
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 11(3):428-440, June 2016.

Checking Multi-domain Policies in SDN

F.A. Maldonado-Lopez, E. Calle, Y. Donoso

Ferney A. Maldonado-Lopez
Systems and Computing Engineering Department
Universidad de los Andes, Bogotá, Colombia
fa.maldonado1897@uniandes.edu.co

Eusebi Calle
BCDS, Broadband Communication and Distributed Systems
Universitat de Girona, Spain
e.calle@udg.edu

Yezid Donoso*
Systems and Computing Engineering Department
Universidad de los Andes, Bogotá, Colombia
*Corresponding author: ydonoso@uniandes.edu.co

Abstract: Programmable Network like SDN allows administrators to program net-
work infrastructure according to service demand and custom-defined policies. Net-
work policies are interpreted by the centralized controller to define actions and rules to
process the network traffic on devices that belong to a single domain. However, actual
networks are multi-domain where several domains are interconnected. Then, because
SDN controllers in a domain cannot define nor monitor policies in other domains,
network administrators cannot ensure that their own policies, origin policies are be-
ing enforced by the domains not directly managed by them (i.e. foreign domains).
We present AudiT, a multi-domain SDN policy verifier that identifies whether an
origin policy is enforced by foreign domains. AudiT comprises (1) model for network
topology, policies, and flows, (2) an Audit protocol to gather information about the
actions performed by network devices to carry the flows of interest, and (3) a vali-
dation engine that takes that information and detects security policy violations, and
(4) an extension to the OpenFlow protocol to enable external auditing. This paper
presents our approach and illustrates its application using an example considering
multiple SDN networks.
Keywords: Network Operating Systems, Software-Defined Networking, Network
management, Policy Verification

1 Introduction

In Software-Defined Networking (SDN), network administrators use software languages to
define how network traffic is processed and delivered. They use these languages to implement
network policies, concrete rules about how a network must deal with specific types of traffic
known as flows. For instance, these languages can be used to specify which users or network
machines can connect to specific servers; which network devices must be used to deliver specific
types of traffic, or which bandwidth can be assigned to specific flows.

SDN is based on the separation of control and data planes. On one hand, the control plane
remains on a centralized server called controller that makes decisions about how the traffic
is processed. The controller is responsible for managing connections, addressing, and routing
protocols. Applications at the controller use specific-SDN protocols such as OpenFlow [14] to
instruct elements in the data plane how to process and deliver the network traffic. The data
plane consists of network devices, or datapaths, responsible for packet forwarding and switching.

Copyright © 2006-2016 by CCC Publications

Checking Multi-domain Policies in SDN 429

In the SDN architecture, a single controller manages policies and behavior of a network
domain. Only the domain controller has access to the rules used by each network device in its
own domain. Thus, neither a network device nor a controller can access information about rules
from other network domains. Although this is perfect to deal with policies in a single domain,
a network administrator cannot observe how a external network, out of its domain, handles the
traffic.

With the current SDN architecture, the administrator is not able to enforce nor monitor multi-
domain policies. That is because forwarding rules must be implemented on multiple domains.
For instance, today is very common that network traffic is delivered using a internal network
such as LANs, and external networks such as WANs and Internet. If the network administrator
wants to enforce or monitor a network policy, she can define applications in her own network
domain but cannot do it in the external domains. Unfortunately, she cannot check if external
domains enforce a network policy because she cannot determine how the traffic is delivered in
those external networks.

This situation can be specially critical in network security policies. For example, essen-
tial traffic that is delivered through external networks can be duplicated or redirected to other
network machines using a simple application in the external domain SDN controllers. Due to
network administrators cannot get access to the rules in the external networks, they are disabled
to detect these situations neither validate if a policy is achieved.

We propose a mechanism to audit network policies in multiple domains called AudIt. Our
approach overcomes these SDN limitations and allows to network administrators to validate if
the network policies are enforced by a external domain. AudiT comprises three modules: an
extension to the OpenFlow protocol to enable external auditing, the AudIt interface for network
devices that gathers information about the actions performed in external domains to carry the
flows of interest, and a validation engine that runs into the internal network controller and detects
policy violations.

