results show that for n = 2048 and wt(e) = 4, in order to find equations of
the following form: Π(α1) + Π(α2) + Π(α3) + Π(α4) = 0 the probability equals 0.998. It means
that less that 0.2% of the cases are not exploitable among all possible cases under the condition:
N¸ = 4 and Nº = 0. In other words, each time this combination is revealed, the probability of
having a good equation for our attack equals 0.998 for the given parameters.

3.6 Experimental work

In order to validate the relations that we presented in the previous paragraph for (N¸, Nº),
we used a Pari/GP implementation of the McEliece cryptosystem (the code will be publicly
available). We computed a keypair, then encoded and decoded a given message multiple times,
by checking the value of the couple (N¸, Nº), searching for the valid combinations described
above. We also used different values for m, the extension degree of the finite field. We ran the
algorithm until we got the specific combination about hundred times. Then, we obtained an
average value for the necessary iterations required to get the searched combination. The results
are presented in the following table:

Table 2: Number of necessary iterations to get the combination for error-vectors of Hamming
weight 4, 6 and 8

Combination:
N¸ 4 8 12
Nº 0 1 2

Number of iterations for m = 7 127 138 142
Number of iterations for m = 8 235 270 273

It means that for m = 7, we need to send to the oracle in average 127 different ciphertexts,
in order to get the wanted relation (Π(α1) + Π(α2) + Π(α3) + Π(α4) = 0). In the case of the
previous equation, the density of such configurations equals in average

1

127
× Psuccess =

1

127
×
(

1− 127

128

)4

.

Knowing one relation allows us, by fixing one of the positions, to reduce the number of ciphertexts
that has to be sent to the oracle. It means that wanted relations are revealed more often as we
progress in the attack. It also gives the first intuition on the structure of the permutation (see
Appendix 1).

Attack implementation In order to practically test our attack, we used the same software
implementation. In order to reveal timings close to real values, we repeated the attack for more
than 106 times. We presented the obtained results are in the following table:
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Table 3: Timings (in sec.) for decryption in the case of n = 211 and t = 16

wt(e) Timings for expected attack equation Timings for random type equation
4 30141892× 10−6 304856× 10−4

6 3072799× 10−5 310234× 10−4

8 31597171× 10−6 32242382× 10−6

10 3285724× 10−6 3345847× 10−5

Remarks: We didn’t give the timings for the odd values as they are constant and independant
from the linear combinations between the permutations of the error positions. From Figure 3,
we observe that there’s a slight difference between the attack on this type combinations and on
randomly distributed combinations. As we mentioned before for the random combinations those
with the maximum number of iterations are more likely to appear (the case when all coefficients
are different from zero). So in this case, we have the timing difference required for our attack to
succeed. In Section 3.7, we will explain how the patch will work not only on this type of attacks
but even on other types as the bit-flipping attacks.

3.7 Countermeasures

We have seen that it is possible to attack a system by knowing how many times the EEA is
repeated. The number of iterations can go from 0 to t − 1 in the syndrome inversion and from
0 to t/2 in the ELP determination. In order to avoid a correlation-finding from the number of
iterations, we propose to introduce extra iterations into the EEA. The number of extra iterations
should be chosen between 0 and a value that we call extra. The extra value is either t/2 or t−1,
for the syndrome inversion ¸ or the ELP determination º, respectively. The variable i contains
the number of iterations realized in the first part of the secured EEA. We chose to use integer
values in the extra EEA steps, in order to avoid divisions by zero that may occur if we keep the
previous terms. The point is to keep computing things that are as computationally expensive
as the original EEA, so that an attacker can’t make the difference between true steps and extra
steps. We present the proposed secured modified EEA:

Input: f(x), g(x), dbreak and t.
Output: a(x) and b(x) s.t. a(x) ≡ b(x)f(x) mod g(x)

1. d← dbreak

2. [b−1, b0]← [0, 1]

3. [r−1, r0]← [g(x), f(x)]

