
INT J COMPUT COMMUN, ISSN 1841-9836
8(6):800-811, December, 2013.

Adaptive Network Coding Scheme for TCP over Wireless Sensor
Networks

Y.-C. Chan, Y.-Y. Hu

Yi-Cheng Chan*, Ya-Yi Hu
Department of Computer Science and Information Engineering,
National Changhua University of Education
No.2, Shi-Da Road, Changhua City 500, Taiwan
ycchan@cc.ncue.edu.tw, m9954016@mail.ncue.edu.tw
*Corresponding author: ycchan@cc.ncue.edu.tw

Abstract: The purpose of this paper is to develop a network coding scheme
to enhance TCP performance in wireless sensor networks. It is well known that
TCP performs poorly over wireless links which suffer from packet losses mainly
due to the bad channel. To address this problem, it is useful to incorporate
network coding into TCP, as network coding can offer significant benefits in terms
of throughput, reliability, and robustness. However, the encoding and decoding
operations of network coding techniques will bring an additional delay that has
a negative effect on applications of wireless sensor networks. In this paper, we
propose an adaptive network coding (ANC) scheme which contains two major
aspects: the adjustment of the redundancy factor R and the adjustment of the
coding window size CW . We dynamically adjust these two parameters depending
on the measured packet loss rate, so that the proposed ANC can effectively mask
packet losses and reduce the decoding delay of network coding. The performance
of our scheme is evaluated by simulations using NS-2 simulator. Compared to
other schemes, the ANC not only achieves a good throughput but also has the
lowest average delay and the lowest maximum delay in all experimental environments.

Keywords: network coding, TCP, delay, wireless sensor networks.

1 Introduction

The Transmission Control Protocol (TCP) is the main transport protocol that provides reli-
able transmission in the current Internet. It has been developed for many years. Most applica-
tions on the Internet depend on TCP to ensure safe delivery of data, such as FTP (File Transfer
Protocol), HTTP (HyperText Transfer Protocol), SMTP (Simple Mail Transfer Protocol), and
so on. TCP performs well in wired networks where packets losses mainly occur due to conges-
tion. However, the performance of TCP degrades very fast in wireless networks. In a wireless
environment, there is not only congestion but also numerous other reasons for packet losses exist.
Traditional TCP treat a packet loss event as the indication for network congestion, and then
decrease its congestion window size. This may severely impair the throughput when the TCP
runs on a wireless channel. Therefore, it is very important to improve the performance of TCP
in wireless networks. And this goal can be achieved by combining network coding with TCP.

Network coding is a new transmission paradigm originally proposed by Ahlswede et al [1]. In
recent years, it has received much attention and has been generated huge research in communi-
cation networks [2]. TCP/NC [3] is the first one that incorporates network coding into TCP with
minor changes to the protocol stack. They present a solution which embeds the network coding
operation in a separate layer below transport layer and above network layer on the source and
receiver side. The idea of network coding is that, instead of transmitting individual packets, the
sender takes several packets and combines them together for transmission. Consequently, suc-
cessful reception of information does not depend on receiving specific packet content but rather

Copyright © 2006-2013 by CCC Publications



Adaptive Network Coding Scheme for TCP over Wireless Sensor Networks 801

on receiving a sufficient number of combinations [4]. Then it can compensate for the packets
in the presence of random losses, as long as the sent redundant combinations are enough. This
characteristic is very attractive for TCP to improve the robustness and effectiveness of data
transmission over lossy wireless networks.

