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Abstract: Using Generalized Modus Ponens reasoning, we examine the values of
the inferred conclusion depending on the correspondence between the premise of the
rule and the observed fact. The conclusion is obtained using Fodor’s implication in
order to represent a fuzzy if-then rule with a single input single output and the t-
norm with threshold generated by t-norm product, as a compositional operator. A
comparison study with the case when the standard t-norm product is used is made.
Some comments and an example are presented in order to show how the obtained
results can be used.
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1 Introduction

The database of a rule-based system may contain imprecisions which appear in the description of
the rules given by the expert. The imprecision implies the difficulty of representing the rules expressed,
generally, by means of natural language. Another difficulty is the utilization of these rules in approx-
imate reasoning when the observed facts do not match the condition of the rule. In order to obtain an
imprecise conclusion from imprecise premises, Zadeh extends the traditional Modus Ponens rule obtain-
ing Generalized Modus Ponens (GMP). An investigation of GMP inference was made by many papers:
[2], [3], [4], [5], [7], [9], [14], [15], [27], [28], [29], [30], [33], [34], [35]. Also, we analyzed this type of
inference in some papers: [19] , [22], [24] , [25], [26].
The proposition

X is A

can be understood as
the quantity X satis f ies the predicate A

or
the variable X takes its values in the set A.

The semantic content of the proposition
X is A

can be represented by
πX = µA,

where πX is the possibility distribution restricting the possible value of X and µA is the membership
function of the set A.

Because the majority of practical applications work with trapezoidal or triangular distributions and
these representations are still a subject of various recent papers ([1], [13] and [16], for instance) we
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will work with membership functions represented by trapezoidal fuzzy numbers. Such a number N =

(a,b,α,β ) is defined as

µN (x) =





 f or x < a−α
x−a+α

α f or x ∈ [a−α,a]

 f or x ∈ [a,b]

b+β − x
β f or x ∈ [b,b+β ]

 f or x > b+β

Let X and Y be two variables whose domains are U and V , respectively. A causal link from X to Y is
represented as a conditional possibility distribution [35, 36] πY/X which restricts the possible values of
Y for a given value of X . For the rule

i f X is A then Y is B

we have
∀ u ∈U, ∀ v ∈V, πY/X(v,u) = µA(u) → µB(v)

where → is an implication operator and µA and µB are the possibility distributions of the propositions
"X is A" and "Y is B", respectively.
If µA ′ is the possibility distribution of the proposition

X is A ′

then from the rule
i f X is A then Y is B

and the fact
X is A ′

Generalized Modus Ponens rule computes the possibility distribution µB ′ of the conclusion

Y is B ′

as
µB′ (v) = sup

u∈U
T

(
µA′ (u) ,πY/X (v,u)

)
,

where T is a t-norm.

2 Basic concepts

The main concepts used in GMP are presented below, using the terminology of [8], [17] and [32].

Definition 1. A function T : [,] → [,] is a t-norm iff it is commutative, associative, non-decreasing
and T (x,) = x ∀x ∈ [,].

Definition 2. A function S : [,] → [,] is a t-conorm iff it is commutative, associative, non-decreasing
and S(x,) = x ∀x ∈ [,].

Definition 3. A function N : [,] → [,] is a strong negation iff it is an involutive and continuous
decreasing function from [,] to itself.
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In order to represent a rule, the notion of fuzzy implication is used. We recall an axiomatic approach
(formulated by Fodor in [10, 11, 12]) to the definition of fuzzy implication.

Definition 4. An implication is a function I : [,] → [,] satisfying the following conditions:
I1: If x≤ z then I(x,y)≥ I(z,y) for all x,y,z ∈ [,]

I2: If y≤ z then I(x,y)≤ I(x,z) for all x,y,z ∈ [,]

I3: I(,y) =  (falsity implies anything) for all y ∈ [,]

I4: I(x,) =  (anything implies tautology) for all x ∈ [,]

I5: I(,) =  (Booleanity)

The following properties could be important in some applications:

I6: I(,x) = x (tautology cannot justify anything) for all x ∈ [,]

I7: I(x, I(y,z)) = I(y, I(x,z)) (exchange principle) for all x,y,z ∈ [,]

I8: x≤ y if and only if I(x,y) =  (implication defines ordering) for all x,y ∈ [,]

I9: I(x,) = N(x) for all x ∈ [,] is a strong negation

I10: I(x,y)≥ y for all x,y ∈ [,]

I11: I(x,x) =  (identity principle) for all x ∈ [,]

I12: I(x,y) = I(N(y),N(x)) for all x,y ∈ [,] and a strong negation N

I13: I is a continuous function.