4. i← 0

5. While deg(ri) > d do

i ← i+ 1
ri−2(x) = ri−1(x)qi(x) + ri(x)
bi(x) ← bi−2(x) + qi(x)bi−1(x)

end while

6. a(x)← ri(x)

7. b(x)← bi(x)
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8. extra = f(t, dbreak)

9. While i < extra do

i ← i+ 1
ri−2(x) = 3qi(x) + 5
bi(x) ← 5 + 6qi(x)

end while

The new security parameters: We recall the fact that normal security parameters do not
take in consideration timing attacks. Usually security parameters are given under the assumption
of possible naive attacks or known structural attacks as ISD [9] For example for the McEliece
PKC the usual parameters are:

100-bit security n = 2048, t = 50
128-bit security n = 2960, t = 56
256-bit security n = 6624, t = 115

For the first parameters a timing attack with p = 6 would reveal a complexity less than 261

elementary operations, that is way lower than the original security level proposals. So for timing
attacks larger parameters have to be taken in consideration in order to maintain the same level
of security. For example in order to same a 100 bit security lever against this type of timing
attacks one should propose n = 131072.

The usual solution is not to increase the values of the parameters but to propose secure
variant of the algorithm, variant that is not vulnerable to the specified attack. Our proposal is
less faster that the original algorithm, it operates (t− 1)×O(1) for the syndrome inversion and
t
2 ×O(1) for the key equation (where O(1) is the usual complexity for a division).

Meanwhile it is secure against timing attacks described below. The proof is very simple
and it based on the fact that this particular type of timing attacks are based on the number of
iterations is the EE Algorithm. Since our algorithm performs the same number of iterations no
matter what relations are hidden between the polynomial coefficients it can’t reveal any of such
secret relations.

Once the countermeasure was applied, we ran the same attack and got the following timings
for selected Hamming weights (the average timings are presented for more than 107 simulations
in Fig. 4).

Table 4: Timings (in sec.) for decryption in the case of n = 211 and t = 10

wt(e) Timings for attack type equations Timings for a random type combination
6 57.99 57.90

7 57.89

8 57.94 58.03

9 58.33

10 57.81 57.89

Remark: We observe that the protected implementation is impossible to attack (using the
same techniques). We stress that the proposed countermeasure is also efficient in the case when
an attacker wants to use previous techniques, like in [14,16,18].
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4 Timing attack against the ELP evaluation

Goal: The attacker’s goal is to find the secret permutation Π.

Identification of a leakage: A leakage is identified at step ¼ of the Patterson algorithm: the
ELP evaluation. We recall that the ELP is denoted σ in Subsection 2.1. The attack is based on
the fact that the form of the polynomial differs from the element to decode. We will prove that
the algorithm’s complexity is strongly related to the coefficients of σ(x). We will then perform
a timing attack on the ELP evaluation and control the values of the coefficients of σ(x).

Motivations of our attack: One of the main motivations of our attack is that it can operate
on all existing implementations of a general alternant decoder. It operates on the ELP evaluation,
step that has to be computed in any decoding algorithm.

We will give two basic algorithms for the ELP evaluation with some improvements and show
that even with the published improvements our attack succeeds. We will choose the polynomial
evaluation from right to left (the naive algorithm) and from left to right (the Ruffini-Horner
scheme). Imagine that our polynomial has a degree equal to an integer t. The first algorithm
computes the result within 3t− 1 operations (t additions and 2t− 1 multiplications). As for the
second one it computes the result within 2t operations (t additions and t multiplications). It
was proven by V. Pan in 1966 [11] that the Ruffini-Horner’s scheme [6] is optimal in terms of
complexity.

The main idea of the improvement is to use the fact that some support elements have par-
ticular properties (like 0 and 1). Knowing the fact that one coefficient equals zero fasten up the
algorithm as operations like multiplication or sum have fix values if they take zero as one of the
input element. The same thing happens within the multiplication by one. So we will exploit
these properties in order to improve our implementation. Each time a coefficient equals one or
zero it will be store in a special table used afterwards for multiplication or addition. The case
where a coefficient equals zero is rare and its probability has been studied in [4].