Wireless sensor networks (WSNs) are usually composed of a large number of radio-equipped
sensor devices to cooperatively monitor physical or environmental conditions, such as temper-
ature, sound, vibration, pressure, motion, or pollutants. These devices typically include some
strong constraints in terms of energy, memory, computational speed and communication band-
width. In fact, most applications on wireless sensor networks prefer faster and reliable packet
delivery to higher throughput [5]. Generally, these applications are not only loss-sensitive that
require successful transmission of all packets or at a certain success ratio but also delay-sensitive
that require timely delivery of data [6]. For these applications, packet loss will lead to retransmis-
sion and the inevitable consumption of additional battery power. In addition, if the delay time
is too long, the monitored data may be outmoded. To overcome these problems it is beneficial to
use network coding by transmitting redundant packets to mask packet losses. Thus, the number
of retransmissions and timeouts can be reduced.

In this paper, we propose a new network coding scheme to improve TCP performance over
wireless sensor networks which is called adaptive network coding (ANC). The concept of ANC
is divided into two parts. In the first part, we adjust the redundancy parameter dynamically
according to the network situation. As a result, the event of packet loss can be masked from the
congestion control algorithm of TCP by sending enough redundant combinations. In the second
part, we change the coding window size contingent on the measured packet loss rate to obtain
the optimal throughput-delay trade-off. The results of simulation show that our scheme achieves
higher throughput and lower delay in difference network scenarios.

The remainder of this paper is organized as follows. In Section 2 we provide an overview
of related work. Section 3 we propose our schemes and algorithms focus on the redundancy
parameter and the coding window size of network coding. In Section 4 we present an experimental
evaluation of the performance, and finally, our conclusions as well as the future work are discussed
in Section 5.

Figure 1: An example of random linear network coding

2 Related Work

Random linear network coding is one of the major techniques in the network coding. The
encoding coefficients are randomly chosen from a set of coefficients of a finite field. A linear
equation of packets is then performed to generate a coded packet, and the receiver only needs to
receive a sufficient number of linear equations in the forms of the coded packets to successfully
decode the original packets. For instance (see Figure 1), suppose that the sender buffers the first



802 Y.-C. Chan, Y.-Y. Hu

n packets p1, . . . , pn in its coding buffer, then the sender chooses n coefficients c1, . . . , cn from a
finite field and mates n coefficients with n packets. Next, the sender encodes these pairs into a
linear combination X, X = c1p1 + c2p2 + · · ·+ cnpn, then sends it to the receiver. If the receiver
receives enough number of these combinations then it can decode the original packets. In recent
years, there have been many studies make use of random linear network coding to improve TCP
performance.

The main aim of TCP/NC [3] is to mask losses from TCP using random linear coding. The
source transmits random linear combinations of packets currently in the congestion window,
and the receiver acknowledges every innovative linear combination it receives, even if it cannot
decode an original packet immediately. This scheme gives a new interpretation of ACKs, and
brings a new concept that “seen packet” which is defined in [7] as an abstraction for the case
in which a packet cannot yet be decoded but can be safely removed from the coding buffer at
the sender. TCP-Vegas is chosen for the transport layer protocol in TCP/NC, as it is more
compatible with their modifications. When losses are effectively masked, TCP-Vegas can infer
congestion from increased RTTs. Additionally, TCP/NC uses a constant redundancy parameter
R to compensate for the loss rate of the channel, for every packet arrives from TCP, R linear
combinations are sent to the IP layer on average. However, in a wireless environment, the packet
loss rate is very likely to not a constant value. A fixed redundancy parameter R may damage
network performance, since it is not always suitable for all network conditions. If the value of
parameter R is too small, then the losses are not effectively masked from the TCP layer and
will result in timeout. On the other hand, if the value of parameter R is too large, the source
may send too many linear combinations that consume network resources. Thus, the value of R
should be dynamically adjusted depending on the estimated packet loss rate.

The feedback based network coding (FNC) [8] uses the implicit information behind of the
seen scheme to find out the exact number of packets needed by receiver to decode all data.
The receiver computes the DIFF value by two variables: the number of seen packets and
the largest packet index in the coefficient matrix, and then embeds this value into the ACK
header. When the sender receives an ACK, it uses this value to decide how many random linear
combinations should be retransmitted and how many original packets should be combined in a
linear combination. In this way, the FNC retransmission scheme can reduce the decoding delay
and the number of redundant retransmissions. But the FNC retransmission scheme highly relies
on feedback, this will greatly impair the throughput when the network with a large round-trip
time. Furthermore, if the ACK is lost, the sender cannot repair the loss of linear combinations
through instant retransmissions.

