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Abstract: Data tables have been widely used for storage of a collection of related
records in a structured format in many mobile applications. The lossless compression
of data tables not only brings benefits for storage, but also reduces network transmis-
sion latencies and energy costs in batteries. In this paper, we propose a novel lossless
compression approach by combining co-clustering and information coding theory. It
reorders table columns and rows simultaneously for shaping homogeneous blocks and
further optimizes alignment within a block to expose redundancy, such that standard
lossless encoders can significantly improve compression ratios. We tested the approach
on a synthetic dataset and ten UCI real-life datasets by using a standard compressor
7Z. The extensive experimental results suggest that compared with the direct ta-
ble compression without co-clustering and within-block alignment, our approach can
boost compression rates at least 21% and up to 68%. The results also show that the
compression time cost of the co-clustering approach is linearly proportional to a data
table size. In addition, since the inverse transform of co-clustering is just exchange of
rows and columns according to recorded indexes, the decompression procedure runs
very fast and the decompression time cost is similar to the counterpart without using
co-clustering. Thereby, our approach is suitable for lossless compression of data tables
in mobile devices with constrained resources.

Keywords: data tables, lossless compression, co-clustering, redundancy.

1 Introduction

Internet of things and mobile Internet churn out huge volume of real-time data in mobile
computing devices, such as smartphones, tablets and e-readers. By using ubiquitous mobile
sensors, these digital devices constantly collect environment information or persons’ behavior
information. The information is generally recorded in a structured data table. For example, in a
table of a healthcare application, rows represent the records in a sequential sampling time series
and columns show the values of multiple measured parameters, such as heart rates. By cumu-
lating records with the time, multi-columns mobile data tables can grow sharply in size, varying
from few hundred kilobytes to few hundred megabytes dependent upon different applications. In
the Internet context and big data era, these sensor data will generally be sent to cloud servers
for further processing in a time frequency.

For a mobile device, a larger size of a data table not only takes more storage space, but its
transportation to cloud servers takes more network transmission latencies and more energy costs
in batteries. Therefore, lossless compression of data tables is critical to optimize the usage of
system resources and thus play an important role in optimizing system performance.

Traditional lossless compression methods view a dataset as a large sequence of strings and
employ the occurrence frequency of duplicated symbols to compress them in variable length
codes in a dictionary, such as Huffman, Lempel-Ziv, run length encoding and other compression
encoders [1]. These methods do not account for dependency patterns in a table and therefore
they cannot compress a table with the size less than the limit given by the Shannon entropy [2—4].
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Recently, some researchers studied data dependency and exploited the resulted redundancy
for compression. Mielikainen et al. applied spatial dependency to propose an adaptive predic-
tion length in a clustered differential pulse code modulation method for lossless compression
of hyperspectral data [5]. Venugopal et al. applied Hadamard transformation to eliminate the
correlation inside local blocks in medical data [6]. Patauner et al. combined vector quantization,
delta calculation and a Huffman coding algorithm together to reduce the correlation among a
sequence of data records acquired from pulse digitizing electronics and then apply lossless com-
pression |7]. Kolo et al. proposed an adaptive lossless data compression algorithm for wireless
sensor networks [8]. The network data sequence is partitioned into consecutive blocks, and the
optimal compression scheme is applied for each block by dynamically analyzing data dependency
in a block. They further improved their approach and proposed a fast lossless adaptive com-
pression scheme with low memory requirements for wireless sensor networks [9]. The approach
can generate its coding tables on the fly and compress data blocks very fast. Buchsbaum et al.
proposed a novel dynamic programming algorithm to discover column dependencies in a table
by a one-time, offline learning procedure from a small number of training examples [10]. By ex-
ploiting the dependencies, they contiguously partitioned table columns into disjoint groups and
found that compressing each group of columns separately can significantly improve compression
rates. In their further research, Buchsbaum et al. applied a TSP (traveling salesman problem)
tour method to reorder table columns prior to partitioning for further improving compression
rates [11]. It provided a unified theory of entropy-like functions to explain both contiguous par-
titioning and column rearrangement. However, the time cost of the algorithm is expensive and
is not linearly proportional to a data table size. Yang et al. studied a transform compression
approach for a Boolean matrix [12]. It firstly located the largest columnwise-constant submatrix,
and next rearranged columns such that the columnwise-constant is moved to the left-upper corner
of the matrix. Following the procedure, the approach recursively applied transformation on the
rest of the matrix until the partition resulted in a matrix smaller than a user-defined threshold.
However, its running-time cost is also very expensive and the choice of the user-defined threshold
is a tricky problem and some improper choices can negatively affect the compressibility.