Nevertheless, each time there’s a coefficient equal to zero we will no longer multiply it by the
corresponding element as the multiplication equals zero. So we will use the predefined tables to
get rid of the useless operations. We will proceed exactly the same way when the multiplication of
an element has to be done when a coefficient equals to one. So each time we have one coefficient
equal to zero, using our predefined tables, we get rid of two operations (one addition and one
multiplication).

Scenario: The attack scenario is the same as in the previous attack except for the last step. In
fact, the attacker gets the running time for the ELP evaluation in this section (step ¼ in Figure
1).

Idea: For wt(e) = 2, the attacker will find the positions of Π(0) and Π(1) the permutation of
zero and one. After enough iterations, he will fix those two positions and repeat this attack with
wt(e) = 3, he will then find the secret permutation Π (using exhaustive search for the remaining
positions).

Conditions: The assumptions are the same as in the previous attack excepted that the attacker
does not know the order of the elements in the support L.
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4.1 Success probability

As we said, in this attack we will only consider polynomials with a degree lower than three.
For the case r = 3 we will give the full table of probabilities. We will start with the following
general problem:

Problem: Let P (x) be a monic polynomial of degree r with r distinct roots over F2m . What
is the probability that all its coefficients are different from zero?

This problem was treated in [4] and the results show that the probability can be bounded.
For the classical parameters of the McEliece PKC, i.e. n = 2048 and t ≤ 50, the authors obtain:

P ≥ 0.95

Proposition 5. Let P (x) be a monic polynomial of degree 3 with three distinct roots over F2m

and m mod 2 = 1.
The probability P3 that all its coefficients are different from zero satisfies:

P3 = 1− 5

2m
.

4.2 Finding the permutation of the support elements zero and one

1. Consider the error-vectors ei with wt(ei) = 1.

In this case, the error locator polynomial has the following form:

σ(x) = x+ ai, with ai ∈ L = {0, 1, α, . . . , αn−2}.

If ai 6= 0, there is one addition (+) in the σ(x) evaluation.

2. Consider the error-vectors ei with wt(ei) = 2.

In this case, the error locator polynomial has the following form:

σ(x) = x2 + S2
1x+ S2

0 , with S
2
1 = ai + aj and S2

0 = aiaj .

We distinguish two possible cases:

(a) σ(x) = x2 + S2
1x+ S2

0 if aiaj 6= 0

(b) σ(x) = x2 + S2
1x if aiaj = 0

The case (b) leads to a computation of the polynomial evaluation with one extra addition
(+) and the timings reveal all the couples (αi, 0). We can assume now that the position of
Π(0) is known.

3. We fix this position and we seek for the position of Π(1). Since the polynomial σ(x) =
x2 +S2

1x, the fastest evaluation is obtained for the couple (Π(0),Π(1)) as there is only one
addition (+) and one square computation.
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4.3 Attack scenario when r = 3

We will consider error-vectors with Hamming weight that equals 3. The corresponding σ(x)
polynomial has always one of the eight following representations:

1. σ(x) = x3 + S3
2x

2 + S3
1x+ S3

0 if S3
1S

3
2S

3
0 6= 0

2. σ(x) = x3 + S3
2x

2 + S3
1x if S3

0 = 0 and S3
2S

3
1 6= 0

3. σ(x) = x3 + S3
2x

2 + S3
0 if S3

1 = 0 and S3
2S

3
0 6= 0

4. σ(x) = x3 + S3
1x+ S3

0 if S3
2 = 0 and S3

1S
3
0 6= 0

5. σ(x) = x3 + S3
2x

2 if S3
2 6= 0 and S3

1 = 0 and S3
0 = 0

6. σ(x) = x3 + S3
1x if S3

1 6= 0 and S3
2 = 0 and S3

0 = 0

7. σ(x) = x3 + S3
0 if S3

0 6= 0 and S3
2 = 0 and S3

1 = 0

8. σ(x) = x3 if S3
0 = 0 and S3

2 = 0 and S3
1 = 0

Straightforward we deduce the following cases:

