
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 11(5):613-630, October 2016.

Efficient Historical Query in HBase for Spatio-Temporal Decision
Support

X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

Xiao-Ying Chen, Chong Zhang*, Bin Ge, Wei-Dong Xiao
Science and Technology on Information Systems Engineering Laboratory
National University of Defense Technology
Changsha 410073, P.R.China
chenxiaoying1991@yahoo.com, leocheung8286@yahoo.com
gebin1978@gmail.com, wilsonshaw@vip.sina.com
*Corresponding author: leocheung8286@yahoo.com

Abstract: Comparing to last decade, technologies to gather spatio-temporal data are
more and more developed and easy to use or deploy, thus tens of billions, even trillions
of sensed data are accumulated, which poses a challenge to spatio-temporal Decision
Support System (stDSS). Traditional database hardly supports such huge volume, and
tends to bring performance bottleneck to the analysis platform. Hence in this paper,
we argue to use NoSQL database, HBase, to replace traditional back-end storage
system. Under such context, the well-studied spatio-temporal querying techniques
in traditional database should be shifted to HBase system parallel. However, this
problem is not solved well in HBase, as many previous works tackle the problem only
by designing schema, i.e., designing row key and column key formation for HBase,
which we don’t believe is an effective solution. In this paper, we address this problem
from nature level of HBase, and propose an index structure as a built-in component for
HBase. STEHIX (Spatio-TEmporal Hbase IndeX) is adapted to two-level architecture
of HBase and suitable for HBase to process spatio-temporal queries. It is composed
of index in the meta table (the first level) and region index (the second level) for
indexing inner structure of HBase regions. Base on this structure, three queries, range
query, kNN query and GNN query are solved by proposing algorithms, respectively.
For achieving load balancing and scalable kNN query, two optimizations are also
presented. We implement STEHIX and conduct experiments on real dataset, and the
results show our design outperforms a previous work in many aspects.
Keywords: spatio-temporal query, HBase, range query, kNN query, GNN query,
load balancing.

1 Introduction

Nowadays, either organizations or common users need sophisticated spatio-temporal Deci-
sion Support System (stDSS) [1] for countless geospatial applications, such as urban planning,
emergency response, military intelligence, simulator training, and serious gaming. Meanwhile,
with the development of positioning technology (such as GPS) and other related applications,
huge of spatio-temporal data are collected, of which volume increases to PB or even EB. Con-
sequently, this necessarily poses a challenge to stDSS applications. Traditionally, these data
are stored in relational database, however, since the database can’t resist such a huge volume,
such architecture would bring performance bottleneck to the whole analysis task. Hence, the
new structural storage system should back up stDSS. In this paper, we argue that HBase [2] is
capable to accomplish such task, since HBase is a key-value, NoSQL storage system, which can
support large-scale data operations efficiently.

On the other hand, from system point of view, an ideal geospatial application designed to
formulate and evaluate decision-making questions for stDSS should contain efficient presentation

Copyright © 2006-2016 by CCC Publications

614 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

of a basic set of spatio-temporal queries, such as: find doctors who can carry out rescue in a
certain area, recently, find 5 flower shops nearest to Tony, a group of friends spreading over
different places want to find nearest restaurant to them, aggregately, i.e., the sum of distances
to them is minimum. These operations are supported well in relational database, however, they
are not supported by HBase in a straightforward way. The main reason is that HBase do not
natively support multi-attribute index, which limits the rich query applications.

Hence in this paper, we explore processing for basic spatio-temporal queries in HBase for
stDSS. From a variety of applications, we mainly address three common and useful spatio-
temporal queries as follows:

• range query: querying data in specific spatial and temporal range. For instance, in real-
time monitoring and early warning of population, query the number of people in different
time intervals within a specific area.

• kNN query (k-Nearest Neighbor): querying data to obtain k nearest objects to a
specific location during a certain period. For instance, in the past week, find 5 nearest
Uber taxis to a given shopping mall.

• GNN query (Group Nearest Neighbor): querying data to obtain k nearest objects
aggregately (measured by sum of distances) to a group of specific locations during a certain
period. For instance, during last month, find the nearest ship to the given three docks.

As an example, Figure 1 shows the spatial distribution of users during two time interval [1, 6]
and [7, 14]. For range query, find the users who are in the spatial range marked by the dashed
line rectangle within time period [1, 6], apparently, {u1, u3} is the result. For 1NN query, if we
want to find the users who are nearest to p1 during time period [1, 6] and [7, 14], respectively,
the result is u2 for [1, 6] and u1 for [7, 14]. For GNN query, if we want to find the user who are
nearest to p1 and p2 by summing the distances during time period [1, 6], the result is u2.

p1

(u1,1)

(u1,4)

(u1,6)

(u2,6)

(u3,3)

(u3,5) (u3,6)

(u2,1)

x

y

(u1,3)

p1

(u1,9)

(u1,14)

(u2,12)
(u3,10)

(u3,14)
(u2,14)

x

y
t [1,6] t [7,14]

p2 p2

(u2,6) (u1,6) (u1,4) (u3,5) (u1,3) (u1,1) (u3,6) (u3,3) (u2,1)

||p1,ui ||

||p2,ui ||

sum

(u1,9) (u2,12) (u1,14) (u3,10) (u3,14) (u2,14)

||p1,ui ||

||p2,ui ||

sum

10 units

Figure 1: An example for range, kNN and GNN query

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 615

1.1 Motivation

Our motivation is to adapt HBase to efficiently process spatio-temporal queries as basic
operations for spatio-temporal decision support system. Although some previous works propose
distributed index on HBase, but these works only consider spatial dimension, more critically,
most of these works only concern how to design schema for spatial data, which do not tackle
the problem from the nature level of HBase, except one, MD-HBase [5] is designed to add index
structure into the meta table, however, it doesn’t provide index to efficiently retrieve the inner
data of HBase regions. Our solution, STEHIX (Spatio-TEmporal Hbase IndeX), is built on
two-level lookup mechanism, which is based on the retrieval mechanism of HBase. First, we use
Hilbert curve to linearize geo-locations and store the converted one-dimensional data in the meta
table, and for each region, we build a region index indexing the StoreFiles in HBase regions. We
focus on range query, kNN query and GNN query for such environment in this paper.