In a word, the above methods exploited data dependencies and correlations among columns in
a table (or called a matrix in mathematics). However, rows in a table also can show dependencies
and redundancies. A distinct characteristic of tables is that reordering of columns and rows will
not lead to information loss. Therefore, we aim to apply an approach to group dependent or
similar columns and rows together, such that the redundancy in grouped homogeneous blocks
can be exposed and then we apply compression on these blocks.

Co-clustering is an approach simultaneously clustering of similar rows and columns for re-
vealing hidden structures of a data matrix [13,14|. It provides great potential for compression.
Firstly, co-clustering reorders and groups rows and columns into similar or homogeneous rectan-
gular regions, such that redundant information gets exposed and can be removed by a statistical
encoder (such as a Huffman compressor). Next, the inverse transform of co-clustering is very
simple and fast. This property will be desirable for uncompressing data. In addition, the time
complexity of the algorithm is O((m+n)kl) [15], where m is the number of rows, n is the number
of columns, k is the number of row-clusters and [ is the number of column-clusters. Since k£ and
[ are much smaller than m and n, the algorithm can run in linear time with the size of a data
table. In another word, the algorithm is scalable to big size of data tables. Co-clustering has
been widely studied for information clustering, pattern structure discovery, et al [16-19].

In this paper, we propose a novel lossless compression approach for data tables. Unlike tradi-
tional compression methods by exploiting data dependencies in a single view of either columns or
rows, the proposed approach can shape homogeneous rectangular blocks by reordering columns
and rows simultaneously via co-clustering. To the best of our knowledge, the proposed ap-
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proach is the first algorithm that integrates co-clustering and information coding theory for the
purpose of lossless compression of data tables. It not only constructs homogeneous blocks by
co-clustering, but also optimizes columns/rows alignment in a block to further expose block re-
dundancy, such that the downstream compression with a standard lossless encoder becomes more
efficient. We compare empirically the performance of a standard compressor 7Z before and after
the application of co-clustering and within-block alignment on a synthetic dataset and several
public datasets with properties similar to tables in mobile systems, such as information collected
from wearable sensors, clinical care, customer reviews, et al. The extensive experimental results
suggest that the proposed approach can effectively improve compression ratios for data tables.
In addition, the decompression procedure runs very fast and thus it is very suitable for lossless
compression of data tables in mobile devices with constrained resources.

2 Methodology

In this paper, we propose a novel data table compression approach consisting of three steps:
1. reorder table columns and rows by co-clustering; 2. refine table columns and rows alignment
to further expose redundancy; 3. compress the resorted data table by a standard compressor.

2.1 Reorder table columns and rows by co-clustering

Given a data table T" with m rows and n columns, co-clustering transforms 7" into another
table 7" with k row-clusters and 1 column-clusters (here k and [ are smaller than m and n
respectively), where each element b;;(i € [1,k|,5 € [1,1]) in T" corresponds to a homogeneous
two-dimensional block after reordering columns and rows. The adjacent elements in the block
have the same or similar values and they provide potentials to boost compression rates. The
co-clustering transform can be illustrated in Figure 1 as below,

T — T
a1l a2 ... Qip
. nl
bp1 ... by
Am1 am?2 e Amn

Figure 1: Co-clustering of a data table

In a statistical way, the original table T' can be viewed as a joint probability distribution
between two discrete random variables denoting rows and columns respectively. Let R and C
be such two discrete random variables that take values in the set {ri,...,m,} and {c1,...,¢cn}
respectively. Co-clustering aims to simultaneously quantize R into k disjoint clusters, and C into
[ disjoint clusters. In other words, co-clustering will generate mappings M, and M., as below,

me R = {7’1,T2, A ,T’m} —)AR = {fl,fg, Ce 77%}

MCOl:C:{Cl,CQ,...,Cn}—>C:{61762,...,él} A .