The SANC-TCP protocol [9] is designed primarily to optimize the TCP/NC protocol. The
redundancy factor R of TCP/NC is constant, while SANC-TCP adjusts the redundancy factor
R adaptively based on existing network conditions. In order to implement this approach, SANC-
TCP adds some information in the ACK header to indicate the current network state, thus enable
the sender to dynamically change the value of R according to the real system. Our scheme is
similar to the SANC-TCP that with dynamic adjustment of redundancy factor R, but in different
ways. Moreover, we limit the coding window size and dynamically change it depending on the
packet loss rate to reduce the delay of network coding.

3 Proposed Method

In this section, we describe our adaptive network coding scheme (ANC) which consists of
two parts. First, we adjust the redundancy factor R dynamically by estimating the packet loss
rate in current network, so that the value of R can represent the actual network state. Second,
in order to reduce the decoding delay of network coding, we limit the coding window size and



Adaptive Network Coding Scheme for TCP over Wireless Sensor Networks 803

dynamically adjust it contingent on the measured packet loss rate.

3.1 Adjustment of the redundancy factor R

Before adjusting the redundancy factor R, we have to find the packet loss rate of current
network. In our scheme, we insert two variables into the header of ACK, which are send_count
and seen_count. The variable send_count refers to the number of packets that have been
sent from the sender and the variable seen_count refers to the number of seen packets at the
receiver. Then, the sender can use these and other related variables to calculate packet loss rate.
For example, when the ACK arrives from receiver, the sender retrieves the variables send_count
and seen_count from ACK header and compares seen_count with a threshold T which is the
variable used to determine if it is time to adjust the value of R. If seen_count is more than or
equal to T , the sender starts to calculate the packet loss rate by the following equations:

diff_send = send_count− send_old, (1)

diff_seen = seen_count− seen_old, (2)

loss_rate =
diff_send− diff_seen

diff_send
, (3)

where send_old and seen_old are the previous value of send_count and seen_count respec-
tively. The initial send_old and seen_old is set to 0. The diff_send refers to the number of
packets that have been sent during this calculation cycle while diff_seen refers to the number
of seen packets during this calculation cycle. Therefore, the loss_rate means the packet loss
rate of current network. Through the above equations, we can obtain the accurate packet loss
rate to conduct the correct adjustment of redundancy factor R.

After calculating the packet loss rate, the sender adjusts the redundancy factor R accordingly.
If current T is equal to init means this is the first time for the sender to adjust the value of R.
In the simulation, we choose init = 20 which is the same as initial coding window size. The
equation below shows the calculation of the redundancy factor R for the first time:

Rcurrent =
1

1− loss_rate
, (4)

where Rcurrent is current redundancy factor R. On the other hand, if it is time to adjust the
value of R after the first calculation, the value of R can be obtained as follow:

Rcurrent = a ∗ 1

1− loss_rate
+ b ∗Rold, 0 ≤ a, b ≤ 1, a+ b = 1. (5)

The above equation is calculated using moving average to take into account the previous trends
on Rold, where Rold is the last value of redundancy factor R. The values of variables a and b can
be set based on the network situations. If the random loss rate of the network environment tends
to change frequently, the value of a should be set greater than b. In contrast, if the random loss
rate of the network environment tends to change occasionally, the value of a should be set less
than b.

3.2 Adjustment of the coding window size

The coding window size represents that the largest number of original packets can be encoded
in a linear combination. To reduce the decoding delay of network coding, we limit the coding
window size and adjust it according to the packet loss rate.