Other mechanisms were suggested to check network policies. For example, Hinrichs [4] de-
veloped a declarative language called Flow-based Management Language (FML) to describe
network policies and configuration in a high-level and declarative approach. This FML is a
high-level declarative language, based on flows, that checks the first packet of every flow against
the policy. Lately, Monsanto et. al. [16] introduce a declarative language called NetCore. It is
a high-level declarative language that describes the desired behavior of the network but does
not deepen the implementation of that behavior. With NetCore is possible to express packet
forwarding policies for SDN. Afterwards, Soulé et. al. present Merlin [21]. Merlin is also a
declarative language based on logical predicates and regular expressions with which a network
administrator can write network policies.

In contrast to previous works, we propose to express network policies as predicates but use
a SAT solver and a model finder to evaluate predicates, find inconsistencies and detect policy
violations. AudIt uses Alloy [6] to describe the network topology, policies and network traffic.
Mirzaei et al. proposed used Alloy to verify network properties in [15]. In this case they model
internal states of a network and OpenFlow switches.

In summary, we introduce the foreign controller verification problem, we define multi-domain
policies in programmable networks, a mechanism to gather information from external SDN do-
mains, and a validation engine that uses gathered information to check if a network policy is
enforced by the external domain.

Rest of this paper is organized as follow: Section 2 explains the problem of auditing own
policies at external domains; then we present a model to illustrate network topology, paths,
forwarding rules and policies in Section 3. Then, Section 4 introduces AudiT protocol and
functionality, and presents an example. Finally, Section 5 concludes the paper and presents

430 F.A. Maldonado-Lopez, E. Calle, Y. Donoso

future work.

2 Auditing policies in multi-domain networks

A Network policy is a set of conditions, constraints, and settings about how a specific type
of traffic must be managed by a network. It also includes which users and hosts are authorized
to create connections, and the circumstances under which they can or cannot connect. Network
policies are the accurate and unambiguous way to specify the traffic behavior.

Initially, Stone et al. proposed a path-based policy language (PPL) that abstracts topological
(physical) paths and flows to check network properties [22]. Now, with programmable networks
as SDN, new network policy abstractions are under development, therefore the challenges in
policy checking open a rich field of study. High-level declarative language were proposed to
represent network policies with more expressiveness. Declarative languages such as FML [4, 5]
express network policies in terms of flows. For general purposes, Hinrichs developed a declara-
tive language called Flow-based Management Language (FML) to describe network policies and
configuration in a high-level and declarative approach [4]. FML is based on flows, and checks
the first packet of every flow against the policy. FML identifies a network flow by: source and
target for users, hosts, and access points, in addition to protocols and requests

A flow is the specification of a traffic, sometimes is called a session, that contains common
attributes such as source, destination, protocol, but also can specify more granular characteristics
as duration, valid time, users, data format and so on. Then those policies are processed using
DATALOG to find matching flows. Other languages were designed for SDN are Merlin and
NetCore. Merlin [21] is a framework to write network policies for SDN. NetCore [16] is a language
for describe forwarding rules and it is integrated with another framework called Frenetic, a project
from Cornell and Princeton universities. These languages allow network administrators to define
policies in a single-domain networks. They did not contemplate checking policy enforcement on
a third-domain.

In contrast to previous approaches, AudIt offers not only the ability to write and check
network policies, it is unified with the controller and extract forwarding data and check it.
AudIt also uses the flow specification and checks if the set of flows is valid for a given topology.
Moreover, AudIt reports inconsistencies in terms of flows not only as instructions at the hardware
implementations.

For example, suppose that a network policy defines only computers assigned to members of
IT department can get access to database servers. We can write this policy as:

allow(src,target) | src ∈ IT ∧ target ∈ DataBase (1)
deny(src,target) | src /∈ IT ∧ target ∈ DataBase (2)

Expression (1) means that the network must allow flows from IT to database servers. Due
to this policy must be closed, (2) denies any flow from other machines to the same servers. In
SDN networks, policies are enforced by its domain controller which rules the behavior of every
forwarding device –switch– in its domain. The big question is: Can the network administrator
monitor that this policy is achieved?

2.1 Policies in Multi-domain networks

In multiple-domain networks, each domain is managed by its own controller. In our example
scenario depicted in Figure 1.a, the domain A is ruled by its controller CA, and operates the
IT department and its users. The external domain B, managed by the controller CB, operates

Checking Multi-domain Policies in SDN 431

S3

IT

S4
S6

S5S2

CA CB

S1

DB

S1 flowtable
Match Action

Src = IT ∧ Dst = DB ⟨ Fwd S3 ⟩

S3 flowtable
Match Action

Src = IT ∧ Dst = DB ⟨ Fwd S4 ⟩
a) Multi-domain network scenario. b) Flowtables for devices in domain A.