The mappings also can be represented in functional forms:R = M, (R) and C' = M_.,(C).

For obtaining homogeneous blocks in those clusters and further be applied compression, an
optimal co-clustering minimizes the loss in mutual information, that is,

Minimize I(R;C)—I(R;C) by subject to the given k and I; (1)

Here, the mutual information I(R;C) measures the amount of information random variable
R contains about C.
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To facilitate the search for the optimal co-clustering, the above objective function can be
expressed as the following "distance" of p(R, C) to an approximation ¢(R,C),

I(R;C) — I(R;C) = KL(p(R, C)|[g(R, C)) (2)
Here, K L(-||-) denotes the Kullback-Leibler divergence, (R, C) is a distribution of the form
q(r,c) = p(#,¢&)p(r|F)p(c|é), where r €T ,c€é (3)

By following Kullback-Leibler divergence, the following equations (4) and (5) can be derived,

KL(p(R,C,R,C)||q(R,C, R,C))

Y o POKLGCI a(CT) W

KL(p(R,C,R,0)||q(R,C, R, ()
= Zé ZC:MM (C):ép(c)K L(p(R|c)|lq(R]¢))

Here, the distribution ¢(C|#) can be defined as "row-clustering prototype". Similarly, the
distribution ¢(R|¢) can be defined as "column-clustering prototype". In this way, the above
equations show that the objective function in (1) can solely be expressed in terms of row-clustering
or column-clustering.

With this intuition, the co-clustering algorithm is listed in Figure 2.

()

In the first step, co-clustering algorithm starts with an initial mapping function MT(E)’QU and

ol » and then computes the approximation distributions ¢, including the initial row-cluster
prototype ¢ (C|#). For every column ¢, the row-cluster is computed as,

gD (cl?) = ¢ (c|e)g ™ (¢]F) Where, ¢ = Myy(c). (6)

From line 6 to 16, the algorithm keeps iterative computing of row-clusters and column-clusters
until a desired convergence condition is satisfied.

Specifically, from line 7 to 9, we re-assign each row 7 into a row-cluster by using the mapping
function Mr(f,;l)(r). In line 10, the algorithm recomputes the required marginal of ¢t based
on the updated row-clustering results. It also recomputes the column-cluster prototype by (7).

For every row r, we have,

¢ (r(e) = gD (r[R)g V(1) Where, = Mea(r). v

From line 11 to 13, we re-assign each column c into a column-cluster by using the mapping
function Mc(f);FQ)(c), while keeping the row-cluster fixed.

In line 14, the algorithm recomputes marginals of ¢**2) and the row-cluster prototype
4D(CI) by (6).

In line 15, we let the iterative variable t =t + 2.

The processes from line 6 to 16 are repeated and the row/column clusters are updated until the
change of objective function is very small. Actually, the co-clustering algorithm monotonically
decreases the objective function given in (2) [15,16] . It grantees an optimal co-clustering results
will be achieved by the iterative procedure in the algorithm.

By co-clustering, similar columns/rows are grouped into one cluster. It facilitates coding and
provides compression potentials by using a standard compressor.
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Algorithm Co-clustering of a Data Table
Input: Table T with a joint probability distribution p(R,C')
The number of row-clusters k, The number of column-clusters [
Output: The cluster mapping functions M., and M.y

1: //Initialization:
2: Let iterative variable t =0
3: Start with some initial mapping functions MT(S%J and M(Egl)
4: Compute ¢ (R|R) , ¢ (C|C) , ¢O(R,C) and ¢ (C|#)(1 < # < k) using (6)
5: //Compute new row-cluster index and column-cluster index by iterative rounds:
6: repeat do
7: for each row r do
s MY (r) = argmin KL(p(Clr)|[¢®(C17), ME™ = M)
9: end for
10: Compute ¢ *D(R|R), ¢V (C|C), ¢"*D(R,C) and ¢V (R|é) (1 < &< 1) using (7)
11: for each column ¢ do
12: M2 (e) = argming K L(p(Rle) |g "+ (R|e)), Mign” = Mgk
13: end for
14: Compute ¢+2)/(R|R), ¢*t2(C|C), ¢"tD (R, C) and ¢+ (C|#) (1 < # < k) using (6)