1.2 Contributions and paper organization

We address how to efficiently answer range query, k nearest neighbor (kNN) query and GNN
query on spatio-temporal data in HBase. Our solution is called STEHIX (Spatio-TEmporal
Hbase IndeX), which fully takes inner structure of HBase into consideration. The previous
works focus on building index based on the traditional index, such as R-tree, B-tree, while our
method constructs index based on HBase itself, thus, our index structure is more suitable for
HBase retrieval. In other way, STEHIX considers not only spatial dimension, but also temporal
one, which is more in line with user demand.

We use Hilbert curve to partition space as the initial resolution, the encoded value of which
is used in the meta table to index HBase regions, then we use quad-tree to partition Hilbert
cells as the finer resolution, based on this, we design region index structure for each region,
which contains the finer encoded values for indexing spatial dimension and time segments for
indexing temporal dimension. And later, we show such two-level index structure, meta table +
region index, is more suitable for HBase to process query in the experiment. Based on our index
structure, algorithms for range query, kNN query and GNN query are devised, and load balancing
policy and optimization to kNN query are also presented to raise STEHIX performance. We
compare STEHIX with MD-HBase on real dataset, and the results show our design philosophies
make STEHIX to be more excellent than the counterpart. In summary, we make the following
contributions:

• We propose STEHIX structure which fully follow inner mechanism of HBase and is a new
attempt on building index for spatio-temporal data in HBase platform.

• We propose efficient algorithms for processing range query, kNN query and GNN query in
HBase.

• We carry out comprehensive experiments to verify the efficiency and scalability of STEHIX.

The rest of this paper is organized as follows. Section 2 reviews related works. Section 3
formally defines the problem and prerequisites. Section 4 presents STEHIX structure. In section
5, algorithms for range query kNN query and GNN query are presented. Section 6 reports the
optimizations to the index. And we experimentally evaluate STEHIX in section 7. Finally,
section 8 concludes the paper with directions for future works.

616 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

2 Related Works

To overcome the drawbacks of traditional RDBMS, as an attractive alternative for large-
scale data processing, Cloud storage system currently adopts a hash-like approach to retrieve
data that only support simple keyword-based queries, but lacks various forms of information
search. For data processing operations, several cloud data managements (CDMs), such as HBase,
are developed. HBase, as NoSQL databases, is capable to handle large scale storage and high
insertion rate, however, it does not offer much support for rich index functions. Many works
focus on this point and propose various approaches.

Nishimura et al. [5] address multidimensional queries for PaaS by proposing MD-HBase. It
uses k-d-trees and quad-trees to partition space and adopts Z-curve to convert multidimensional
data to a single dimension, and supports multi-dimensional range and nearest neighbor queries,
which leverages a multi-dimensional index structure layered over HBase. However, MD-HBase
builds index in the meta table, which does not index inner structure of regions, so that scan
operations are carried out to find results, which reduces its efficiency.

Hsu et al. [6] propose a novel Key formulation scheme based on R+-tree, called KR+-tree,
and based on it, spatial query algorithm of kNN query and range query are designed. Moreover,
the proposed key formulation schemes are implemented on HBase and Cassandra. With the
experiment on real spatial data, it demonstrates that KR+-tree outperforms MD-HBase. KR+-
tree is able to balance the number of false-positive and the number of sub-queries so that it
improves the efficiency of range query and kNN query a lot. This work designs the index according
to the features found in experiments on HBase and Cassandra. However, it still does not consider
the inner structure of HBase.

Zhou et al. [7] propose an efficient distributed multi-dimensional index (EDMI), which con-
tains two layers: the global layer divides the space into many subspaces adopting k-d-tree, and
in the local layer, each subspace is associated to a Z-order prefix R-tree (ZPR-tree). ZPR-tree
can avoid the overlap of MBRs and obtain better query performance than other Packed R-trees
and R∗-tree. This paper experimentally evaluates EDMI based on HBase for point, range and
kNN query, which verifies its superiority. Compared with MD-HBase, EDMI uses ZPR-tree in
the bottom layer, while MD-HBase employs scan operation, so that EDMI provides a better
performance.

Han et al. [8] propose HGrid data model for HBase. HGrid data model is based on a hybrid
index structure, combining a quad-tree and a regular grid as primary and secondary indices,
supports efficient performance for range and kNN queries. This paper also formulates a set of
guidelines on how to organize data for geo-spatial applications in HBase. This model does not
outperform all its competitors in terms of query response time. However, it requires less space
than the corresponding quad-tree and regular-grid indices.

HBaseSpatial, a scalable spatial data storage based on HBase, proposed by Zhang et al. [9].
Compared with MongoDB and MySQL , experimental results show it can effectively enhance the
query efficiency of big spatial data and provide a good solution for storage. But this model does
not compare with other distributed index method.