804 Y.-C. Chan, Y.-Y. Hu

After the sender computed the redundancy factor R, the next process for the sender is to
adjust the coding window size. The following equation describes the adjustment of coding window
size for the first time:

CW = 20 + ⌊loss_rate ∗ 10⌋, (6)

where CW refers to the coding window size. In our scheme, the coding window size is dynamically
adapted depending on the packet loss rate. This means that the coding window size increases
as the packet loss rate increases, and the coding window size decreases as the packet loss rate
decreases. After the first calculation, the value of coding window size can be obtained as follow:

CW = 20−
⌊
1−Rcurrent

Rcurrent
∗ 10

⌋
. (7)

The above equation shows that the packet loss rate estimation for adjusting the coding window
is derived from the value of Rcurrent rather than the measured packet loss rate at this period.
That is because the value of Rcurrent is used to predict the packet loss rate in the next period.

Finally, we must update several related variables, such as Rold to Rcurrent, send_old to
send_count and seen_old to seen_count. The value of T also should be reset by the following
equation:

T = CW + seen_count. (8)

Table 1: Coding window size adjustment in difference loss rates
Dynamic Coding Window Adjustment 

 
CW Loss rate 0% Loss rate 10% Loss rate 20% Loss rate 30% Loss rate 40% 

10 585.1 0.06828 617.2 0.07108 515.7 0.07460 346.3 0.07648 91.1 0.07476 

15 877.6 0.06828 849.3 0.08667 733.7 0.09681 602.5 0.10356 341.6 0.10394 

20 998.6 0.07997 898.6 0.11153 793.3 0.13131 681.6 0.14362 509.7 0.15326 

25 998.6 0.09997 899.9 0.14440 798.9 0.17561 695.2 0.19556 589.3 0.20850 

30 998.6 0.11993 899.9 0.17740 799.0 0.21640 696.1 0.25118 592.8 0.27962 

35 998.6 0.13986 899.9 0.21272 799.0 0.21640 696.1 0.31536 592.8 0.27962 

40 998.6 0.15976 899.9 0.24271 799.0 0.21640 696.1 0.37298 592.8 0.27962 

ANC 998.6 0.07997 899.9 0.13830 799.0 0.18977 696.1 0.23014 592.4 0.26464 

CW 20 24 27 28 29 

3.3 Analysis of the coding window size

The initial value of coding window size in our scheme is acquired by the experimental results
presented in Table 1. For this experiment, the topology and experimental parameters are the
same as that in the subsection 4.1.1. Table 1 shows the data of throughput (TP) and delay which
are obtained by adjust the coding window size in difference loss rates. The data that have an
outline border is the optimal trade-off value when compared with others data in the same loss rate.
The last two rows in Table 1 are the experimental results and the coding window adjustments of
our scheme ANC. For the initial setting, we assume the packet loss rate at beginning of network
is zero, so we set the initial coding window size to 20 that is the optimal value in Table 1 when
the loss rate is 0%. After this, the sender adjusts the coding window size in accordance with the
measured packet loss rate. This experimental result (see Table 1) indicates that the throughput



Adaptive Network Coding Scheme for TCP over Wireless Sensor Networks 805

of our scheme at last row can reach the optimal value in most cases while has a shorter delay,
that is, the adjustment of the coding window size in our scheme is suitable.

As mentioned before, in order to reduce the decoding delay of network coding, we limit the
coding window size in our scheme. When the coding window size is limited, the coding coefficient
matrix can become smaller and the complexity of decoding can become lower. Hence, the time of
packets remain in the decoding buffer is decreased, that is, packets can be discarded earlier from
the decoding buffer. For these reasons, our scheme can effectively reduce the decoding delay of
network coding. Nevertheless, a smaller coding window size does not mean to be better. If the
size of coding window is too small, the coding window will restrict the use of available network
resources which could cause a poor throughput. As a consequence, we must take into account
the trade-off between throughput and delay to get higher throughput and lower delay.