(a). σ(x) = x3 + S3
2x

2 + S3
1x+ S3

0 if S3
1S

3
2S

3
0 6= 0 and P = n−5

n
(b). σ(x) = x3 + S3

2x
2 + S3

1x if S3
0 = 0 and S3

1S
3
2 6= 0 and P = 3

n
(c). σ(x) = x3 + S3

2x
2 + S3

0 if S3
1 = 0 and S3

1S
3
0 6= 0 and P = 1

n
(d). σ(x) = x3 + S3

1x+ S3
0 if S3

2 = 0 and S3
1S

3
0 6= 0 and P = 1

n

Several cases can be eliminated by considering the fact that we accomplished the first step
and we know the position of Π(0). If we consider all the error-vectors where ai 6= 0 ∀i ∈
{1, 2, . . . , n− 1} (i.e. 0 is not a root of P (x)), we reduce the possibilities for σ(x). The new form
of the system is the following:

σ(x) = x3 + S3
2x

2 + S3
1x+ S3

0 if S3
1S

3
2S

3
0 6= 0

σ(x) = x3 + S3
2x

2 + S3
0 if S3

1 = 0 and S3
2S

3
0 6= 0

σ(x) = x3 + S3
1x+ S3

0 if S3
2 = 0 and S3

0S
3
1 6= 0

In all cases, x3 must be computed so we will not consider this part in the timing differences. In
the structure that computes the polynomial evaluation the fastest is the last one. But this case
is performed only when S3

2 = 0.

4.4 Finding the positions of two elements such that Π(αj)Π(αk) = 1

In order to increase the number of equations in our system, we exploit the fact that (F2m)∗

is cyclic.
Recall: we know the positions of Π(0),Π(1) and Π(α1) + Π(α2) + Π(α3) = 0. Without loss of
generality, we choose to fix "Π(0)" on the first position and choose two other positions such that
the sum is different from 1.
We are able to do that because we know the position of "Π(1)" and the couples (α1, α2) such
that 1 + α1 + α2 = 0. We get two new positions b1 and b2 such that b1 + b2 6= 1. The error
locator polynomial is: σ(x) = x3 + S3

2x
2 + S3

1x.

For b1b2 = 1 we get σ(x) = x3 + S3
2x

2 + x. This form is the fastest to be computed as there is
one less multiplication compare to the other case.
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4.5 System resolution

Number of equations:

We will give the number of linear and quadratic equations obtained by the attacker.
Finding the positions of Π(0) and Π(1) reduces the search set to (n− 2) elements.
• The first set of linear equations:

Equation type (1): Π(αj)Π(αk) = 1⇒ ]eq. = n−2
2

The last equation is determined by all the other ones because for the last couple only one possible
solution remains available. For instance, if the attacker finds (n−22 − 1) different equations the
last equation can be directly determined.
• The second set of linear equations:

Equation type (2): Π(αj) + Π(αk) = 1⇒ ]eq. = n−2
2 .

As the first set, the last one can be determined by all others. This comes from the fact that for
the three positions, we fixed the position of Π(1) as the first one. So we have (n−2) possibilities
on the second position. But there are two repetitions for each (Π(1),Π(αj),Π(αk))-vector.
• The third set of quadratic equations:

Equation type (3): Π(αi) + Π(αj) + Π(αk) = 0⇒ ]eq. = (n−2)(n−4)
6

The total number of equations for Π(αi) + Π(αj) + Π(αk) = 0 including the second set equals
(n− 1)(n− 2) as the third position is fixed and the two others are free and different. Here, the
number of repetitions equals six. So we obtain

(
(n−2)(n−1)

6 − n−2
2

)
equations.

To illustrate how the attack works a toy example is given in Appendix 2.

