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Abstract: The telco operators face up to challenges related to the need of ensuring
a quality of service to the user in a planning, maintenance and resource allocation
in their complex networks. These challenges are directly related with the need to
ensure an user’s service with a good level of quality in a highly dynamic environment
in terms of changes in the radio access technologies, growth in the number of mobile
users, technical requirements of the new services and applications, and the possibility
to connect to different networks at the same time, among others. In this paper, we
address the problem of the user’s service allocation into the different feasible networks
in order to reduce the network overloading. We present a multihoming load balancing
scheme that allows the re-allocation of services according to their QoS requirements
and the availability of network resources. We propose a multi-objective optimization
model of this problem together with an evolutionary algorithm to solve it. Through
simulation in different scenarios, we show that our algorithm is efficient, sensitive,
scalable and provides optimal solutions.
Keywords: Heterogeneous Networks, load Balancing, multihoming, multi-objective
optimization, multi-objective evolutionary algorithms, vertical handover.

1 Introduction

Given the continuous advances in network technologies, the growth in the number of mobile
users and the increasing demand of the new services and applications, the mobile network oper-
ator are confronted with multiple challenges in the planning, maintenance and operation of their
complex infrastructure. In many cases, these networks are composed by multiple radio access
technologies, which allows to the user the access to different services by using simultaneously one
or more their network interfaces.

In some cases during the network operation, it is possible that some radio access channels
could be overloaded because of a traffic growth caused by the increased of the number of user’s
services connected to these channels. Therefore, the mobile operators need some mechanisms
that allows a balanced distribution of the traffic load over the available networks. Note that
this process could involve could involve the reallocation of some users. The main goal of this
mechanism is the optimal use of the available network resources whilst the technical requirements
needs of each service are guaranteed.

From the viewpoint of the mobile network operators, one of the most appropriate ways
to achieve this goal is that the deployed infrastructure must be capable to perform the user’s
reallocation for one network to another, this process is called Vertical Handover (VHO). Due to
standards such as IEEE 802.21 [1] only provide the framework for VHO, the decision making
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algorithm that allow establish the best connection for each user is an open challenge [2]. In this
algorithms, the re-allocation must be based on different metrics obtained from the mobile devices
and/or from the performance parameters of the available networks [3]. Also, it is important that
this network changes process should be transparent for the user.

Based on the recent advances in the mobile phones, nowadays these devices could establish
connections to multiple networks in a simultaneously way, which is referred to as multihoming [4].
This characteristic facilitates a seamless VHO process while it is seamless to the user [5] and allows
the simultaneous transmission of multiple services across multiple network interfaces [6]. Several
research projects use the multihoming strategy over a heterogeneous environment in order to
achieve a load balancing [4]; [7–9] or to make a better distribution of the bandwidth charge [10,11].
In other studies this strategy was used as a decision tool for the VHO process [12–15].

Considering the aforementioned problems, we addressed our study about the Always Best
Connected (ABC) problem in heterogeneous wireless networks (HWN) in [16]. In this work we
designed a proactive Vertical Handover Decision Algorithm (VHO-DA) based on user prefer-
ences, QoS requirements, and network conditions. Later in [17], we presents a load balancing
optimization scheme; this scheme is composed by one mathematical model and a two-step algo-
rithm based on the anchor-adjustment heuristic. In this paper, we also address the problem of
load balancing across heterogeneous networks from the viewpoint of the operator. We present a
multi-objective optimization model to solve the traffic load balancing problem into HWN using
a multihoming strategy, and an evolutionary algorithm to solve it.

The remainder of this paper is structured as follows. In Section 2 we introduce the mathemat-
ical model that encodes the multi-objective function in order to obtain a global load balancing
among HWN. In section 3 the load balancing algorithm based on strength pareto evolutionary
algorithm is presented. The experimental results about the performance of our proposal are
shown in Section 4. Finally, concluding remarks and directions for further research are given in
Section 5.

2 Load Balancing Mathematical Model

As it was mentioned in [17], the load balancing is an important strategy used by the mobile
operators in order to allocate, in a fair way, the available resources in a network. However, this
strategy implies, in many cases, the reallocation of mobile devices; therefore, it is necessary to
consider the cost of connecting services to the new networks and the energy consumption of the
mobile device. Considering the above statements and the possibility of the simultaneous use
of multiple network interfaces by each mobile device [6], in this section we proposed a multi-
objective - multihoming mathematical model.

2.1 Decision Variable

By assuming that mobile devices are able to perform multihoming in the network, we define
the decision variable x as a binary variable that specify if the service s of the mobile k is connected
to the network j or not (See Figure 1).

The variable is represented as follows:

xk,sj =

{
1 if the service is connected to the network
0 otherwise
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Figure 1: Multihoming Cellular System

2.2 Objective Functions

In order to design an efficient load balancing algorithm, the mathematical model is formulated
under the premise of achieving an overall load balance in the wireless heterogeneous networks,
whilst the connection cost and the energy consumption is also minimized. This function is
expressed as: min(α, β, γ), where α represents the load balancing function, β the connection
cost function, and γ the energy consumption function.