The most important families of implications are given by

Definition 5. A S-implication associated with a t-conorm S and a strong negation N is defined by

IS,N
S (x,y) = S(N(x),y) ∀x,y ∈ [,]

A R-implication associated with a t-norm T is defined by

IT
R(x,y) = sup{z ∈ [,]|T (x,z)≤ y} ∀x,y ∈ [,]

A QL-implication is defined by

IT,S,N
QL (x,y) = S(N(x),T (x,y)) ∀x,y ∈ [,]

One of the most important implications is the Fodor’s implication

IF (x,y) =

{
 i f x≤ y

max(− x,y) otherwise

which is [5] a R-implication for T = min, a S -implication for S = max and a QL-implication for T = min
and S = max, where

min (x,y) =

{
 i f x+ y≤ 

min(x,y) i f x+ y > 

and

max (x,y) =

{
 i f x+ y≥ 

max(x,y) i f x+ y < 
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and N(x) = − x. Besides, the Fodor’s implication verifies the properties I1-I12. An important class of
t-norms (t-conorms) is given by the t-norms (t-conorms) with thresholds, obtained from standard t-norms
(t-conorms); the number of thresholds is an integer n ≥ . First example of operators with 1-threshold
were given by Pacholczyk in [31]. Various families of such t-operators can be found in [18, 20, 21, 23],
where the advantage of their usage to represent the uncertain knowledge is justified. In this paper we
analyze the results obtained by reasoning with imprecise knowledge using a t-norm with threshold as a
composition operator. Finally we will compare these results with those obtained using the corresponding
standard operators. We consider the following t-norm with a single threshold k ∈ (,)[31]

Tk(x,y) =

{
k

− k T (− k
k x, − k

k y) i f x≤ k and y≤ k
min(x,y) i f x > k or y > k

obtained from the t-norm T (x,y). We will work with the t-norm generated by TP(x,y) = xy, which is one
of the most used; it results

Tk(x,y) =

{
− k

k xy i f x≤ k and y≤ k
min(x,y) i f x > k or y > k

3 Main results

Taking into account the following reasons, we shall work with rules having a single input single
output:

a) a rule with multiple consequent can be treated as a set of rules with a single conclusion; for
instance, the rule

i f antecedent then C and C and ....... and Cn

is equivalent to the rules
i f antecedent then C

i f antecedent then C

.................................

i f antecedent then Cn.

b) a rule with multiple premise can be broken up into simple rules [6] when the rules are represented
with any S-implication or any R-implication and the observations are normalized fuzzy sets.
Our aim is to obtain the conclusion "Y is B ′" from the rule

i f X is A then Y is B

and the fact
X is A ′

where the fuzzy sets A,A ′,B and B ′ are represented by trapezoidal possibility distributions. The set B ′ is
computed as

µB′(v) = sup
u∈U

Tk(µA′(u), IF(µA(u),µB(v))),

analyzing five cases, depending on the relation between µA and µA ′ .
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Theorem 6. If the premise contains the observation, i. e. µA ′(u)≤ µA(u) ∀u ∈U, then

µB ′(v) = µB(v) i f µB(v)≥ .

µB ′(v) ∈ [µB(v),− µB(v)) i f µB(v) < .

Proof. i1) value on the set U = {u ∈U/µA(u)≤ µB(v)}
Because IF(µA(u),µB(v)) = , we have

µB ′(v) = sup
u∈U

Tk(µA ′(u),) = sup
u∈U

µA ′(u)≤ µB(v).

i2) value on the set

U = {u ∈U/µA(u) > µB(v)≥ .}∪ {u ∈U/µA(u) > − µB(v) > .}

We have IF(µA(u),µB(v)) = µB(v). If k < µB(v) then

µB ′(v) = sup
u∈U

Tk(µA ′(u),µB(v)) = sup
u∈U

min(µA ′(u),µB(v)) = µB(v).