Figure 1: Domain A may send a policy to be implemented in domain B, but there is not guarantee
B implements the policy correctly.

the database servers. Network administrator supervises her own controller CA, and may install
forwarding rules on devices S1, S2, and S3 to deal traffic generated by the IT department.
Network controller CA cannot access the rules in forwarding devices in the domain B neither
compel controller CB to install required forwarding actions into the devices S4, S5, and S6.

A multi-domain policy must be enforced by own and external domains. The controller CA
may share the policy with the controller CB, and awaits that CB implements the policy in its
devices. However, there is not certainty that delivered traffic in the external domain B obeys
any policy defined by A. Following the example, the administrator of domain A cannot enforce
policies related to deliver traffic to the database servers, because the domain B is external.

2.2 Challenges in multi-domain networks

Each network controller is in charge of configuring switching devices on its domain. Figure
1.b shows the required configuration installed on devices in the path of domain A that process
the flow until it reaches the next domain. Network configuration are rules that implements
the policy. In this case, the configuration conducts the flow traffic from IT department to
database servers. This traffic arrives to switch S1, then is forwarded to switch S3, and finally it
is forwarded to domain B interface, switch S4. Clearly, A controller unknowns and cannot handle
implemented configurations in external domains. However, administrator want to know if their
policies are enforced in external domains. Because of database servers are located in external
network, for instance it is hosted by another company, the above policy redirects flows from
the IT department to external servers but deny the flows originated from sources other than IT
department. However, usually companies rely on external networks such as WANs and Internet
to deliver network flows.

Since the configuration of network device is protected information, it is only accessed by
its own domain controller, and administrator wants to check if the external controller applies a
policy on its domain, we have identified a main challenge: how to detect if a policy is enforced by
a external domain? and how to audit the policy enforcement without reveal risky information?

2.3 Policies in Programmable Networks

In SDN environment there are some languages to describe network policies. For example,
NetCore is a high-level declarative language that describes the desired behavior of the network
but does not deepen the implementation of that behavior. With NetCore is possible to express
packet forwarding policies for SDN networks [16]. Another work, Merlin [21] is also a declarative
language but based on logical predicates and regular expressions which can be solved using linear
programming to determine forwarding paths.

432 F.A. Maldonado-Lopez, E. Calle, Y. Donoso

Verification of SDN configurations is focused on check network properties that follow a rule.
For instance VeryFlow [10] creates a network-wide invariants and checks them against rules.
FatTire [19] uses regular expressions and writes policies in this way to be able to validate.
Other works attend to find conflict rules, rules that contradict earlier ones. In such a way
FortNOX [18] checks new flow-rules against a flow-constraint set, and authenticates the source
of rules by means of digital signatures. Another illustration is NetPlumber [9] that searches if a
candidate rule introduces network misconfigurations or policy violations . It executes a procedure
called Header Space Analysis (HSA) over dependency graphs to find conflicts. These approaches
examine the forwarding tables from each network device and could check if they conform with
the specified policy. However, none of these approaches support the validation of policies in
external domains.

From policies to flow-rule implementation Network applications – or functionality– run
on a controller and define the general behavior or policies by installing specific configurations
on each switching device. Regularly, those programs use OpenFlow (OF) [17] to communicate
controllers and forwarding devices, and install, modify, or get flow-rules that specify how a device
deals with specific traffic. A flow-rule is a pair <match,action> map on the device’s flowtable.
A flow-rule defines which action is performed once a packet header matches the match pattern.

OF defines a set of messages to control the internal information on each device, and rules
used to process a flow. In summary, OF messages can add, modify, and query rules from device’s
flowtable. Actions also include: dropping a packet (DROP), forwarding a packet to a specific
port (FWD), or report the set of installed rules (STATUS). The rule-set is closed, and the packet is
reported to the controller if its header does not match any rule.

3 Topology and Policy Models

We describe a model that involves the physical topology and paths; and network operation
definitions such as flows, policies, and conflicts. First, we use the following specification for
networks. We will use the relation of correspondence later on when we write the model in Alloy.

Definition 1 (Network Graph). A network graph G is a duple (N,L) such that N is the set of
nodes, and links L := (N,N,C) is the correspondence C with domain and co-domain N → N .