15: t=1t+2
16: until convergence of the change in objective function
17: (that is, |KL(p(R,C)||¢M (R, C)) — KL(p(R,C)||¢**2(R,C))| < p, p is a small threshold)

Figure 2: Co-clustering algorithm

2.2 Refine table columns and rows by alignment to further expose redun-
dancy

Next, a series of refinements are applied on a co-clustered table T’ to further expose in-
formation redundancy. For each column, we compute the minimum value Col min and their
standard derivation value Col _std. If Col _min/Col _std is larger than a threshold «, it shows
all elements in the column have similar values. Thereby, by deducting C'ol _min from all column
elements, we can only code their differences more efficiently in a smaller range of numbers. In a
column-cluster, we sort columns by their column mean values such that neighborhood columns
show the maximum similarity. This will help to expose the redundancy among columns in a
cluster. In addition, we compute the standard derivation value for each column to obtain the
homogenous status in each column. Next, in a row-cluster, rows are sorted by the most similar
columns according to the minimum standard derivation. The above transformation helps form
the homogenous blocks. Their same or similar values will facilitate a statistical encoder (such as
the run-length coding) in a standard compressor to improve compression effects.

Furthermore, for the same reason, if the number of rows is larger than the number of columns
(i.e.m > n), we transpose the matrix, such that more number of similar neighbor elements are
listed in a row and more redundancy can be exposed.

2.3 Compress the resorted data table by a standard compressor

After the above transformation, we use a statistical encoder for data compression. 7-zip is a
popular and fast file archiver with a high compression ratio [20]. We select it since it supports
several different data compression file formats and encryption algorithms, such as .77Z format with
LZMA algorithm and .GZip format with DEFLATE algorithm [21]. LZMA is a variation of LZ77
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Algorithm Compressing a Data Table
Input: a Table T with m rows and n columns
the number of row clusters k£, the number of column clusters [
a Threshold «, a Standard Compressor SC
Output: an index R’ recording the original order of rows
an index C’ recording the original order of columns
a Mean Vector V', a Compressed File F”

//Co-clustering;:
Generate a measure matrix W with m rows and n columns, let all entries in W are 1s
Setup co-clustering parameters (Options) according to guidance in [15]
Let [R, C] = co — clusting(T, W, k, 1, Options)
T" = reorder(T, R,C); //Get a Reordered Data Table
// Refine Table Columns and Rows in a co-clustering block:
//If a column has little variance, each element is deducted from the column minimum value
for each column i do
Col_min = min(i" column of T"); Col_std =standard_derivation(i*" column of T")
if Col-min/Col_std > o then deduct each element in the ith column of 77 by Col_min

,_.
e

record Col_min in V'
: end for
//For those columns in a column cluster,sort them by their mean
for each column-clustering i do
Temp =T'(:,C ==1) //find columns in column cluster i
Col_mean = mean(Temp), Temp = sort(T’, Col_mean)
Add sorted column-cluster Temp into new matrix SortT
Record the updated column index in C”

e e e e e

end for

//For those rows in a row cluster, sort them by the column with the minimum std value
. [order_index] = sort(std(SortT))

: for each row-clustering i do

Temp = SortT(R ==1i,:) //find those rows in row cluster i

//sort rows by the column with the minimum std value

Temp = sort(Temp(:, order_index(1)))

//use the reordered rows in row cluster i to form a matrix

Add sorted row-cluster Temp into new matrix SortT’

Record the updated row index in R’

NN NN NN NN
I A e

end for
: //Compress the Resorted Table by a Standard Compressor:
. F' = Compress(SC, SortT")

W W N
= o ©

Figure 3: Compression algorithm using co-clustering

algorithm and it uses entropy coding with a Markov chain based range coder and binary trees.
DEFLATE is a standard algorithm based on LZ77 and Huffman coding. In the above two steps,
our approach applies co-clustering to expose redundancy in a data table and the redundancy can
be removed by any of these encoding algorithms. Thereby, we use 7-zip to test our approach.
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2.4 Complete compression and decompression algorithm

The details of the compression algorithms are shown in Figure 3.
Accordingly, the decompression algorithm consists of two steps: decompression and reorder
back to the original table. Its details are shown in Figure 4,