For k ≥ µB(v) and U
 = {u ∈U/µA ′(u)≤ k} we have

µB ′(v) = sup
u∈U



Tk(µA ′(u),µB(v)) = sup
u∈U



− k
k

µA ′(u)µB(v)≤ (− k)µB(v) < µB(v).

For k ≥ µB(v) and U
 = {u ∈U/µA ′(u) > k} we obtain

µB ′(v) = sup
u∈U



Tk(µA ′(u),µB(v)) = sup
u∈U



min(µA ′(u),µB(v)) = µB(v).

i3) value on the set U = {u ∈U/µB(v) < µA(u)≤ − µB(v)}
In this case IF(µA(u),µB(v)) = − µA(u) and therefore

µB ′(v) = sup
u∈U

Tk(µA ′(u),− µA(u)).

For k < µB(v) we have − µA(u)≥ µB(v) > k and Tk ≡ min. It results

µB ′(v) = sup
u∈U

min(µA ′(u),− µA(u)) < − µB(v).

For µB(v)≤ k ≤ − µB(v) we analyze the cases:
i): value on the set U

 = {u ∈U/µB(v)≤ µA(u) < − k}
Because k < − µA(u) we obtain

µB ′(v) = supu∈U


Tk(µA ′(u),− µA(u))

= supu∈U


min(µA ′(u),− µA(u)) < min(− k,− µB(v)) = − k.

i): value on the set U
 = {u ∈U/µB(v) < − k ≤ µA(u)≤ − µB(v)}

In this case, − µA(u)≤ k and we study three possibilities, depending on µA ′(u).
i

): on the set U,
 = {u ∈U

 /µA ′(u) = } we obtain µB ′(v) = 

i
): on the set U,

 = {u ∈U
 /µA ′(u) ∈ (,k]} we have

µB ′(v) = sup
u∈U,



− k
k

µA ′(u)(− µA(u)) < k(− k).
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i
): on the set U,

 = {u ∈U
 /µA ′(u) > k} we get

µB ′(v) = sup
u∈U,



min(µA ′(u),− µA(u)) < − µB(v).

For k > − µB(v) we consider the set

U
 = {u ∈U/µB(v) > − k} = {u ∈U/− k < µB(v) < µA(u)≤ − µB(v)}

and we work with the subsets of U
 for which µA ′(u) = , µA ′(u) ∈ (,k] and µA ′(u) > k, respectively;

we obtain the following corresponding results:

µB ′(v) = , µB ′(v) < k(− k) and µB ′(v) < − µB(v).

Synthesizing the previous results, one obtain the conclusion formulated in the theorem.

Theorem 7. If the premise and the observation coincide, i. e. µA(u) = µA ′(u) ∀u ∈U, then

µB ′(v) = µB(v) i f k > . and µB(v)≥ − k,

µB ′(v) ∈ [µB(v),− k) i f k > . and µB(v) < − k,

µB ′(v) = max(.,µB(v)) i f k ≤ ..

Proof. In this case one repeat the proof of the Theorem 6 taking account the equality µA(u) = µA ′(u)

∀u ∈U . It results:
1) if . < k ≤ µB(v) then µB ′(v) = µB(v)
2) if k ≤ .≤ µB(v) then µB ′(v) = µB(v)
3) if k ≤ µB(v) < . then µB ′(v) = .
4) if µB(v)≤ k ≤ . then µB ′(v) = .
5) if .≤ µB(v) < k then µB ′(v) = µB(v)
6) if µB(v)≤ . < k then µB ′(v) = µB(v) i f µB(v)≥ − k and

µB ′(v) ∈ [µB(v),− k) i f µB(v) < − k
from which we get the conclusion.

Theorem 8. If the observation contains the premise, i. e. µA(u)≤ µA ′(u) ∀u ∈U, then

µB ′(v)≥ max(µB(v),
− k

k
µB(v)(− µB(v))) i f µB(v)≤ min(.,k)

µB ′(v)≥ µB(v) otherwise.