Considering the links relation L, we write the function links(n) to denote {m|(n,m) ∈ L},
the set of all the nodes m connected to a node n. In addition, for convenience, we write n→ m
to express from n to m sometimes instead of (n,m) ∈ L. A well-formed network G must satisfy
the following rules: 1) Network is connected, ∀n ∈ N | links(n) ̸= ∅, i.e. there are not isolated
nodes; 2) no self-loops, @n ∈ N |n → n, i.e. there are not links from a node to itself; and, 3) for
all link, there is an arrival node, @n ∈ N |links(n) ∩ n = ∅.

It is important to note that nodes in our model does not represent a network device –
router nor switch–, a node denotes a device port. Then under this abstraction, the link relation
represents forwarding rules, not just physical links in the topology.

Definition 2 (Path). A path p is a tuple (s, t,Np, Lp). A source node s, a target node t, a
subset of nodes Np = {n1, n2, . . . , nk}, and a subset of links that creates the sequence Lp =
{(s, n1), (n1, n2), . . . , (nk−1, nk), (nk, t)}.

A path, can be described as a list of nodes that maintains a sequence. Path nodes Np ⊂ N ,
path links Lp ⊂ L. A well-formed path satisfies: 1) all implicated nodes in the links belong to
node set, ∀(na, nb) ∈ Lp =⇒ {na, nb} ∈ Np, 2) {s, t} ∈ N , source and target nodes are in the
network, and 3) source node opens and target node finishes a path, @(n1, n2) ∈ Lp|n2 = s∨n1 = t.

Checking Multi-domain Policies in SDN 433

At this point is appropriated to describe the transitive closure. We use this concept to tackle
the reachability property when describe a path. A binary relation R is transitive if contains tuples
in the way a→ b and b→ c, but also contains a→ c. This relation is noted as R+ and contains
R. Finally, a path has no loops, considering the relation L and the function links+(n) is the set
of all nodes that can be reached from n. Then a path has no loops if @n ∈ Np|n ∈ links+(n).
Also for convenience, we denote a path as a node sequence as ⟨s, n1, n2, . . . , t⟩. We include a
wildcard symbol (∗) to denote any unspecified node or sequence of nodes. For example, the path
p = ⟨A, ∗, C⟩ is the path that starts at node A and ends at C.

3.1 Traffic flows

Flow is the fundamental abstraction for our model. For the reader it is similar to commu-
nication session supported by a set of paths and device configurations. Traffic flow defines the
high-level network parameters needed to create a competent communication channel. A flow
provide enough detail to describe a set of feasible sessions, and provides a form to group and
manage these sessions.

Definition 3 (Flow). A flow is a sequence of traffic constraints f = (f1, . . . , fn). Each term fi
is a restriction over a traffic characteristic, strongly related to filters on packet fields.

Due to we illustrate flows as traffic constraints. Reader should note we indicate packet-field
match as those constraints. The used definition allows us to construct flexible and composed
communication flows. A term of flow involves transport-layer protocol, source / destination at
third layer, or applications. Also, we use set operators over these packet fields to define the flow.
For instance, flowa = {protocol = TCP, src_ip = 192.168.5.10, dst_ip = 192.168.7.10}
details a traffic flow between those IP addresses and TCP as transport protocol. Note that this
flow only defines the traffic in one way. It means, the other direction is not under this definition.

However, flow definition is only associated to communication characteristics and packet fields,
but not the set of paths that supports the flow.

3.2 Policies, conflicts and semantics

In order to define the set of paths that implements a policy and then identify policy conflicts
and violation we follow the guidelines of Harel and Rumpe [8] to specify a modeling language Ł
describing the syntactic domain LL, the semantic domain SL and the semantic function ML :
LL → SL, also traditionally written J·KL.

The policy is a set of rules that achieves a management procedure. Forwarding rule is the
action that a node executes to forward a packet into a computer network. Rules are described
in terms of flows, by the previous definition.

Definition 4 (Policy). A network policy is a tuple π = (f, P,C, α) s.t. f is the target flow
composed of packet-field values, P is the set of paths that support the flow, C is a set of
conditions, over the flow f or path P , and α is an action, regularly {permit, deny}.

Essentially, a policy resolves whether allow the flow f over the set P conclude on a specific
action α. It is decisive and produces a configuration network that allows or deny the traffic flow.
For example, the network administrator wants to apply the policy: Ana is a user with profile of
IT member, who is in the subnetwork 192.168.5.*/24 (S1), is allowed to access the database at
subnetwork 192.168.7.*/24 (S6) and port 1521, and her traffic must go through the router S3.