Load Balancing Function

The load balancing function (α) is the main function of this model. This function determines
the network traffic load by considering the demand of the services of the mobile devices in relation
to the theoretical available bandwidth of the network. For this model, the load function is defined
as: α = max(αj),∀j ∈ N , where j represents the destination network of the mobile device, N
the set of access networks and αj the load of the network j.

We calculate αj as the sum of demanded bandwidth (Ds) of each connected service (s), for
each mobile (k) over the theoretical available bandwidth of the network (BWj)

αj =

∑
k

∑
sDs · xk,sj

BWj
, ∀j

Connection Cost Function

The function determines the maximum monetary cost of the mobile devices that are connected
to the network. If a mobile device has at least one service connected to the network, its cost
is taken into account to access the network. The connection cost function is expressed as:
β = max(βj), ∀j ∈ N , where j represents the network and βj the maximum cost of connected
mobile devices to this network (Costj).

βj is defined as:

βj =
∑
k

maxs(Costj · xk,sj ),∀j
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Energy Consumption Function

This function determines the energy consumption of the mobile devices that are connected to
the network. If a mobile device has at least one service connected to the network, the consumption
that generates for being connected to the network is taken into account in our model. We defined
the energy function as: γ = max(γj), ∀j ∈ N .

Whilst γj is determined as the maximum consumption that is generated by mobile device k
for being connected to the jth network

γj =
∑
k

maxs{Cons(RSSk,j) · xk,sj }, ∀j

Finally, in order to guarantee consistency in our model, we consider that when a services s is
active in the device, it will generate a traffic demand Ds. Following the work presented in [18],
the values of received signal strength are discretized at three levels: low, medium and high. Note
that the power consumption is inversely proportional to the Received Signal Strength (RSS) and
therefore, a high signal level results in a low power consumption by the mobile radio interface
through which communication is established.

Because multiple network interfaces can be used in a multihoming scenario, it is a privilege
to be connected to those network which you receive better signals from, i.e. where less energy
is consumed for being connected. Consumption levels derived from the RSS are modeled in the
Cons(RSSk,j) function.

Cons(RSSk,j) =


1 RSSk,j > RSSth2

2 RSSth1 ≤ RSSk,j < RSSth2

3 0 < RSSk,j < RSSth1

0 RSSk,j = 0

2.3 Model Constraints

Through the model constraints, we intend to guarantee the adjustment of this model to the
real-life Telco networks. In this case, the model only allows the service connection to those
networks that are in the coverage area, comply with the cost the user can assume to connect to
the network, and offer enough bandwidth to meet the demand of service and an adequate power
consumption according to the level of battery charge that the mobile device has.

Demand Constraint

The demand constraint states that the service can be only connected to a network that has
enough bandwidth to meet its demand.

Ds · xk,sj ≤ BWj , ∀j

Cost Constraint

The cost constraint states that the overall cost to access network j (Costj), i.e. the cost to
connect any service to network j must be less or equal to the cost incurred by the user in the
contract of the mobile device k (Costk).

Costj · xk,sj ≤ Costk, ∀k
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Access Constraint

Through the access constraint it is ensured that each service s that is active on the mobile
device k is connected to a N network and can only be connected to one network.

∑
j

xk,sj = yk,s, ∀k, ∀s

Reach Constraint

This constraint ensures that only networks that exceed the defined signal strength threshold
(RSSth) are considered in the model assessment.

RSSk,j ≥ RSSth, ∀j, ∀k

Power Consumption Constraint

The power consumption constraint ensures that services only can be connected to those
networks that offer lower power consumption, according to the current battery level of the mobile
device.

Cons(RSSk,j) · xk,sj ≤ Batk, ∀j,∀k

where Batk is defined as:

Batk =


1 Chargek < Batth1

2 Batth2 ≤ Chargek ≤ Batth1
3 Chargek > Batth2

A service s of a mobile device k is considered active when the constraints are satisfied at
least for one of the networks; i.e. if the service can be connected to at least one of the networks
available for the device. When the service s is active, it consumes the traffic demand in the
network that it is connected.

3 Multi-Objective Evolutionary Algorithm

In order to solve the multi-objective model, several strategies can be used. One of them
is to evaluate each objective function in the model separately (mono-objective approach). The
weight sum method is one of these strategies. However, it has several disadvantages, including
not finding all optimal solutions if the solution set is not convex, and the need to normalize the
functions so that no one predominates over the others [7].