Conclusion

In this article, we focused our attention on the cryptanalysis of the McEliece PKC with the
binary Goppa codes. We showed the existing weak points in the Patterson decoding algorithm
and determined the relations between the number of iterations in two different steps of the
algorithm and the secret permutation. Since those relations were the main connection idea
between the two extended Euclidean algorithms, we set up a timing attack based on this fact.
The advantage of this attack is that it increased the probability of success by avoiding ambiguous
cases, undetectable in previous attacks. The other advantage is that it allows higher expansion
of the number of equations determined by the attacker in order to find the secret permutation.

The second important contribution of our article is a new attack that can be performed on
several different decoding algorithms. It reveals that even intelligent variants of some polynomial
evaluation algorithms might leak information and need to be patched or replaced. The ideas
discovered in the attacks might be reused in any further implementations using the algorithms
mentioned before. So secure variants must be used in order to avoid any leakage point.
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Appendix

1 Toy example for the EEA attack

Consider F24 [x] = F2[x]
x4+x+1

. The generator matrix G of the Goppa code and the support
L = {0, 1, α, α2, . . . , α14} are public. Let m ∈ Fk2 be the message and O the decoding oracle. We
notice that if L is public, one can find G(x) such that L = F2[x]

G(x) . The other way is equaly true:
if G(x) is public then one can easily find L. Suppose that the secret permutation is:

Π(L) = L′ = {α, α2, α3, . . . , α14, 0, 1} = {`i |i ∈ (1 . . . 16)}

• 1st step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 1.

? N¸ and Nº reveals the position of Π(0): `15.

◦ This is mainly due to: σ(x) = x we have τ(x) = 0 and S−1(x) = x

• 2nd step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 4 (the positions
(`i1 , `i2 , `i3) are the three non-zero positions of e and `i4 = `15).

? The couple
(
N¸

Nº

)
=

(
4
0

)
reveals all (`i1 , `i2 , `i3) such that `i1 + `i2 + `i3 = 0.

Here (`i1 , `i2 , `i3) ∈ {(`1, `4, `16), (`3, `14, `16), . . . }.

◦ deg(σ) = 4 and deg(ω) =

{
2 if `i1 + `i2 + `i3 6= 0
0 if `i1 + `i2 + `i3 = 0

◦ deg(b) =

{
1 if `i1 + `i2 + `i3 6= 0
0 if `i1 + `i2 + `i3 = 0

• 3rd step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 4 (the positions
(`i1 , `i2 , `i3 , `i4) are the four non-zero positions of e).

? The couple
(
N¸

Nº

)
=

(
4
0

)
reveals all (`i1 , `i2 , `i3 , `i4) such that `i1 + `i2 + `i3 + `i4 = 0.

Here (`i1 , `i2 , `i3 , `i4) ∈ {(`1, `2, `10, `16), (`2, `3, `13, `16), . . . }.

◦ deg(σ) = 4 and deg(ω) =

{
2 if `i1 + `i2 + `i3 + `i4 6= 0
0 if `i1 + `i2 + `i3 + `i4 = 0

◦ deg(b) =

{
1 if `i1 + `i2 + `i3 + `i4 6= 0
0 if `i1 + `i2 + `i3 + `i4 = 0

• 4th step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 6 (the positions
(`i1 , `i2 , `i3 , `i4 , `i5) are the five non-zero positions of e and `i6 = `15).

? The couple
(
N¸

Nº

)
=

(
8
1

)
reveals all (`i1 , `i2 , `i3 , `i4 , `i5) such that `i1 +`i2 +· · ·+`i5 =

0.
Here (`i1 , `i2 , `i3 , `i4 , `i5) ∈ {(`1, `2, `3, `12, `16), (`3, `4, `8, `12, `16), . . . }.
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◦ deg(σ) = 4 and deg(ω) =

{
4 if `i1 + `i2 + `i3 + `i4 + `i5 6= 0
2 if `i1 + `i2 + `i3 + `i4 + `i5 = 0

◦ deg(b) =

{
2 if `i1 + `i2 + `i3 + `i4 + `i5 6= 0
1 if `i1 + `i2 + `i3 + `i4 + `i5 = 0

• 5th step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 6 (the positions
(`i1 , `i2 , `i3 , `i4 , `i5 , `i6) are the six non-zero positions of e).