Now the manager has to detail the policy. In order to do that she solves the following steps:

1. path S1_S6 := <S1,*,S3,*,S6>,

434 F.A. Maldonado-Lopez, E. Calle, Y. Donoso

2. transport protocol: = TCP,

3. port number: = 1521;

4. the conditions user = Ana, and Ana ∈ IT member;

5. finally the policy decision: permit

In this way, we can find ω, the set of configurations and instructions that implements the
paths and the policy π. Note that IP addresses, user groups, traffic class and protocols should
be modeled as sets. On the other hand, ordered items such as time are modeled as sequences to
be able to compare them using ≤ and ≥ operators.

ω = impl(p : path|(S1_S6) ∧ protocol = TCP ∧ port = 1521 ∧ Ana : user ∈ IT member)(3)

This representation of a policy, utilizing logical conjunctions, allows us to express this policy
as a conjunctive normal form predicate (CNF), and logically solve it. Moreover, we are able to
check a formal solution using a model finder as Alloy [7], compare solutions, or find inconsisten-
cies.

Definition 5 (Policy Semantic). A semantic of a policy Jπ,GK is the set of paths that implements
the flow over a path on G and achieves the policy.

JΥK = Ω is the semantic of all network policies and produces the set of all paths implemented
on the network. The complete network configuration is denoted by Ω. The semantic functionJπ,GK of a policy contains the sets of paths, flow definitions, conditions and the network G that
satisfies the policy π. Obviously, the policy π is valid in a network G, if Jπ,GK is not empty.

Definition 6 (Policy Conflict). A policy conflict occurs when a set of policies are not imple-
mented by any path or there are inconsistencies that prevent the generation of a path.

Essentially, if the semantic of a policy is empty, means that there is not set of configuration
of paths that satisfies the policy. Given two valid policies π1 and π2, they are not conflicting in
the network G if Jπ1 ∪ π2,GK is not empty. That is, two policies are not conflicting if there is a
set of paths, flows, and restrictions in the network G that satisfies both policies. In contrast, we
say that two policies π1 and π2 are conflicting in G if |Jπ1 ∪ π2,GK| = 0.

Definition 7. (Minimal diagnosis) Given a set of policies π ⊆ Υ such that JΥ \ πK ̸= ∅, the
minimal set π is the minimal diagnosis.

We refer to this minimal set as the littlest configuration applicable without conflicts. Now,
we need a tool, called a verifier, able to find (calculate) the semantic function Jπ,GK and verify if
that set is empty and the minimal diagnosis of that set. We use similar tools also for validating
paths on network infrastructure [12], and recently we show how to use of minimal diagnosis to
detect and prevent firewall-rule conflicts on software-defined networking [13].

4 Checking multi-domain policies with AudIt

AudIt is an auditing extension for OpenSwitch protocol and OpenFlow controller that allows
domain controllers to validate security policies on a foreign domain. Our proposal creates a
language definition and transformation to audit network policies. We use Alloy to obtain a set
of tuples that satisfy the policies (exactly the semantic function). If Alloy does not find any
element (the set is empty), the policy set is invalid or conflicting.

Checking Multi-domain Policies in SDN 435

Foreign

Alloy

SAT

Solver

Owner Domain

Figure 2: AudIt architecture

AudIt works as a validation protocol that allows a controller to gather auditing information
from external domains and validate the origin policy. It performs two phases: gathering network
information and validation process. First, the controller in the origin domain gets information
we called audit packets that is routed through the network as regular traffic. Then, when auditor
packet reaches devices in the external domain, these network devices report a subset of its own
flowtable to the controller in the origin domain. Finally, the controller in the origin domain pro-
cess the gathered flowtables to obtain all the processing rules related to the flows of interest, and
executes the validation engine that checks if the external domain is accomplishing the security
policy.

4.1 AudiT Extension

OpenFlow specifies a set of control messages between controller and forwarding devices.
Control messages include: modify-state to add or delete flowtables in the device, collect-statistics
to read counters and device statistics, managing groups of flowtables. Controller is also able to
request device status, where the device reports the flowtable to the controller. AudIt uses regular
controller primitives to request information from the flowtable on devices of external domain.

Information gathering Once the controller enables AudIt on each network device, and the
audit packet arrives, the device invokes OFPMP_TABLE_FEATURES and the header match to filter
a subset of the rule table that matches the header. Thereby, it extracts a set of all the related
flowtable entries (RFE).