The algorithm of our scheme is specified using pseudo-code that shown in Tables 2 and 3.

Table 2: The operations of network coding layer at the sender
Event Pseudo-code

Initialization:
1)Set NUM ,send_count, send_old and seen_old to 0.
2)Set init to 20. Let T = init.

When the packets
arrive from TCP
sender:

1)If the packet is a control packet used for connection management, deliver it to the
IP layer then doing nothing; else, move to state 2).

2)If the packet not already in the coding buffer, add it to the coding buffer.
3)Set NUM = NUM +R. (R = redundancy factor)
4)Repeat the following ⌊NUM⌋ times:

1.Generate a random linear combination of the packets in the coding window.
2.Count the send_count = send_count+ 1.
3.Add the network coding header specifying the set of packets in the coding

window and the coefficients used for the random linear combination.
4.Add the variable send_count to the network coding header.
5.Deliver the packet to the IP layer.

5)Set NUM = fractional part of NUM .

When the ACK ar-
rives from receiver:

1)Pick up the variables seen_count and send_count from ACK header.
2)If seen_count ≥ T start to adjust the values of R and CW ; else, move to state 3).

1.Compute the diff_send = send_count− send_old and the
diff_seen = seen_count− seen_old.

2.Compute the
loss_rate = (diff_send− diff_seen)/diff_send.

3.If T = init:
a)Rcurrent = 1/(1− loss_rate). b)CW = 20 + ⌊loss_rate ∗ 10⌋.
c)Move to state 5.

4.If T > init:
a)Rcurrent = a ∗ 1/(1− loss_rate) + b ∗Rold.
b)CW = 20− ⌊(Rcurrent − 1)/Rcurrent ∗ 10⌋.

5.Update Rold to Rcurrent, send_old to send_count and seen_old to seen_count.
6.Reset T = CW + seen_count.

3)Remove the ACKed packet from the coding buffer and hand over the ACK to the
TCP sender.

4 Performance Evaluation

Our adaptive network coding scheme is evaluated by means of the Network Simulator (ns-2)
under various conditions such as different link bandwidths, packet sizes, and random loss rates.
Evaluation metrics in performance test are the throughput, the average delay, and the maximum



806 Y.-C. Chan, Y.-Y. Hu

Table 3: The operations of network coding layer at the receiver
Event Pseudo-code
Initialization: 1)Set seen_count to 0.

When a packet ar-
rives from sender:

1)Count the seen_count = seen_count+ 1.
2)Remove the network coding header, then retrieve the coding vector and the

variable send_count.
3)Add the coding vector as a new row to the existing coding coefficient matrix, and

perform Gauss-Jordan elimination to update the set of seen packets.
4)Add the payload to the decoding buffer. Perform the operations corresponding to

the Gauss-Jordan elimination, on the buffer contents. If any packet gets decoded
in the process, deliver it to the TCP sink and remove it from the buffer.

5)Generate a new ACK with sequence number equals to that of the oldest unseen
packets and add two variables send_count and seen_count to the ACK header.

When an ACK ar-
rives from the TCP
sink:

1)If the ACK is a control packet for connection management, deliver it to the IP
layer; else, ignore the ACK.

delay. We compare our scheme ANC with SANC-TCP and TCP-Vegas under both fixed and
unfixed loss rate. We use TCP-Vegas as the transport layer protocol, and set the parameters of
TCP-Vegas to α = 28, β = 30, γ = 2. This setting is identical with TCP/NC [3]. The values of
a and b in our scheme are set to a = 0.2 and b = 0.8 individually.

Figure 2: A tandem network consisting of 6 hops

4.1 Results for fixed random loss rates

The topology in this simulation is a tandem network consisting of 6 hops, as shown in Figure
2. The sender and the receiver are at opposite sides of the chain.