Algorithm Decompressing a File to its Original Data Table

Input: a Compressed File F’, a Mean Vector V'
an index R’ recording the original order of rows
an index C’ recording the original order of columns
a Standard Compressor SC
Output: The Original Table T" with m rows and n columns
1: // Decompression:
2: DT = Decompress(SC, F")
3: //Reorder Back to the Original Table:
4: Reorder rows in DT according to R’, Reorder columns in DT according to C’
5: For a column with a Col_min value in V', add each element in the column with Col_min

Figure 4: Decompression algorithm using co-clustering

3 Experimental results

To test the effectiveness of our approach, we designed two experiments. One is the compres-
sion on a synthetic dataset. We would like to show how co-clustering can help to reorder and
group columns and rows in a data table such that redundancy is exposed. Since compression
ratio results are dependent upon different data tables used in mobile applications, we perform the
other experiment which is compressing public benchmark datasets. These benchmark datasets
are selected from UCI real-life datasets. They cover many typical topics in mobile applications,
such as wearable sensors, clinical care, customer reviews, and they have the similar table struc-
tures and contents as data in mobile systems. We aim to compare the compression performance
before and after applying co-clustering transformation for the benchmark datasets. The co-
clustering software we used is Co_ Cluster (Version 1.1) [15]. The compression software used is
7-zip. All experiments were performed on a machine with an Intel core i7 2.30GHz processor
and 8GB main memory.

For comparing the compression effectiveness, we define a measure called improved compres-
sion rate (ICR) based on compression rate (CR) as below,

CR— Original File Size
~ Compressed File Size

(8)

CR with Co— clustering — CR without Co — clustering

I =
CR CR without Co — clustering

9)

Another two measures are compression time and decompression time.

3.1 Experiment on a synthetic dataset

We firstly generate a data table with 10000 rows and 30 columns. It includes 2 row-clusters
and 3 column-clusters. Thereby, the data table is designed with six blocks. Two of them are
homogenous (entries values all are 1). The other four blocks contain entries with random values
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ranging in [0, 1]. By random permutation on rows and columns, the data table mixes six blocks
together. The image of the designed data table is shown in Figure 5(a) and its original text file
size is 946KB.

In compression algorithm, the parameter m is set to 10000, n is 30, k is 2, [ is 3, and
OPTIONS vector is set to default values.« is configured with 10.

Figure 5(b) shows the reordered data table images after co-clustering. It illustrates clearly
that the two homogenous blocks (or equivalently say, redundancy) are discovered by reordering
columns and rows. The homogenous blocks are helpful boost the compression effects by a sta-
tistical encoder. In addition, in this case m > n, so we transpose the transformed table such
that the number of consecutive entries with the same or similar values in a row increases for im-
proving the performance of an encoder. By comparing Figure 5(a) with Figure 5(b), we see that
the redundancy information has been well exposed by co-clustering. It has been proved by final
compression results. In 7-zip, by setting compression format as 7Z, compression level as maxi-
mum and compression algorithm as LZMA, other parameters as default values, the compressed
file sizes before and after co-clustering are 268KB and 216KB respectively.
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Figure 5: Synthetic data matrix image: (a) Before co-clustering, (b) After co-clustering and
transpose

By (8), CR with Co-clustering and without Co-clustering is 4.38 and 3.53 respectively. Con-
sequently, ICR for the synthetic dataset is 24%, a significant improvement on the original com-
pression rate.

The compression procedure without Co-clustering takes 0.55 seconds, and the counterpart
compression procedure with Co-clustering takes 4.77 seconds. For decompression, they both take
0.21 seconds.

3.2 Experiments on ten UCI datasets

We further test our approach on ten real-life benchmark datasets in multiple fields, such
as wearable sensors, clinics, ecommerce, et al. They are from the discretized version of UCI
Machine Learning Repository [22] and their structures and contents are very similar to data
tables in mobile applications. The list of the ten datasets is described in Table 1. For each
dataset, we list the number of rows and number of columns in a table, its original file size and
its brief description.