RFE = {e|e.src⊙ p.src ∪ e.target⊙ p.target} (4)

For simplicity, our example only considers IP addresses and masks in the IT-database sce-
nario. Our RFE are defined by (4). Where p is the policy and ⊙ is the match relation.

AudIt message Figure 3 shows the structure of an AudIt message. It comprises the same
flow header in order to be routed through the same path; moreover, it includes origin controller
identifier, controller authentication data, other AudIt settings, and the list of fields and rules to
be filtered by the device.

436 F.A. Maldonado-Lopez, E. Calle, Y. Donoso

Flow header Origin Controller ID AudiT settings Controller Signature
List of fields List of policies

Figure 3: Structure of an AudIt packet. The list of policies are constraints over packet fields.

4.2 AudIt protocol

Figure 4 shows the proposed protocol that allows controllers to enable AudiT protocol, gather
information from foreign devices, and check policies.

1. Involved domains subscribe an audit agreement that specifies the permission to create,
send and process audit packets. Then, all implicated domains update their module that
recognizes the audit request and overwrites AUDIT_ENABLE variable.

2. Origin domain A shares the traffic policy over IT’s traffic with B. Security Policy described
in section 1 - 2: DataBase is only accessed from IT department. External-domain controller
CB enforces the security policy in its network, translates the policy into rules applicable to
its infrastructure.

3. Origin controller creates an audit packet. Audit packet contains all packet fields of the
flow traffic. This procedure request information about how the traffic is delivered. Thus,
foreign network devices process the audit packet as they process regular data flow, or use
a interface to return the Related Flowtable Entries (RFE).

4. Foreign devices reply the audit packet with the RFE. The list of entries from its flowtable.

5. At the origin, the controller of A executes the validation engine, determines if there is a
subset of rules that violates the policy, and writes a conflict report.

S3

IT

S4
S6

CA CB

S1

DB

Audit agreement

Tra�c policy

Audit request

Forwarding rules

Con�gura�on set

Veri�ca�on engine

Conflict report

Figure 4: AudiT protocol execution. Devices from domain B report packet rules to CA, then A
verifies traffic policy and generates an auditing report.

4.3 Multi-domain Policy Checking

At the end, origin controller owns all rules related with the traffic policy that comes from
the external domain, and validates the set of related flowtable entries (RFE) against the policy
to identify violations. Figure 5 shows the set RFE that AC gathers from domain B. It is a list of
rules related with the traffic policy defined in expressions 1 and 2. Then, the validation engine

Checking Multi-domain Policies in SDN 437

determines if this subset of rules violates the policy. This policy-rule validation engine could be
similar to [9].

S4 flowtable S6 flowtable
Match Action Match Action

Src = IT ∧ Dst = DB ⟨ Fwd S6 ⟩ Src = IT ∧ Dst = DB ⟨ Fwd DB ⟩

Figure 5: Related flowtables entries from devices in domain B.

4.4 Inference Engine based on SAT

We develop an inference engine able to check implementation procedures against network
policy. Topology is defined as a set of nodes. Links is a closure relation of arity two over the
node set. Specifically for this project, we model device ports as nodes, and links by a closure
relation over nodes. Figure 6 shows how the topology is represented in terms of device ports.
A forwarding rule, the simplest instruction that redirects a packet from one port to another is
represented as part of the path. Under this perspective, the configuration is part of the topology.
Forwarding rules are shown in the figure as dotted lines. These soft-links are considered as
regular topology once the model is built.

An optimization opportunity arises due to forwarding rules create soft-links that are inter-
preted as part of the topology. If the traffic policy is quite specific, the resultant topology is
disconnected graph, even is reduced to some paths. This abstraction of nodes as device ports,
and soft-links can reduce the complexity at evaluation time.

S1

S2

S3 S4

S5

S6

DB

IT

Figure 6: Representation of a network topology based on ports from the original deployment.
Blocks are network devices and circles are ports. Forwarding rules are depicted as dotted lines
that connect two ports.

Flow is depicted as the list of constraints over packet header, traffic movement sense, and
topological considerations. For example, the flowtable described in Figure 1.b is the interpre-
tation of constraints, source and destination addresses, over fields of a packet header. Reader
should note that flowtable also denotes the soft-link between two ports generated by the for-
warding rule. Nevertheless, this soft-links are part of the topology equally as wired links do.
In other words, the model does not discerns one from another. Communication details such as
protocols or port numbers are considered sets if these elements are part of the packet header.
Due to our work uses set theory notion of order is not considered in this model, for that reason
we cannot have policies with arithmetic conditionals. For example, the expression if the number
port is greater that 1024, then ... is invalid in our approach.