Proof. i1) value on the set U = {u ∈U/µA(u)≤ µB(v)}
Because IF(µA(u),µB(v)) =  we have

µB ′(v) = sup
u∈U

min(µA ′(u),) = sup
u∈U

µA ′(u)≥ µB(v).

i2) value on the set U = {u ∈U/.≤ µB(v) < µA(u)}∪ {u ∈U/µA(u) > − µB(v) > .}
In this case IF(µA(u),µB(v)) = µB(v) and

i) for k < µB(v) we obtain

µB ′(v) = sup
u∈U

Tk(µA ′(u),µB(v)) = sup
u∈U

min(µA ′(u),µB(v)) = µB(v)

i) for k ≥ µB(v) we consider two subsets of U:
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i
) on the subset U

 = {u ∈U/µA ′(u)≤ k} we have

µB ′(v) = sup
u∈U



Tk(µA ′(u),µB(v)) = sup
u∈U



− k
k

µA ′(u)µB(v))≤ (− k)µB(v) < µB(v)

i
) on the subset U

 = {u ∈U/µA ′(u) > k} we have

µB ′(v) = sup
u∈U



Tk(µA ′(u),µB(v)) = sup
u∈U

min(µA ′(u),µB(v)) = µB(v).

i3) value on the set U = {u ∈U/µB(v) < µA(u)≤ − µB(v)} .
In this case IF(µA(u),µB(v)) = − µA(u) and we analyze the following cases.

i) if k < µB(v) then

µB ′(v) = sup
u∈U

Tk(µA ′(u),− µA(u)) = min(µA ′(u),− µA(u)) < − µB(v).

ii) if k ≥ µB(v) we consider the following subcases:
ii) µB(v)≤ k ≤ − µB(v)

ii) on the set U
 = {u ∈U/µB(v)≤ µA(u) < − k} we have

µB ′(v) = sup
u∈U



min(µA ′(u),− µA(u)) < − µB(v)

ii) on the set U
 = {u ∈U/− k ≤ µA(u)≤ − µB(v)} we consider two subsets:

•U,
 = {u ∈U

 /µA ′(u)≤ k} for which we obtain

µB ′(v) = supu∈U,


− k
k µA ′(u)(− µA(u))≥ supu∈U,



− k
k µA(u)(− µA(u))

≥ max((− k), − k
k µB(v)(− µB(v)))≥ − k

k µB(v)(− µB(v))

•U,
 = {u ∈U

 /µA ′(u) > k} for which we have

µB ′(v) = sup
u∈U,



min(µA ′(u),− µA(u)) < − µB(v).

ii) k > − µB(v) which defines the set

U
 = {u ∈U/− k < µB(v)} = {u ∈U/− k < µB(v) < µA(u)≤ − µB(v)}

• for µA ′(u)≤ k we obtain

µB ′(v) = supu∈U


− k
k µA ′(u)(− µA(u))

≥ supu∈U


− k
k µA(u)(− µA(u))≥ − k

k µB(v)(− µB(v))

• for µA ′(u) > k it results

µB ′(v) = sup
u∈U



min(µA ′(u),− µA(u)) < − µB(v).

Finally we obtain the conclusion formulated in the theorem.

Theorem 9. If there is a partial overlapping between the sets A and A ′ then

µB ′(v) =  i f core(A ′)∩ (U −AµB(v)) 6= /0 and
µB ′(v)≥ µB(v) otherwise

where Aα denotes the α-cut of A.
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Proof. i1) The case core(A ′)∩ (U −AµB(v)) 6= /0.
On the set U = {u ∈U/µA(u)≤ µB(v)} we have IF(µA(u),µB(v)) =  and therefore

µB ′(v) = sup
u∈U

Tk(µA ′(u),) = .

i2) The case core(A ′)∩ (U −AµB(v)) = /0.
On the set U = {u ∈U/µA(u) > µB(v)≥ .} we have IF(µA(u),µB(v)) = µB(v) and therefore

µB ′(v) = sup
u∈U

Tk(µA ′(u),µB(v))≥ Tk(,µB(v)) = µB(v).