All the previous works we have mentioned above only consider the spatial query. For moving
objects, a certain type of geo-spatial applications, requires high update rate and efficient real-
time query on multi-attributes such as time-period and arbitrary spatial dimension. Du et al. [10]
present hybrid index structure based on HBase, using R-tree for indexing space and applying
Hilbert curve for traversing approaching space. It supports efficient multi-dimensional range
queries and kNN queries, especially it is adept at skewing data compared with MD-HBase and
KR+-tree. As this work focus on moving objects, it is different for our goal, and it also does not
take the inner structure of HBase into account.

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 617

To address the shortcoming which have mentioned above, the STEHIX structure which fully
follow inner mechanism of HBase and is a new attempt on building index for spatio-temporal
data in HBase platform is proposed.

3 Problem Definition and Prerequisites

In this section, we first formally describe spatio-temporal data, and then present the structure
of HBase storage. For simplicity, only two-dimensional space is considered in this paper, however,
our method can be directly extended into higher dimensional space.

A record r of spatio-temporal data can be denoted as 〈x, y, t, A〉, where (x, y) means the
geo-location of the record, t means the valid time when the data is produced, A represents other
attributes, such as user-id, object’s shape, descriptions, and etc. We give the descriptions for
structure of storage and index in HBase [11], [12], for simplicity, some unrelated components,
such as HLog and version, are omitted. Usually, an HBase cluster is composed of at least one
administrative server, calledMaster, and several other servers holding data, called RegionServers.

Logically, a table in HBase is similar to a grid, where a cell can be located by the given
row identifier and column identifier. Row identifiers are implemented by row keys (rk), and the
column identifier is represented by column family (cf) + column qualifier (cq), where a column
family consists of several column qualifiers. The value in a cell can be referred to as the format
(rk, cf :cq). Table 1 shows a logical view of a table in HBase. For instance, value v1 can be
referred to as (rk1, cf1:cq1).

Table 1: Logical View for HBase Table

cf1 cf2

cq1 cq2 cq3 cqa cqb

rk1 v1 v2 v3 v4 v5

rk2 v6 v7 v8 v9 v10

Physically, a table in HBase is horizontally partitioned along rows into several regions, each of
which is maintained by exactly one RegionServer. The client directly interacts with the respective
RegionServer when executing read or write operations. When the data, formally as 〈rk, cf :cq,
value〉 (we alternatively use term key-value data in rest of the paper), are written into a region,
the RegionServer first keeps the data in a list-like memory structure called MemStore, where
each entry is pre-configured with the same fixed size (usually 64KB) and the size of a certain
number of entries is equal to that of the block of the underlying storage system, such as HDFS.
When the size of MemStore exceeds a pre-configured number, the whole MemStore is written
into the underlying system as a StoreFile, the structure of which is similar to that of MemStore.
Further, when the number of StoreFiles exceeds a certain number, the RegionServer will execute
the compaction operation to merge StoreFiles into a new large one. HBase provides a two-level
lookup mechanism to locate the value corresponding to the key (rk, cf :cq). The catalog table
meta stores the relation {[table name]:[start row key]:[region id]:[region server]}, thus given a row
key, the corresponding RegionServer can be found, and then the RegionServer searches the value
locally according to the given key (rk, cf :cq). Figure 2 shows an example of HBase two-level
lookup structure.

From above descriptions, we can see that HBase only provides a simple hierarchical index
structure based on the meta table, and the corresponding RegionServer must do scan work to
refine the results, which would be inefficient to handle spatio-temporal queries.

618 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

tableT1, rk1, regionA-->serverI

tableT2, rk2, regionB-->serverII

tableTn, rkn, regionY-->serverX

regoinA

StoreFileMemStore

serverI

regoinB

serverII

regoinY

serverX

meta

regoin ...

regoin ...

regoin ...

StoreFileMemStore

StoreFileMemStore

(rk1,cf1:cq1,value1)

(rk1,cf1:cq2,value2)

(rk1,cf1:cq3,value3)

64KB

Figure 2: HBase Two-Level Lookup

4 STEHIX Structure

In this section, we present the structure of our index, STEHIX (Spatio-TEmporal Hbase
IndeX). The following philosophies are considered during index design, 1) for applications, it is
not necessary for users to dedicatedly to design schema for query spatio-temporal data, i.e., our
index should add no restriction on schema design, but a inner structure associated with HBase,
2) the index should be in accordance with the architecture of HBase as identical as possible, 3)
the index should be adaptive to data distribution.

For design rule 1), we don’t care the schema design and generalize each record to be a key-
value data in StoreFile(MemStore), formally (rk, cf :cq, r), where r=〈x, y, t, A〉.

For design rule 2), our index is built on the two-level lookup mechanism. In particular, we
use Hilbert curve to linearize geo-locations and store the converted one-dimensional data in the
meta table, and for each region, we build a region index to index the StoreFiles. Figure 3 shows
an overview of STEHIX architecture.

4.1 Meta Table Organization

We use Hilbert curve to partition the whole space as the initial granularity. According to
the design rationale of HBase, the prefix of row key should be different so that the overhead of
inserting data could be distributed over RegionServers. And such design is able to satisfy this
demand.