Our inference machine is implemented on Alloy [6]. It is fed with external-domain information
gathered by the audit procedure or through services that exposes forwarding information.

438 F.A. Maldonado-Lopez, E. Calle, Y. Donoso

5 Conclusions and Future Work

We presented OpenFlow AudIt, a mechanism that checks if foreign domains are enforcing
multi-domain network policies. AudIt helps to overcome policy-checking limitations of the SDN
architecture. It comprises (1) an extension to the OpenFlow protocol to enable external auditing,
(2) an Audit protocol to gather information about rules applied to specific network flows, and (3)
a validation engine that uses flow information and determines if the external network is enforcing
specific traffic policies. Additionally, Audit can identify policy violations. It informs the network
configuration, rule of flow that infringes the policy and its identifier. In general terms, AudIt
allows network administrators to gather information from external domains and determine if
network policies are enforced in multiple domains.

5.1 Experiments and results

We implement and test our AudIt protocol using the Floodlight controller 1. Test cases are
divided into two groups: information gathering, and violation inferencing. We run the controller
on a server and deploy a test-network using mininet 2, which operate as external domain and
implement the example topology used by Sethi in [20]. From another terminal, which operates
as owner domain, we run our AudIt interface and extract traffic information from the controller.
AudIt implementation creates a topology representation, a policy inventory, and a configuration
repository. Thereafter, the inference engine is executed. AudIt writes, policies, configurations
and topology as Alloy instructions and executes the satisfiability solver.

0 500 1.000 1.500

10.703

13.518

16.333

19.148

Time (ms)

P
ri

m
a

ry
 V

a
ri

a
b

le
s

Found solutions

minisatprover jni

minisat jni

Figure 7: Solutions from Alloy implementation. The same implementation is evaluated using
two solvers: minisat and minisatprover with minimal unsatisfiable core.

Figure 7 shows two evaluations over the same topology and set of policies. We implement
the same FatTree topology also described in [20] to compare our approach. AudIt takes less
than a second using the minisat solver, which only finds if an instance accomplishes the set of
policies. On the other hand, if the network administrator wants to determine the set of policies
violated by the external domain, she executes AudIt with the minisatprover option and could
take up to 1.5s. These measures are lower than the values reported on [20], for the same Fat Tree
topology composed of 20 switches, 16 hosts, and 48 links. We test forwarding and reachability on
a Intel i5 at 3.0 GHz, with 3.74 GB RAM. With the intension to show how state explosion and
variable affect the performance we test AudIt for 930K, 1.5M, 2.2M and 2.8M of states, which
are represented on primary variables shown in Figure 7.

However, AudIt does not have complete information about the network as opposed to Net-
Plumber [9]. Moreover, Audit requires the deployment of our OpenFlow extensions into the

1
http://www.projectfloodlight.org/floodlight/

2
mininet.org

Checking Multi-domain Policies in SDN 439

network devices in those external domains. Commercial products (i.e. switches from companies
such as IBM or HP) do not support the deployment of new extensions without a firmware update.
We expect that future experimental implementation shows the benefits of Audit and can be a
foundation to introduce multi-domain policy validation into the standard.

Letting external domains gather information about network flow processing may represent
a potential security risk for external controllers. In addition, controllers in external domains
may include programs that hide information or mimic policy enforcement. Future work focuses
on evaluating security risks on our experimental implementation in order to determine which
additional mechanisms are required to ensure safe auditing of multi-domain policies.

Acknowledgment

Ferney A. Maldonado-Lopez is a recipient of a the fellowship N528–2011 for doctoral studies
by the Colombian Department of Science, Technology and Innovation COLCIENCIAS. We would
like to thank to COMIT members for their reviews and meaningful recommendations.

Bibliography

[1] Al-Shaer, E.; Marrero, W.; El-Atawy, A.; Elbadawi, K. (2009); Network configuration in
a box: towards end-to-end verification of network reachability and security, 17th IEEE
International Conference on Network Protocols, ICNP 2009, 123-132.

[2] Canini, M.; Venzano, D.; Perešíni, P.; Kostić, D.; Rexford, J. (2012); A NICE way to test
OpenFlow applications, Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, USENIX Association, 10-10.