Obviously, the ten datasets differ in table rows and columns, from 700 rows to 1000000 rows
and from 6 columns to 10000 columns. Subsequently, their file sizes vary from hundreds of KB to
tens of MB. The diversified tables are good to test the general compression and decompression
performance of our approach.
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Table 1: Dataset description

Dataset Rows*Columns | Original Size | Brief Description

Nursery 12960*8 288KB Applications for Schools

Waveform 5000*21 304KB Attributes of waves

ChessKRvK | 28056*6 463KB Chess positions

Gait Freeze | 151987*11 6018KB Data from wearable acceleration sensors
Connect4 67557*42 8775KB 8-ply positions in a game

Diabetes130 | 101766*48 21482KB 10 years of clinical care data at 130 US hospitals
Arcene_test | 700%10000 18560KB Biomedical Features

Poker hand | 1000000%11 22978KB A hand of playing cards

Opportunity | 51116*250 39022KB Dataset for Human Activity Recognition
Amazon 1500*10000 29396KB Customer reviews in a commercial website

In co-clustering settings, m and n are set to the original dimension information of a data
table. For simplicity, k& is fixed to 4. If a table contains at least 10 columns, [ is set to 4,
otherwise, [ is set to 2. « is configured with 10.

Table 2 compares the compression performance by using LZMA algorithm in 7Z without
co-clustering or with co-clustering. In 7Z, the compression level is set to maximum. Other
parameters in 7Z are configured with default values. The 3¢ and 4" columns in Table 2 (column
header "size by 7Z" and "CR by 7Z") show the compressed file sizes and compression rates by
using 7Z without co-clustering. And the 5 and 6! columns (column header "size by 7Zco"
and "CR by 7Zco") give the compressed file sizes and compression rates by using co-clustering.
From the 7" column, we see clearly that co-clustering can significantly improve the compression
rates with TOR € [21%, 59%)]. The 8" and 9*" columns compare the compression time difference
between 77 and 7Z with co-clustering. It suggests co-clustering takes more time when a table
size increases. The 10th and 11th columns show decompression times between 77 and 77 with
co-clustering are similar with each other.

For testing the compression performance by using other algorithms in 77, Table 3 list the
compression results by using GZip algorithm. The compression level is also set to maximum
and other parameters are configured with default values. Compared with the results in Table
2, the dataset compression rates by GZip are mostly lower than those by LZMA. However, our
co-clustering approach still can improve the compression rates by the range from 23% to 68%.

0.7 . :
*\‘ —-©-— Compression with 7Z+LZMA+Co-clustering
! \\ —-%-— Compression with 7Z+GZIP+Co-clustering
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Figure 6: ICRs obtained using co-clustering with LZMA and GZip
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Table 2: File compression comparison by using LZMA algorithm in 7Z
Dataset Original | Size | CR Size | CR | ICR | CT CT DT | DT
Size by by by by by 7Z | by by by
(KB) 7Z 7Z TZco | TZco (s) TZco | 77 TZco
(KB) (KB) 5 | |
Nursery 288 35 8 22 13 59% | 1.88 5.66 0.20 | 0.20
Waveform 304 30 10 22 14 36% | 1.84 3.74 0.23 | 0.25
ChessKRvK | 463 78 6 52 9 50% | 3.00 7.13 0.32 | 0.30
Gait Freeze | 6018 1167 | 5.16 | 792 | 7.60 | 47% | 67.64 | 149.13| 0.42 | 0.41
Connect4 8775 385 | 23 275 | 32 40% | 46.73 | 98.70 | 0.44 | 0.40
Diabetes130 | 21482 2177 | 9.84 | 1554 | 13.79| 40% | 187.69 | 427.70 | 3.33 | 2.85
Arcene _test | 18560 5572 | 3.33 | 4598 | 4.04 | 21% | 260.46 | 539.58 | 3.81 | 4.09
Poker 22978 4794 | 4.79 | 3749 | 6.13 | 28% | 444.35| 855.87 | 3.63 | 3.98
Opportunity | 39022 8403 | 4.64 | 5573 | 7.00 | 51% | 522.43 | 1026.00 4.01 | 4.56
Amazon 29396 1691 | 17.38 | 1220 | 24.10 | 39% | 170.13 | 437.01 | 3.96 | 4.24
Table 3: File compression comparison by using GZip algorithm in 7Z
Dataset Original | Size | CR Size | CR | ICR | CT CT DT | DT
Size by by by by by 7Z | by by by
(KB) 77 77 TZco | TZco (s) TZco | 77 7Zco
(KB) (KB) 5 |6 |
Nursery 288 37 8 24 12 54% | 2.00 4.02 0.22 | 0.23
Waveform 304 34 9 24 13 42% | 2.06 3.88 0.24 | 0.24
ChessKRvK | 463 84 6 54 9 56% | 2.78 6.24 0.28 | 0.26
Gait Freeze | 6018 1339 | 4.49 | 1025 | 5.87 | 31% | 80.24 | 178.79| 1.78 | 1.61
Connect4 8775 499 | 18 297 | 30 68% | 50.01 | 106.13| 2.23 | 1.74
Diabetes130 | 21482 2615 | 8.21 | 1680 | 12.79| 56% | 237.95| 490.94 | 6.71 | 6.69
Arcene_test | 18560 5878 | 3.16 | 4792 | 3.87 | 23% | 307.20 | 643.88 | 6.80 | 6.23
Poker 22978 5342 | 4.30 | 4056 | 5.67 | 32% | 433.88 | 986.79 | 7.58 | 8.27
Opportunity | 39022 10256| 3.80 | 6617 | 5.90 | 55% | 524.55 | 1124.00 11.51 | 12.34
Amazon 29396 1908 | 15.41 | 1550 | 18.97 | 23% | 194.45 | 497.12 | 8.87 | 7.42