Hilbert curve is a kind of space filling curve which maps multi-dimensional space into one-
dimensional space. In particular, the whole space is partitioned into equal-size cells and then

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 619

meta data for other purpose

[hs1, he1], region A->serverI

[hsn, hen], region Y->serverX

regoin A

StoreFile

serverI

meta

[hs2, he2], region B->serverII

s-index t-index

StoreFile StoreFile

regoin B

serverII

s-index t-index

regoin Y

serverX

s-index t-index

Figure 3: Overview of STEHIX

a curve is passed through each cell for only once in term of some sequence, so that every cell
is assigned a sequence number. Different space filling curves are distinguished by different se-
quencing methods. Due to information loss in the transformation, different space filling curves
are evaluated by the criteria, locality preservation, meaning that how much the change of prox-
imities is from original space to one-dimensional space. Hilbert curve is proved to be the best
locality preserved space filling curve [13]. With Hilbert curve, any object in the original space is
transformed into [0, 22λ − 1] space, where λ is called the order of Hilbert curve. Figure 4 shows
four Hilbert curves in two-dimensional space with λ=1, 2, 3 and 4.

(a) =1 (b) =2 (c) =3 (d) =4

p1

p2

R1

Figure 4: Hilbert Curves

We describe three functions for Hilbert curve, first one is mapping a point in the original
space to a value in one-dimensional space, the second is mapping a range window to a series of
intervals, and the third is retrieving proximity cells of a point. Specifically, for a Hilbert curve
with order=λ,

• coorToCell(p). Given a point p=(x1, x2, . . . , xn) in n-dimensional space S, coorToCell(p)
returns a cell number (between 0 and 22λ − 1) referring the cell where p lies within S.

620 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

• rectToIntervals(R). Given a range window R=(xl1, xl2, . . . , xln, xu1 , xu2 , . . . , xun) in n-
dimensional space S, where xli and xui (1 ≤ i ≤ n) are the lower and upper bound of the
ith-dimension, respectively, rectToIntervals(R) returns a series of intervals representing
the cells intersecting with R in S.

• getNeighborCells(p). Given a point p=(x1, x2, . . . , xn) in n-dimensional space S, getNeigh
borCells(p) returns a list of cell numbers referring the cells which are neighbors of the cell
coorToCell(p).

For instance, in Figure 4 (b), coorToCell(p1) = 2, coorToCell(p2) = 13, rectToIntervals(R1)
= {[1,2], [7,8], [11,15]}, and getNeighborCells(p2)={1, 2, 7, 8, 11, 12, 15, 14}.

Based on above descriptions, we use Hilbert cell value as row key in the meta table to index
spatio-temporal data as first level, thus, each record can be placed into the corresponding region
according to Hilbert value of spatial part of the record. In particular, the following mapping
structure is built in the meta table (for simplicity, table name is omitted): {[start Hilbert cell,
end Hilbert cell]:[region id]:[region server]}. Initially, assuming there are N regions across M
RegionServers, we can uniformly assign Hilbert cells to these regions, for instance, the first
entry could be {[0, ((22λ − 1)/N) − 1] : regionA : serverI}, and the second {[((22λ − 1)/N),
(2 ∗ (22λ − 1)/N)− 1] : regionB : serverII}.

4.2 Region Index Structure

For retrieving local data efficiently, we design the region index which is kept in memory like
MemStore. Considering MemStore is always kept in memory, region index is only to index Store-
File, however, for answering a query, MemStore must be scanned to guarantee the completeness
of results.

Region index is a list-like in-memory structure, each entry of which points to a list of addresses
referring to key-value data in the StoreFile. The region index consists of two parts, one is called
s-index indexing spatial component of data, the other is called t-index indexing the temporal
part, and such design is able to benefit query efficiency as we will see in next section.

For constructing s-index, the space is further partitioned at a finer granularity, i.e., each
Hilbert cell is recursively divided by quad-tree and the resulting tiles are encoded with binary Z-
Order. Such consideration is able to deal with the skewed data, i.e., when a hotspot is detected,
quad-tree can be used recursively until the hotspot is eliminated. Later, we will use this idea
to design an adaptive load balancing policy. After partitioning the Hilbert cell, each tile is
corresponding to an entry in the s-index, i.e., the entry points to the key-value data whose geo-
locations lie in that tile. For instance, Figure 5 shows an example of meta table and region index,
where in the meta table, Hilbert cells [0, 1] indexes regionA : serverI and [2, 3] for regionB :
serverII, respectively. For regionA, Hilbert cells 0 and 1 are divided using quad-tree into 11
tiles, 7 of which are 2-bit tiles and 4 are 4-bit tiles, and for each entry in s-index, the identifier
is a combination of Hilbert value and binary Z-Order value, for instance, entry 0-10, where 0 is
the number of Hilbert cell 0 and 10 is the code of lower-right tile in Hilbert cell 0, points to a
list containing two addresses referring to two key-value records in StoreFile.

For building t-index, we use a period T to bound the length of the list of t-index, and such
consideration is based on the fact that there may be some cycle for the spatial change of objects.
The period T is divided into several segments, each of which is corresponding to an entry in
t-index. Each entry points to a list of addresses referring to key-value data in StoreFile, whose
temporal component modulo T lies in the segment. Continuing the example, Figure 5 shows the
structure of t-index. Let T=24, which means a period of 24 hours is a cycle, and let each segment
= 3 hours, which means T is divided into 8 segments, and entry [3, 6) points to 8 key-value data
whose temporal value modulo 24 between 3 and 6.