If µB(v) < . we analyze three cases. Let Ũ = {u ∈U/µA(u) = µB(v)}; card(Ũ) =  if  < µB(v) < .

i) the case Ũ ∩ supp(A ′) = /0 and core(A ′)∩ core(A) 6= /0.
On the set U = {u ∈U/µA(u)≥ − µB(v) > .} it results

µB ′(v) = sup
u∈U

Tk(µA ′(u),µB(v))≥ Tk(,µB(v)) = µB(v).

i) the case Ũ ∩ supp(A ′) = /0 and core(A ′)∩ core(A) = /0.
We consider the set U = {u ∈U/µB(v) < µA(u)≤ − µB(v)}; on the set U = U∪U we have

µB ′(v) = sup
u∈U

Tk(µA ′(u), IF(µA(u),µB(v)))≥ sup
u∈U

Tk(µA ′(u),µB(v))≥ Tk(,µB(v)) = µB(v).

i) the case Ũ ∩ supp(A ′) 6= /0. On the set U we obtain µB ′(v)≥ µB(v), as in the previous case.
It results that, in the case i2), µB ′(v)≥ µB(v). The same result is obtained for µB(v) ∈ {,}.

We consider the negation with threshold k ∈ (,) [31]

Nk(x) =

{
− − k

k x i f x≤ k
k

− k (− x) i f x≥ k

obtained from the standard negation N(x) = − x.

Theorem 10. If the premise and the observation are contradictory, i.e. µA ′(u) = Nk(µA(u)) ∀u∈U, then
µB ′(v) =  ∀v ∈V.

Proof. On the set U = {u ∈U/µA(u)≤ µB(v)} we have

µB ′(v) = sup
u∈U

Tk(µA ′(u),) = sup
u∈U

min(µA ′(u),) = sup
u∈U

µA ′(u) = sup
u∈U

Nk(µA(u)) = 

because there is u ∈U with µA(u) = .

4 Interpretation and utilization of results

In this section we will compare the results given by the common operators (t-norm product TP(x,y) =

xy and negation N(x) = −x) with those obtained by the corresponding operators with threshold and we
will indicate some possibility of their utilization in a fuzzy reasoning system. An example of working
with these results is also presented. In the case of standard operators TP and N, according to [24] we
have:
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Theorem 11. If the premise contains the observation, i.e µA ′(u)≤ µA(u) ∀u ∈U, then

µB′ (v) = µB(v) i f µB(v)≥ . or (.≤ µB(v) < .)

µB′ (v) < . i f µB(v) < .

Theorem 12. If the premise and the observation coincide, i.e. µA(u) = µA′(u) ∀u ∈U, then

µB′ (v) = max(µB(v),.)

Theorem 13. If the observation contains the premise, i.e. µA(u)≤ µA′(u) ∀u ∈U, then

µB′(v)≥ µB(v) ∀v ∈V.

Theorem 14. If there is a partial overlapping between the sets A and A′, then

µB′(v) =  i f core(A′)∩ (U −AµB(v)) 6= /0 and

µB′(v)≥ µB(v) otherwise
where Aα denotes the α−cut of A.

Theorem 15. If the premise and the observation are contradictory, i.e. ∀u ∈U µA′(u) = − µA(u), then
µB′(v) =  ∀v ∈V .

If the observation is more precise than the premise of the rule then it gives more information than
the premise. However, it does not seem reasonable to think that the Generalized Modus Ponens allows
to obtain a conclusion more precise than that of the rule. The result of the inference is valid if µB ′(v) =

µB(v), ∀v ∈ V . Sometimes, the deduction operation allows the reinforcement of the conclusion, as is
specified in [28], [19] and [25]:

Rule: If the tomato is red then the tomato is ripe.
Observation: This tomato is very red.
If we know that the maturity degree increases with respect to color, we can infer "this tomato is very

ripe". On the other hand, in the example
Rule: If the melon is ripe then it is sweet
Observation: The melon is very ripe

we do not infer that "the melon is very sweet" because it can be so ripe that it can be rotten.