? The couple
(
N¸

Nº

)
=

(
8
1

)
reveals all (`i1 , `i2 , `i3 , . . . , `i6) such that `i1 +`i2 +· · ·+`i6 =

0.
Here (`i1 , `i2 , `i3 , . . . , `i6) ∈ {(`1, `2, `3, `4, `6, `16), . . . }.

◦ deg(σ) = 4 and deg(ω) =

{
4 if `i1 + `i2 + `i3 + · · ·+ `i6 6= 0
2 if `i1 + `i2 + `i3 + · · ·+ `i6 = 0

◦ deg(b) =

{
2 if `i1 + `i2 + `i3 + · · ·+ `i6 6= 0
1 if `i1 + `i2 + `i3 + · · ·+ `i6 = 0

• . . .

• Last step: The attacker has to solve the following system of quadratic equations in order
to find the secret permutation:

`15 = Π(0) ; 1st step
`1 + `4 + `16 = `3 + `14 + `16 = · · · = 0 2nd step
`1 + `2 + `10 + `16 = `2 + `3 + `13 + `16 = · · · = 0 3rd step
`1 + `2 + `3 + `12 + `16 = `3 + `4 + `8 + `12 + `16 = · · · = 0 4th step
`1 + `2 + `3 + `4 + `6 + `16 = · · · = 0 5th step
. . .

Solving the system will allow to fully determine the secret permutation

Π(L) = L′ = {α, α2, α3, α4, . . . , 0, 1}.

2 Toy example for the ELP evaluation attack

Consider F23 [x] = F2[x]
x3+x+1

. G and the support L = {0, 1, α, α2, α3, α4, α5, α6} are public,
m ∈ Fk2 and O is the decoding oracle. We notice that if L is public one can find G(x) such
that L = F2[x]

G(x) . The other way is equaly true: if G(x) is public then one can easily discover L.
Suppose that the secret permutation is:

Π(L) = L′ = {α, α3, 1, α4, α5, 0, α2, α6} = {`i |i ∈ {1, . . . , 8}}

• 1st step:

• The attacker asks O to decode all the z = mG⊕e with wt(e) = 2 (the positions (`j , `k)
are the two non-zero positions of e).
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? The faster step ¼ reveals the position of Π(0): `6.

• The attacker asks O to decode all the z = mG⊕e with wt(e) = 2 (the positions (`6, `k)
are the two non-zero positions of e).

? The faster step ¼ reveals the position of Π(1): `3.

• 2nd step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 3 (the positions
(`3, `j , `k) are the three non-zero positions of e).

? The faster step ¼ reveals all the couples (`j , `k) such that `3 + `j + `k = 0. Here
(`j , `k) ∈ {(`1, `2), (`4, `5), (`7, `8)}.

• 3rd step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 3 (the positions
(`6, `j , `k) are the three non-zero positions of e).

? The faster step ¼ reveals all the couples (`j , `k) such that `j`k = 1. Here (`j , `k) ∈
{(`1, `8), (`2, `4), (`5, `7)}.

• 4th step:

• The attacker asks O to decode all the z = mG ⊕ e with wt(e) = 3 (the positions
(`i, `j , `k) are the three non-zero positions of e).

? The faster step ¼ reveals all the triplets (`i, `j , `k) such that `i + `j + `k = 0. Here
(`i, `j , `k) ∈ {(`1, `4, `7), (`1, `5, `8), (`2, `4, `8), (`2, `5, `7)}.
• The attacker has to solve the following system of quadratic equations in order to find

the secret permutation:
`6 = Π(0) ; `3 = Π(1) 1st step
`1 + `2 = `4 + `5 = `7 + `8 = 1 2nd step
`1`8 = `2`4 = `5`7 = 1 3rd step
`1 + `4 + `7 = `1 + `5 + `8 = 0 4th step
`2 + `4 + `8 = `2 + `5 + `7 = 0 4th step

Solving the system will allow to fully determine the secret permutation Π(L) = {α, α3, 1, α4, α5, 0, α2, α6}.