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 621

00

01

10

11 01

10

11

0000 0010

0001 0011

[0, 1], region A->serverI

meta

regoin A

serverI

0-10 0-11 1-0000 1-0001 1-01 [0, 3) [3, 6)

s-index t-index
[21, 0)

StoreFile

[2, 3], region B->serverII

q

1-0010 1-0011

#addr

#addr

#addr #addr #addr

#addr

#addr #addr

#addr

#addr

#addr

#addr

#addr

#addr

#addr

Figure 5: Region Index Structure

5 Query Processing

In this section, the processing algorithms for range query, kNN query and GNN query are
presented.

5.1 Range Query

A range query q=(xl, yl, xu, yu, ts, te), aims to find all the records, whose geo-locations lie
in the range (xl, yl, xu, yu) during time [ts, te].

The basic work flow for processing a range query q is described as follows, first, using Hilbert
curve, spatial predicate (xl, yl, xu, yu) is converted into a set of one-dimensional intervals Iq,
then according to mapping relation in the meta table, the involved RegionServers are informed
to search the corresponding regions locally, utilized by region index. Here we propose a query
optimization, i.e., using s-index and t-index to calculate selectivity, which is helpful to choose the
high-selectivity to filter more unrelated data, in particular, the spatial predicate is recursively
divided by quad-tree, the results of which are intersected with the entries in s-index, and then
the number of addresses to key-value data can be calculated, say sn, similarly, using t-index can
also calculate a number, tn, then if sn is less than tn, s-index is followed to retrieve results, other
wise t-index is used.

Algorithm 1 describes the range query processing for STEHIX. In line 1, the spatial predicate
is converted into one-dimensional intervals Iq, and the temporal predicate is converted into [0,
T] interval in line 2. In line 3, function findRegions() finds the involved regions which intersect
with Iq. From line 4 to 11, each corresponding region index is inspected to retrieve results, in

622 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

particular, s-index and t-index is used to calculate selectivity for the query, which is implemented
by function getCard(), and the index with the lower cardinality is chosen to retrieve the results.
Algorithm 1 Range Query Processing

Require:
q=(xl, yl, xu, yu, ts, te)

Ensure:
Qlist //result list

1: Iq = rectToIntervals(xl, yl, xu, yu)
2: keys = ts mod T , keye = te mod T
3: Regions=findRegions(Iq)

/*the following processing is executed sepa-
rately in each region*/

4: for each region ∈ Regions do

5: sn=region.s-index.getCard(xl, yl, xu, yu)
6: tn=region.t-index.getCard(keys, keye)
7: if sn ≤ tn then
8: Qlist←region.s-index.seachIndex(q)
9: else

10: Qlist←region.t-index.seachIndex(q)
11: end if
12: end for
13: return Qlist

Figure 5 shows an example for range query processing in STEHIX. The spatial bound of q
is depicted with dashed line and we assume that temporal predicate of q is [3, 6]. Then Hilbert
cells 0 and 1 are intersected with q, thus, two entries in the meta table are examined, namely,
{[0, 1] : regionA : serverI} and {[2, 3] : regionB : serverII}. For instance, in regionA, the
entries in s-index are intersected with spatial predicare of q, resulting 0-10, 0-11, 1-0001, 1-0011,
1-01 these 5 entries, which refer to totally 7 addresses to key-value data, and similarly, entry [3,
6) of t-index refers to 8 addresses, consequently s-index is followed to retrieve the results.

5.2 kNN Query

A kNN query could be formally defined as: given a set R of spatio-temporal data records,
a kNN query q=(xq, yq, ts, te, k), aims to find a set R(q) ⊆ R , such that |R(q)|=k, and
d(o, (xq, yq)) ≤ d(o′, (xq, yq)), ∀o ∈ R(q), o′ ∈ R \ R(q), and o.t, o′.t ∈[ts, te], where d() is the
Euclidean distance function.

We don’t want to use n range queries to accomplish the kNN query, which means continuously
enlarging spatial range of the query until k records are obtained [14], because we believe such a
method would cause heavy querying overhead. We propose an approach utilized by incremental
retrieval idea [15]. The basic work flow is, proximity objects of point (xq, yq) are constantly,
incrementally retrieved until k results are found. In particular, first, Hilbert cell h containing
point (xq, yq) is located, then the corresponding region index is utilized to retrieve all records
lie in h, meanwhile, neighbor cells of h are also retrieved, and these records and Hilbert cells are
all enqueued into a priority queue where priority metric is the distance from (xq, yq) to record
or Hilbert cell. Then top element is constantly dequeued and processed, either being added to
result list or being followed to retrieve neighbor cells to be enqueued, until k results are found.

Algorithm 2 presents kNN query processing. The first line initializes a priority queue PQ
where each element is ordered by the distance from (xq, yq) to the element. The element can
be Hilbert cell or record, and if it is a Hilbert cell, the distance is MINDIST [16], other wise,
the distance is the Euclidean distance from (xq, yq) to geo-location of the record. In line 2, the
Hilbert cell containing (xq, yq) is gained, and is enqueued in line 3. From line 4, the procedure
constantly retrieves top element e from PQ (line 5) and processes it, in particular, if e is a
Hilbert cell (line 6), find the corresponding region rg from the meta table (line 7), and then the
corresponding region index is searched to retrieve all the records satisfying temporal predicate
(line 8), which are enqueued into PQ (line 9 to 11), after that, the neighbor cells of e are obtained
and enqueued into PQ (line 12 to 15); other wise, i.e., if e is a record (line 16), which means e
is a result, e is added into Qlist (line 17), and the above procedure is looped until the size of

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 623

Algorithm 2 kNN Query Processing

Require:
q=(xq, yq, ts, te, k)

Ensure:
Qlist //result list

1: PQ=null //initial a priority queue
2: h=coorToCell(xq, yq)
3: PQ.enqueue(h, MINDIST ((xq, yq), h))
4: while PQ 6= φ do
5: e=PQ.dequeue()
6: if e is typeof cell then
7: rg=findRegions(e)
8: RS=rg.findRecords(e, (ts, te))
9: for each record ∈ RS do
10: PQ.enqueue(record, dist((xq, yq),

record))
11: end for
12: CellSet=getNeighborCells(e.center)
13: for each cell ∈ CellSet do
14: PQ.enqueue(cell, MINDIST ((xq, yq),

cell))
15: end for
16: else if e is typeof record then
17: Qlist←e
18: if Qlist.size()=k then
19: return Qlist
20: end if
21: end if
22: end while

Qlist reaches k (line 18 to 20).