[3] Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S.
(2008) NOX: towards an operating system for networks, SIGCOMM Comput. Commun.
Rev., ACM, 38: 105-110.

[4] Hinrichs, T. L.; Gude, N. S.; Casado, M.; Mitchell, J. C.; Shenker, S. (2009); Expressing and
Enforcing Flow-Based Network Security Policies, University of Chicago, Technical report,
1-20.

[5] Hinrichs, T. L.; Gude, N. S., Casado, M.; Mitchell, J. C.; Shenker, S. (2009); Practical
Declarative Network Management, 1st ACM Workshop on Research on Enterprise Network-
ing, 2009, 1-10.

[6] Jackson, D. (2002); Alloy: A Lightweight Object Modelling Notation, ACM Trans. Softw.
Eng. Methodol.; April 2002.

[7] Jackson, D. (2006); Software Abstractions: Logic, Language, and Analysis, The MIT Press,
2006.

[8] Harel, D. and Rumpe, B. (2004); Meaningful Modeling: What’s the Semantics of "Seman-
tics"?, Computer, IEEE Computer Society Press, 37: 64-72.

[9] Kazemanian, P.; Chang, M.; Zheng, H.; Varghese, G.; McKeown, N. (2013); Real time Net-
work Policy Checking Using Header Space Analysis, Proceeding on Network System Design
and Implementation (NSDI), USENIX, 99-112.

440 F.A. Maldonado-Lopez, E. Calle, Y. Donoso

[10] Khurshid, A.; Zou, X.; Zhou, W.; Caesar, M.; Godfrey, P. B. (2013); VeriFlow: Verifying
Network-Wide Invariants in Real Time, 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Proceeding HotSDN ’12 Proceedings of the first work-
shop on Hot topics in software defined networks, 49-54 .

[11] Mai, H.; Khurshid, A.; Agarwal, R.; Caesar, M.; Godfrey, P. B.; King, S. T.(2011); Debug-
ging the data plane with Anteater, SIGCOMM Comput. Commun. Rev., ACM, 41: 290-301.

[12] Maldonado-Lopez, F.; Chavarriaga, J. and Donoso,Y. (2014); Detecting Network Policy
Conflicts Using Alloy, Abstract State Machines, Alloy, B, TLA, VDM, and Z, Springer
Berlin Heidelberg, 8477: 314-317.

[13] Maldonado-Lopez, F. A.; Calle, E. and Donoso, Y.; (2015);Detection and prevention of
firewall-rule conflicts on software-defined networking, Reliable Networks Design and Model-
ing (RNDM), 2015 7th International Workshop on, 259-265.

[14] McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.;
Shenker, S.; Turner, J. (2008); OpenFlow: enabling innovation in campus networks, SIG-
COMM Comput. Commun. Rev., ACM, 38: 69-74.

[15] Mirzaei, S., Bahargam, S. and Skowyra, R. (2013); Using Alloy to For-
mally Model and Reason About an OpenFlow Network Switch, Technical Report,
http://hdl.handle.net/2144/11416.

[16] Monsanto, C.; Foster, N.; Harrison, R.; Walker, D. (2012); A Compiler and Run-time System
for Network Programming Languages, SIGPLAN, ACM, 47: 217-230

[17] Open Networking Foundation OpenFlow Switch Specification, v.1.3.1, ONF Open Network-
ing Foundation, 2012

[18] Porras, P.; Shin, S.; Yegneswaran, V.; Fong, M.; Tyson, M.; Gu, G. (2012) A security
enforcement kernel for OpenFlow networks Proceedings of the first workshop on Hot topics
in software defined networks, ACM, 121-126.

[19] Reitblatt, M.; Canini, M.; Guha, A.; Foster, N.(2013); FatTire: declarative fault tolerance
for software-defined networks, Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking, ACM, 109-114.

[20] Sethi, D.; Narayana, S. and Malik, S. (2013); Abstractions for model checking SDN con-
trollers, Formal Methods in Computer-Aided Design (FMCAD), 2013, 145-148.

[21] Soulé, R.; Basu, S.; Kleinberg, R.; Sirer, E. G.; Foster, N. (2013); Managing the Network
with Merlin, 12th workshop on Hot Topics in Networks, HotNets’13, Nov. 2013, 1-8.

[22] Stone, G.; Lundy, B. and Xie, G. (2001); Network Policy Languages: A survey and a new
approach, IEEE Network, 15: 10-21.