In contrast to traditional wireless networks, wireless sensor networks generally have a lower
bandwidth for data transmission. We experiment with two different bandwidth settings: (a)
bandwidth = 1 Mbps and (b) bandwidth = 250 kbps which is the channel bandwidth of IEEE
802.15.4. In the following experiments we assume that the source always has data to send.

Set the link bandwidth to 1 Mbps

In this experiment, each link has a bandwidth of 1 Mbps, and a propagation delay of 10 ms.
The buffer size on the links is set to 200 packets. The packet size is 1000 bytes, and the random
loss rate is varied from 0% to 20% on each link. The simulation time is 1000 seconds.

The throughput obtained corresponding to different random loss rates is plotted in Figure 3.
Our scheme ANC and SANC achieve a similar throughput, but the throughput of Vegas decrease
rapidly when the random loss rate increases. The adjustment of the redundancy factor R that
we proposed in subsection 3.1 makes the sender to send out the proper number of redundant
linear combinations so that the random loss rate can be masked effectively. As a result, we can
get a fairly well throughput.



Adaptive Network Coding Scheme for TCP over Wireless Sensor Networks 807

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t(
K

b
p

s)
 

Random Loss Rates (%) 

SANC

ANC

Vegas

Figure 3: Throughput

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20

D
el

a
y

(m
s)

 

Random Loss Rates (%) 

SANC

ANC

Figure 4: Average delay

Figure 4 shows the average delay of ANC and SANC. Compared with the SANC, our scheme
have lower average delay in every case, moreover, the average delay of our scheme is almost half
of the average delay of SANC. This is because we limit the coding window size which would
decrease the complexity of decoding and reduce the time that packets remain in the decoding
buffer. Thus, we can have a lower delay time than that of SANC.

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

er
 o

f 
p

a
ck

et
s 

Random Loss Rates (%) 

SANC

ANC

Vegas

Figure 5: The total number of packets

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18 20

D
el

a
y

(m
s)

 

Random Loss Rates (%) 

SANC

ANC

Figure 6: Maximum delay

Figure 5 shows the total number of packets that have been send for SANC, ANC, and Vegas.
This figure is essentially identical to Figure 3 except the Y-axis represents the total number of
sent packets. As shown in Figure 5, the metric of total number of sent packets for ANC and
SANC outperform Vegas as the loss rate increases.

With regard to the simulation of delay, we also retrieve the maximum delay at various loss
rates. As illustrated in Figure 6, the maximum delay of SANC rises significantly with loss rate,
while our scheme rise slightly. Furthermore, the maximum delay of SANC is at least two times
more than ANC in most cases.

Set the link bandwidth to 250 kbps

The channel bandwidth of IEEE 802.15.4 is 250 kbps [10]. Many WSNs adopt IEEE 802.15.4
for communicating among nodes. The characteristics of IEEE 802.15.4 technology includes low
rate, low transit distance, low power, low cost, simple architecture, small size, etc. All these
characteristics are applied to the applications of WSN.

The experimental parameters in this simulation are identical to the setting used in subsection
4.1.1, except that the bandwidth of each link is 250 kbps, and the buffer size on the links is set
to 50 packets. Besides, we simulate the effect of two different packet sizes on the performance.
The packet sizes are set to 1000 bytes and 200 bytes.



808 Y.-C. Chan, Y.-Y. Hu

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t(
K

b
p

s)
 

Random Loss Rates (%) 

SANC

ANC

Vegas

(a) Throughput

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20

D
el

a
y

(m
s)

 

Random Loss Rates (%) 

SANC

ANC

(b) Average delay

Figure 7: The throughput and delay when packet size is 1000 bytes

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t(
K

b
p

s)
 

Random Loss Rates (%) 

SANC

ANC

Vegas

(a) Throughput

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16 18 20

D
el

a
y

(m
s)

 

Random Loss Rates (%) 

SANC

ANC

(b) Average delay

Figure 8: The throughput and delay when packet size is 200 bytes

As the link capacity and the buffer size become smaller, our scheme ANC still has high
throughput and low delay, as shown in Figure 7. However, it must take a longer delay to
transmit a large packet (1000 bytes) if the link capacity becomes smaller. This is demonstrated
through the simulation results, when the loss rate is 20%, ANC’s average delay is 189.77 ms in
Figure 4 where the bandwidth is 1 Mbps, while ANC’s average delay is 627.58 ms in Figure 7(b)
where the bandwidth is 250 kbps.