5.3 GNN Query

A GNN query in our work could be formally defined as: given a set R of spatio-temporal
data records and a set of location point(s) P , a GNN query q=(P , ts, te, k), aims to find a set
R(q) ⊆ R , such that |R(q)|=k, and the point(s) of R(q) with smallest sum of distances to all
points in P (|P |=n), i.e.

∑N
i=1 d(o, (xi, yi)) ≤

∑n
i=1 d(o′, (xi, yi)), ∀o ∈ R(q), o′ ∈ R \ R(q), and

o.t, o′.t ∈[ts, te], where d() is the Euclidean distance function.
Different from kNN query, GNN query aims to finds a group of point(s) that nearest to a

set of points. In kNN query processing, firstly Hilbert cell h containing point (xq, yq) is located,
while in GNN processing, we firstly find the ideal nearest neighbor p, which could not exist in
the dataset R. This approach is that the nearest neighbor is the point(s) "near" p. Let (x,y) be
the coordinates of ideal 1NN point p and (xi,yi) be the coordinates of point pi ∈P , p minimizes
the sum of distance function:

sumdist(p, P) =
n∑
i=1

√
(x− xi)2 + (y − yi)2 (1)

Partially calculate the derivation of function sumdist(p, P) with respect to variables x and y,
let them equal to zero, we have:

∂sumdist(p, P)

∂x
=

n∑
i=1

x− xi√
(x− xi)2 + (y − yi)2

= 0

∂sumdist(p, P)

∂y
=

n∑
i=1

y − yi√
(x− xi)2 + (y − yi)2

= 0

(2)

However, this equations can not be solved when n > 2. According to the method in [18], we
start with the arbitrary initial coordinates x =

∑n
i=1 xi
n , y =

∑n
i=1 yi
n , then modifies as follows:

x = x− η∂sumdist(p, P)

∂x
, y = y − η∂sumdist(p, P)

∂y
(3)

where η is a step size. The process is repeated until the distance function sumdist(p, P)
converges to a minimum value. We call this processing p = getNearest(P). The range around
p in which we should look for points of R(q).

624 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

The basic work flow is similar to kNN query processing which introduce above. Algorithm
3 presents GNN query processing. In particular, first, Hilbert cell h containing point p (x, y) is
located, then the corresponding region index is utilized to retrieve all records lie in h, meanwhile,
neighbor cells of h are also retrieved, and these records and Hilbert cells are all enqueued into
a priority queue where priority metric is the sum of distance from P to record or Hilbert cell.
Then top element is constantly dequeued and processed, either being added to result list or being
followed to retrieve neighbor cells to be enqueued, until k results are found.
Algorithm 3 GNN Query Processing

Require:
q=(P , ts, te, k)

Ensure:
Qlist //result list

1: PQ=null //initial a priority queue
2: p = getNearest(P)
3: h=coorToCell(p)
4: PQ.enqueue(h, sumMINDIST ((P), h))
5: while PQ 6= φ do
6: e=PQ.dequeue()
7: if e is typeof cell then
8: rg=findRegions(e)
9: RS=rg.findRecords(e, (ts, te))
10: for each record ∈ RS do
11: PQ.enqueue(record, sumdist((P),

record))
12: end for
13: CellSet=getNeighborCells(e.center)
14: for each cell ∈ CellSet do
15: PQ.enqueue(cell, sumMINDIST ((xq,

yq), cell))
16: end for
17: else if e is typeof record then
18: Qlist←e
19: if Qlist.size()=k then
20: return Qlist
21: end if
22: end if
23: end while

6 Optimizations

In this section, we propose two methods for raising performance of STEHIX from the aspects
of load balancing and query optimization.

6.1 Adaptive Load Balancing

For achieving design rule 3), adaptive load balancing is considered. Our spatial partition
procedure contains two phases, first is Hilbert curve, and the second is quad-tree. And load
balancing is based on the second phase and region split, in particular, when the volume of a
region exceeds a limit due to the hotspot in spatial dimension, the procedure detects which
Hilbert cell is the hotspot, and uses a quad-tree to divide it into four subspaces, thus the original
region is split into five regions, i.e., four corresponds to the four subspaces and one corresponds
to the undivided Hilbert cell(s). After that, the meta table is also updated to renew the mapping
information as well as the region index. Figure 6 shows an example of region split. We can see
when a hotspot is generated in Hilbert cell 0, the cell is divided into four subspaces by quad-tree,
and the corresponding region is split into five, namely, 0-00, 0-01, 0-10, 0-11 and 1, and the meta
table and new regions are updated accordingly.