This examples show that if the expert has not supplementary information about the connection
between the variation of the premise and the conclusion, he must be satisfied with the conclusion
µB ′(v) = µB(v). The Theorem 6 gives a valid result if we choose µB ′(v) = µB(v) for µB(v) < ..
As opposite, the corresponding Theorem 11 from the case of the standard t-norm TP does not allow to
obtain a valid result if µB(v) < ..

When the observation and the premise of the rule coincide the convenient behavior of the fuzzy
deduction is to obtain an identical conclusion. A different conclusion indicates the appearance of an
uncertainty in the conclusion. The both theorems, 7 and 12, give an uncertain conclusion, but we can
choose k > . in the Theorem 7 and we obtain a better result, because the uncertainty is smaller in
comparison with the result from the Theorem 12.

If the observation contains the premise, because

max(− k
k µB(v)(− µB(v)),µB(v))≥ µB(v)

it results that Theorem 8 gives a better result that Theorem 13. In this case the inferred conclusion B ′ is
a superset of B; we can choose the first superset.
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If there is a partial overlapping between the premise and the observation or the premise and the
observation are contradictory then the two t-norms give the same results for the inferred conclusion.
The value µB ′(v) =  obtained in these cases represents an indeterminate conclusion, all elements v ∈V
having a possibility equal to 1. In the case of "partial overlapping" we propose a "mediation" between
the two possible values:

µB ′(v) =  and µB ′(v)≥ µB(v);

if B, B, ..., Bk are the supersets of B with

µBk(v)≥ µBk−
(v)≥ ....≥ µB(v),

we can choose B ′ = B[ k
 ], where [x] is the greatest integer which is smaller than or equal to x. The

Theorem 10 gives a waited result, that represents one of the basic properties of GMP reasoning.
The results from Theorems 6-10 can be used in a fuzzy inference system as in the following example.

A customer is interested to buy a computer. The quality of the computer depends on its price as is
specified by the rules:

Rule1: If the price is very low then the quality is below average
Rule2: If the price is very very high then the quality is very good.
Rule3: If the price is middle then the quality is good.

The variable price has values in the following set of linguistic terms

Lp = {very very low,very low, low,midle,high,very high,very very high}

and the variable quality has values in the set

Lq = {poor,below average,average,above average,good,very good}.

We consider the universes of discourse [,] for price and [,] for quality. The linguistic terms
are represented by the following trapezoidal fuzzy numbers:

very very low = (,,,)

very low = (,,,)

low = (,,,)

middle = (,,,)

high = (,,,)

very high = (,,,)

very very high = (,,,)

poor = (,,,)

below average = (,,,)

average = (.,.,.,.)

above average = (,,,)

good = (.,.,.,.)

very good = (.,.,.,.).

These fuzzy numbers are depicted in the Figures 1 and 2.
We consider the observations:

Observation1: the price is very very low
Observation2: the price is very high
Observation3: the price is high

The theorems 6-10, used together with the comments from this section, give the following results:
1) the conclusion obtained from Rule1 and Observation1 is "the quality is below average"; this result

is obtained with Theorem 6
2) Theorem 8 is applied for Rule2 and Observation2 and gives the conclusion "the quality is good"
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Figure 1: Fuzzy sets for linguistic terms from the list Lp
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Figure 2: Fuzzy sets for linguistic terms from the list Lq

3) using Theorem 9 for the Rule3 and Observation3 one obtain the conclusion "the quality is aver-
age".

As it can be observed from this example, our results allow us to obtain the inferred conclusion by a
very simple calculus in comparison with the standard formula used in GMP.

5 Summary and Conclusions

The results obtained in this paper explain how the Generalized Modus Ponens rule works with the
Fodor’s implication and the t-norm product with threshold. Combining these results with the approxi-
mations proposed in the previous section we obtain a fast answer for the value of the conclusion inferred
by GMP reasoning. We worked with the t-norm product because it is one of the most used in practical
applications. As it results from the previous sections, one obtain better results in the case of t-norm with
threshold. In a future paper we will analyze the results given by another t-norms with threshold and
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another implications.
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