Then, we change the packet size to 200 bytes. Figure 8(a) demonstrates that when the loss
rate is 0%, the throughput of our scheme ANC is lower than SANC and Vegas. This is because
that the coding window size we adjust according to subsection 3.2 is not big enough in such a
network environment, thus the available network resources is restricted by coding window and
result in lower throughput. That is to say, when the packet size is very small, we must have a
sufficient coding window size to take full advantage of network resources. In Figure 8(b), the
average delay of our scheme is lower than SANC in every case. In addition, the average delay
in Figure 8(b) is lower when compared with the Figure 7(b) because the smaller packet size has
the lower transmission time.

4.2 Results for unfixed random loss rates

All previous simulations focus on the behavior of ANC under the fixed loss rate. Now, we
evaluate its performance in an unknown environment with unfixed loss rate. We use the same
topology and parameters as 4.1.1. The background loss rate in this scenario is 2%. The loss rate



Adaptive Network Coding Scheme for TCP over Wireless Sensor Networks 809

is changed to 6% from 200 to 400 second, and changed to 10% from 600 to 800 second. Total
simulation time is 1000 seconds.

In Figure 9, the X-axis represents the simulation time, and the Y-axis represents the average
throughput. It clearly shows that ANC and SANC can quickly and effectively handle the sudden
bursty losses by adjusting the redundancy factor R dynamically, but Vegas is seriously affected
by bursty losses. In Figure 10, we show the comparison of delay between ANC and SANC. The
delay of SANC increases rapidly when the loss rate is suddenly changed at 200 second and 600
second. In contrast to SANC, ANC can still maintain quite low latency under the changed loss
rate. This is because our scheme ANC can constantly measure the packet loss rate of network
and further adjust the coding window size to get low delay. Based on the above experimental
results, we can demonstrate that even under the unknown environment with bursty losses, our
scheme ANC still can send enough linear combinations to compensate the lost packets. Thus,
ANC can reach high throughput and keep low delay through the adjustment of R and CW .

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

g
h

p
u

t(
K

b
p

s)
 

Time(s) 

SNAC

ANC

Vegas

Figure 9: The average throughput under
bursty losses

Figure 10: The delay evolution under bursty
losses

4.3 Results in a more realistic environment

In this subsection, we compare our scheme with SANC-TCP and TCP-Vegas in a wireless
topology shown in Figure 11. There are five nodes (four hops) in this topology. The distance
between each node is 30 meters. Table 4 is a parameter table which shows the parameter settings
that used in the performance test. The simulation time is 100 seconds. The FTP flow stars at
1 second. In this experimental environment, some packets can be lost for reasons other than
congestion.

Figure 11: Wireless topology

The experimental results show that the throughput of ANC and SANC are 272.0 kbps and
271.9 kbps respectively. Both of them are outperform Vegas whose throughput is 260.5 kbps.
The comparison of RTT between ANC and SANC is shown in Figure 12. At the beginning
of this experiment, we can see the RTT for both schemes are rising rapidly, then the RTT of
ANC is maintained between 9 to 14 milliseconds that is lower than the RTT of SANC which is
maintained between 15 to 20 milliseconds. Figure 13 presents the average RTT and maximum



810 Y.-C. Chan, Y.-Y. Hu

Table 4: Parameter table
Parameter Value
Packet Size 200 bytes
Buffer Size 50 packets
Buffer Management Scheme DropTail
Link Bandwidth 2 Mbps
Transmission Range 40 meters
Carrier Sensing Range 90 meters
MAC Protocol CSMA/CA
Routing Algorithm DSR

RTT of ANC and SANC. It is clear ANC has lower average RTT and maximum RTT than SANC.