6.2 Optimization for kNN Query

From kNN algorithm we can see, each time for retrieving the records of a Hilbert cell, the
meta table must be searched to locate the corresponding region, which would increase overhead
of the query. To deal with such a problem, we add modifications to region index, in particular,
each region index ri is connected to the regions whose Hilbert cells are the neighbors of ri’s

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 625

region’s Hilbert cells. Thus, when getNeighborCells() method is invoked, the current region is
able to retrieve records from proximity regions, however, not all the records can be retrieved, and
for this case, the meta table should be searched. Nevertheless, this optimization would reduce
the overhead of querying the meta table.

00

01

10

11

[0, 1], region A->serverI

meta 0-00, region R1->serverII

meta

0-01, region R2->serverII

0-10, region R3->serverX

0-11, region R4->serverX

1, region A->serverI

Figure 6: Load Balancing

7 Experimental Evaluation

We evaluate our algorithms on real dataset, which contains trajectories of taxis in Beijing1.
In particular, the dataset contains about 100 million records, and temporal range is from Nov.
1st to 3rd, and each record in the dataset contains vehicle ID, geo-location, recording time stamp,
etc.

Our algorithms are implemented in Hadoop 2.5.1 and HBase 0.98.6, and run on a cluster
with size varied from 5 to 33, in which each node is equipped with Intel(R) Core(TM) i3 CPU
@ 3.40GHz, 4GB main memory (for Master 16GB), and 500GB storage, and operating system
is CentOS release 6.5 64bit, and network bandwidth is 10Mbps. For comparison, we choose
MD-HBase due to the similar function.

1http://activity.datatang.com/20130830/description

626 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

3 10 15 30 50

1000

2000

3000

4000

5000

6000

7000

8000

D
e
la

y
(m

s
)

�(%)

STEHIX

MD-HBase

(a) Effect of selectivity

5 9 17 33

2000

3000

4000

5000

6000

7000

8000

9000

D
e
la

y
(m

s
)

Cluster size

STEHIX

MD-HBase

(b) Effect of cluster size
Figure 7: Experimental Results for Range Queries

7.1 Range Queries

First, we evaluate the algorithm for range queries. And we introduce two parameters to test
the algorithm under various conditions. One is selectivity θ defined as:

θ =
L(ts,te)

Lt
· ARq

AS

where L(ts,te) means the length of query temporal range (ts, te), Lt means the length of temporal
extent of the dataset, ARq means the area of query spatial range Rq, and AS means the area of
the whole space. Selectivity specifies the size of the query range, and the larger θ is, the more
spatio-temporal records are involved. In this experiment, the default values of θ and cluster
size are 10% and 9, respectively. For each value of θ or size, we issue 10 queries with different
temporal ranges and spatial ranges, and collect the average response time as the measurement
of performance.

First, we vary θ from 3% to 50% and Figure 7(a) shows the results. We can see that response
time increases with θ for both methods. This is because a larger selectivity would access more
records to be retrieved and examined, which increases the processing time. However, we can
see STEHIX outperforms MD-HBase, which can be explained by the design of region index.
Although MD-HBase builds index in the meta table, it doesn’t index inner structure of regions,
thus, scan operations are carried out to find results, which cost heavily. Our STEHIX is adapted
to the two-level architecture of HBase, and is able to use region index to efficiently search each
region, which highly improve performances.

Next, we vary cluster size from 5 to 33, and Figure 7(b) shows the results. It is apparent that
STEHIX is excellent due to its nearly horizontal response time and good scalability. When the
number of cluster size is increased, more RegionServers take part in the processing and use their
region indexes parallel. However, due to lack of indexing StoreFiles, the scalability of MD-HBase
is not good.

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 627

4 8 16 32

0

500

1000

1500

2000

2500

3000

D
e
la

y
(m

s
)

k

STEHIX

MD-HBase

(a) Effect of k

5 9 17 33

500

1000

1500

2000

2500

3000

D
e
la

y
(m

s
)

Cluster size

STEHIX

MD-HBase

(b) Effect of cluster size
Figure 8: Experimental Results for kNN Queries

7.2 kNN Queries

In this experiment, the default values of k and cluster size are 8 and 9, respectively. First, we
vary k from 4 to 32, and Figure 8(a) shows that STEHIX outperforms MD-HBase. When k is
increased, both methods need more time to process queries. STEHIX uses less time to retrieve
k results, which can be explained by the same reason, i.e., the region index embedded in HBase
region. And then cluster size is varied from 5 to 33, still, STEHIX is better than MD-HBase,
Figure 8(b) shows the fact.

7.3 GNN Queries

In this experiment, we vary the size of location set P and cluster to measure performance
of STEHIX. Note that MD-HBase does not study GNN query, so we just simply use our virtual
centroid method to apply to it. We vary n (size of P) from 3 to 9, and Figure 9(a) shows the
results. We can see with increasing of n, the response time is also increased, this is because a
larger size of P would cause more time to calculate the virtual centroid, however, we can the
delay time does not increase very steeply, due to the fact that computing the virtual centroid
only cost CPU time. Similarly, our STEHIX still outperforms MD-HBase in both varying n and
cluster size.

7.4 Effect of Optimizations

We examine the effect of optimizations to STEHIX in this experiment, and Figure 10 show
the results. First, we use maximum imbalance load ratio [17] as metric, and test our adaptive
load balancing policy, the results of comparison with non-load balancing are plotted in Figure
10 (a). We can see with cluster size increased, both ratios are raised, this is because the more
nodes participate in the cluster, the more difficult is to distribute load uniformly, however, we
can see our load balancing method indeed takes effect, i.e., when load balancing policy is used,
the ratio is averagely around 6, while the counterpart shows the performance about 38 to 70.
Next, we test the effect of kNN optimization, from Figure 10 (b), we can see the connections
among region indexes give chances to reduce querying overhead.