Figure 6 illustrates that with the increased products of number of rows and columns in the
ten tables, the ICRs are waved around 40%. It shows our algorithms keep stable of improved
compression rates without much affected by table properties.

Figure 7 visualizes the compression times by using two different compression algorithms in 77
with co-clustering or without co-clustering. It shows the two algorithms LZMA and GZip have no
much difference from compression time view. Except for the last dataset "Amazon", we see that
with the product of rows number and columns number increasing, the corresponding compression
times increase linearly, without regarding to using co-clustering algorithm. It confirms that the
time cost of co-clustering algorithm is just linearly related to the product of rows number and
columns number in a table. Thereby, our approach is faster than other approaches where time
costs are nonlinearly proportional to a data table size. The last dataset digitalizes customer
reviews in Amazon website. By digitalization representation of text reviews, the table is a high
dimensional sparse matrix and it contains a lot of consecutive 0s. It leads to a sharp decrease
on compression time though it contains a huge number of columns.
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Figure 8: Decompression time comparisons

Figure 8 compares the decompression time costs with different compression settings. It shows
LZMA algorithm runs consistently faster than GZIP on decompression for the ten datasets. The
co-clustering approaches, either using LZMA or GZIP, take similar time on decompression than
those counterparts without using co-clustering. One reason is that the compressed file after
co-clustering has a smaller size than the packaged file without co-clustering. In addition, the
inverse transform of co-clustering is just reordering rows and columns from recorded indexes
in a compression procedure. Thereby, it is very simple and fast in table transformation. By
integrating the two factors, we see in Figure 8 that our co-clustering compression approach takes
very similar time costs on decompression as original 7Z approach. It is favorable for compressed
data tables in a mobile device, which will mostly be sent to a cloud server and be decompressed.

Conclusions

Data tables are widely used in many mobile applications. Lossless compression of a data
table can not only reduce storage sizes and network transmission latencies, but also save energy
in batteries. In this paper, we propose a novel co-clustering compression approach consisting of
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three steps: reordering and grouping columns and rows by co-clustering; refine table rows and
columns to further expose redundancy; data compression by using a standard compressor. We
tested the approach on a synthetic dataset and ten UCI real-life datasets. The experimental
results suggest that our approach can significantly improve compression rates at least 21% and
up to 68%. The approach is robust both to LZMA and GZip encoders. In addition, the time
cost of our approach is linearly proportional to the product of number of columns and rows in
a data table. Furthermore, since the inverse transform of co-clustering is just exchange of rows
and columns according to records, the decompress procedure is fast and takes similar time on
decompression as the original compressor. Therefore, our approach is suitable for compressing
a data table in a mobile device where the table requires a limited storage size and reduced
communication latency with constrained energy cost.

In next step, we would like to test our co-clustering approach on lossy compression of multi-
media files in mobile devices, such as images and videos. We are also interested in incorporating
other dimension reduction techniques, such as principle component analysis and independent
component analysis, to further improve the effectiveness of multimedia compression in the mo-
bile systems with constrained resources.
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