As mentioned before, this is because we limit the coding window size, and then the complexity
of decoding can be decreased. Thus, packets will be discarded earlier from the decoding buffer.
According to the experimental results, our scheme ANC can also have a good performance in
such an environment.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

R
T

T
(m

s)
 

Time(s) 

SANC

ANC

Figure 12: RTT of ANC and SANC

0

5

10

15

20

25

Average RTT Maximum RTT

R
T

T
(m

s)
 

ANC SANC

Figure 13: Average RTT and Maximum RTT of
ANC and SANC

5 Conclusions

In this paper, we introduced a network coding scheme called adaptive network coding (ANC)
that can be applied on wireless sensor networks. The objectives of our study are to mask
packet losses by transmitting redundant linear combinations and to reduce the decoding delay of
network coding by limiting the coding window size. We compare our scheme with SANC-TCP
and TCP-Vegas in difference random loss rates, different link bandwidths, and difference packet
sizes. From the experimental results obtained, our scheme has a lower delay than SANC-TCP
in all experimental environments without sacrificing throughput. Besides, both the throughput
of our scheme and SANC-TCP are significantly better than that of TCP-Vegas in most cases.
It is important to note that the adjustment of coding window size can be investigated in more
detail so as to improve the throughput when TCP runs on a harsh network environment.

A possible direction for further study is to allow intermediate nodes to perform the encoding
and decoding whenever they receive packets. That means encoding and decoding operations are
done in a hop-by-hop manner. In this way, the network coding can be used for a wide variety of
topologies of wireless sensor networks.



Adaptive Network Coding Scheme for TCP over Wireless Sensor Networks 811

Bibliography

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, Network information flow. IEEE Trans.
on Information Theory, 46(4):1204-1216, Jul. 2000.

[2] D. Silva and F. R. Kschischan, Universal Secure Network Coding via Rank-Metric Codes,
IEEE Trans. on Information Theory, 52(2): 1124-1135, Feb. 2011.

[3] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J. Barros, Network Coding
Meets TCP, 2009 Proceedings of IEEE INFOCOM, 280-288, Apr. 2009.

[4] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, Network coding: An instant primer, ACM
SIGCOMM Computer Communication Review, 36(1): 63-68, Jan. 2006.

[5] Yao-Nan Lien, Hop-by-Hop TCP for Sensor Networks, International Journal of Computer
Networks & Communications, 1(1):1-16, Apr. 2009.

[6] C. Wang, K. Sohraby, B. Li, M. Daneshmand, and Y. Hu, A survey of transport protocols
for wireless sensor networks. IEEE Network Magazine, 20(3): 34-40, Jun. 2006.

[7] J. K. Sundararajan, D. Shah, and M. Medard, ARQ for network coding, in Proc. of IEEE
International Symposium on Info. Theory (ISIT), 1651-1655, Jul. 2008.

[8] J. Chan, L. Liu, X.Hu, and W. Tan, Effective retransmission in network coding for TCP.
Int J Comput Commun, ISSN 1841-9836, 6(1):53-62, 2011.

[9] S. Song, H. Li, K. Pan, J. Liu, and Shuo-Yen Robert Li, Self-adaptive TCP protocol com-
bined with network coding scheme, In International Conference on Systems and Networks
Communications (ICSNC), 20-25, Oct. 2011.

[10] F. Xia, A. Vinel, R. Gao, L. Wang, and T. Qiu, Evaluating ieee 802.15.4 for cyber-physical
systems, EURASIP J. Wireless Commun. and Networking, 1-15, Feb. 2011.