628 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

3 4 5 6 7 8 9

1000

1200

1400

1600

1800

2000

2200

2400

2600

D
e
la
y
(m
s
)

n

STEHIX

MD-HBase

(a) Effect of size of P

5 9 17 33

1000

1500

2000

2500

3000

D
e
la
y
(m
s
)

Cluster Size

STEHIX

MD-HBase

(b) Effect of cluster size
Figure 9: Experimental Results for GNN Queries

4 8 16 32

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
e
la

y
(m

s
)

k

STEHIX

STEHIX Optimization

(a) Effect of k

5 9 17 33

0

10

20

30

40

50

60

70

M
a
x

im
b

a
la

n
c
e

lo
a
d

ra
ti

o
(%

)

Cluster size

Load Balancing

Non load Balancing

(b) Effect of cluster size
Figure 10: Experimental Results for Optimizations

Efficient Historical Query in HBase for Spatio-Temporal Decision Support 629

8 Conclusion and Future Works

With development of positioning technology, more and more spatio-temporal data need to be
processed. To equip HBase with efficient and scalable spatio-temporal querying capability will
benefit the whole spatio-temporal decision support system. In this paper, we argue that many
previous works fail to tackle this problem due to lack of deep design for HBase, while we address
the problem by proposing a novel index structure adapted to two-level architecture of HBase,
which is suitable for HBase to process queries. Algorithms for range query, kNN query and GNN
query are designed, what’s more, the optimizations for load balancing and kNN query are also
proposed. We carry out extensive experimental studies for verifying our index, and the results
show that our approach for HBase is more efficient and scalable than the previous work.

In the future, we plan to utilize this idea to efficiently store and retrieve graph data and
apply to social networks.

Acknowledgment

This work is supported by NSF of China grant 61303062 and 71331008. We would like to
thank Peijun He for helping with the implementation.

Bibliography

[1] Van Orshoven et al. (2011), Upgrading geographic information systems to spatio-temporal
decision support systems, Mathematical and Computational Forestry & Natural Resource
Sciences, 3(1): 36-41.

[2] Wiki, H. HBase: bigtable-like structured storage for Hadoop HDFS. 2012-02-23)[2012-04-
17]. http://wiki. apache, org/hadoop/Hbase.

[3] Ralph Kimball, Margy Ross (1996), The data warehouse toolkit, Wiley.

[4] Ralph Kimball, Margy Ross (2012), The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd Edition, Wiley.

[5] Nishimura, S., Das, S., Agrawal, D., Abbadi, A. E. (2011, June). MD-HBase: A scalable
multi-dimensional data infrastructure for location aware services. In Mobile Data Manage-
ment (MDM), 2011 12th IEEE International Conference on, 1: 7-16.

[6] Hsu, Y. T., Pan, Y. C., Wei, L. Y., Peng, W. C., Lee, W. C. (2012), Key formulation schemes
for spatial index in cloud data managements. In Mobile Data Management (MDM), 2012
IEEE 13th International Conference on, 21-26.

[7] Zhou, X., Zhang, X., Wang, Y., Li, R., Wang, S. (2013), Efficient distributed multi-
dimensional index for big data management. In Web-Age Information Management, Springer
Berlin Heidelberg, 130-141.

[8] Han, D., & Stroulia, E. (2013), Hgrid: A data model for large geospatial data sets in hbase.
In Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on, 910-917.

[9] Zhang, N., Zheng, G., Chen, H., Chen, J., Chen, X. (2014). Hbasespatial: A scalable
spatial data storage based on hbase. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014 IEEE 13th International Conference on, 644-651.

630 X.Y. Chen, C. Zhang, B. Ge, W.D. Xiao

[10] Du, N., Zhan, J., Zhao, M., Xiao, D., & Xie, Y. (2015), Spatio-Temporal Data Index
Model of Moving Objects on Fixed Networks Using HBase, In Computational Intelligence
& Communication Technology (CICT), 2015 IEEE International Conference on, 247-251.

[11] HBase, A. (2012), Apache hbase reference guide. Webpage available at http://wiki. apache.
org/hadoop/Hbase/HbaseArchitecture. Webpage visited, 04-04.

[12] George, L. (2011). HBase: the definitive guide, O’Reilly Media, Inc.

[13] Faloutsos, C., Roseman, S. (1989), Fractals for secondary key retrieval, Proceedings of the
eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
247-252.

[14] Wang, J., Wu, S., Gao, H., Li, J., Ooi, B. C. (2010), Indexing multi-dimensional data
in a cloud system. Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 591-602.

[15] Hjaltason, G. R., Samet, H. (1999), Distance browsing in spatial databases, ACM Transac-
tions on Database Systems (TODS), 24(2): 265-318.

[16] Roussopoulos, N., Kelley, S., Vincent, F. (1995). Nearest neighbor queries. In ACM sigmod
record, 24(2):71-79.

[17] Vu, Q. H., Ooi, B. C., Rinard, M., Tan, K. L. (2009), Histogram-based global load balancing
in structured peer-to-peer systems, Knowledge and Data Engineering, IEEE Transactions
on, 21(4): 595-608.

[18] Hochreiter, S., Younger, A. S., Conwell, P. R. (2001), Learning to Learn Using Gradient
Descent. Artificial Neural Networks-ICANN 2001, Springer Berlin Heidelberg.