For this reason we propose the use of an Multi-Objective Evolutionary Algorithm (MOEA) to
find the best set of solutions for all objective functions at the same time. The chosen algorithm is
the elitist type evolutionary algorithm SPEA (Strength Pareto Evolutionary Algorithm) proposed
by Zitzler and Thiele [7,19]. The time complexity of this algorithm is upper bounded by O(NM2)
in each generation, where M is the population size and N is the number of objectives.
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Algorithm 1: SPEA algorithm pseudo-code

1: Generate a random population M
2: while not max number of generation do
3: Evaluate population according objective function
4: Calculate the fitness of each of the individuals
5: Classification Population based on fitness (M,M ′)
6: Generate New Population Mt+1

7: Apply Binary Tournament Selection
8: Apply Crossover Operator
9: Mutation Operator

10: end while
11: Find Pareto Optimal Set.

3.1 Chromosome Representation

As starting point for implementing the evolutionary algorithm it is necessary to define the
chromosome, i.e. the data representation of the solutions in the model. In the proposed mathe-
matical model, the solutions can be expressed in a matrix representation (See Fig. 3). The rows
represent mobile devices and the columns represent services; whilst the cell values represent the
network in which the service will be connected, the value of zero is given when the service is not
active and it is not connected to any network.
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Figure 3: Chromosome representation of the solution

The decision variables of the mathematical model can be directly obtained from the chromo-
some, for example if service 2 of the mobile device 3 is connected to network 4, it means that
x3,24 = 1 and for the remaining j networks the variable is 0.

3.2 Genetic Operators

The crossover function takes two initial solutions (i.e. chromosomes), called parent solutions,
and then created a new one from them. We define a crossover function based on the well-known
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(a) Crossover function

(b) Mutation function

Figure 4: Genetic Operators

single-point strategy proposed in [19]. The new solutions are generated by combining the first p
rows of the first parent solution with the last k − p rows of parent second parent solution, and
vice-versa. The Figure 4(a) shows an example of this operator. Since the solution of each mobile
device in the parent chromosomes meets the constraints of the model, the solutions of the mobile
devices that are part of the child solutions also meet the constraints since each mobile device
represented in a row conserves its signal strength and battery level conditions as it moves from
one chromosome to another. Also note that the inactive services are the same in the different
solutions so they are conserved.

The mutation strategy is based on a random function that takes a mobile device service from
its current to a new one as long as the constrains are met, i.e. the network will be connected
to a feasible network. The function takes into account only the services that are activated and
have more than one feasible network. Figure 4(b) shows an example of the mutation strategy.
In this case, the service 3 of the mobile 2 is moved from network 3 to network 4

3.3 Generation of Scenario Parameters

Once the genetic operators are defined, the algorithm starts to generate pseudo-randomly
parameters for each mobile. This parameters are the maximum cost that the user can assume
to connect to one network (Costk), the percentage values and battery charge levels (Batk and
Chargek), the signal strength values that each mobile perceives to each network j (RSSk,j),
with its corresponding power consumption level parameter (Consk,j).

When the scenario is created, we proceed to validate all constraints of model for each available
network: demand, cost, reach and power consumption. After this validation, we store in a vector
the networks that can be used to connect each service of each mobile device or the zero value ([0])
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if the service cannot be connected to any network. The result is a feasibility matrix (Factk,s),
this matrix is used to computed a matrix of active services yk,s, where it is defined the probability
of use for a mobile service, for each service that can be connected to at least one network. Once
the active services are defined, a population of M initial solutions and an M ′ elite (or external)
population are randomly generated from both the feasibility and active services matrix. In our
implementation, the value of M and M ′ are set to 20 and 4, respectively.

4 Experimental Results

In order to verify the correct operation of the proposed algorithm, we define four different
experimental scenarios. For each one of them, we execute 500 iteration of the algorithm with
different number of networks, mobile devices and services.

4.1 First Experimental Scenario

The aim of this scenario is to compare the quality of the solution obtained by our algorithm
with respect to the optimal solutions obtained by solving each function separately. The optimal
solutions were computed using GAMS system [20]. For this purpose, the scenario is composed
by five mobile devices that will connect three services in three different available access networks.
Tables 1 and 2 describe the parameters of bandwidth, cost, distribution of active services and
network coverage for each mobile device.

Table 1: Network parameters

Network Technology Theoretical Bandwidth (Mbps) Costj (monetary units)
LTE 70 80

WiFi g 54 0
HSPA+ 15 40

Table 2: Bandwidth demand parameters

Service Voice Video Web
Demand (Mbps) 0.1 3 0.5

To solve a multi-objective mathematical model through a general optimization software such
as GAMS [20], it is necessary to convert the optimization problem into a single objective one. In
this case, each objective function was optimized separately obtaining the solutions shown in Table
3. On the other hand the proposed algorithm converges rapidly to a set of 4 optimal solutions;
three of them are unique. The results are presented in Table 4. Based on the feasible solutions
obtained, we plot three different graphics in order to identify the Pareto-Optimal Front. These
graphics are: load (α) vs. cost (β), cost (β) vs. consumption (γ), and load (α) vs. consumption
(γ), as you can see in Figure 4:(a). In the load (α) vs. cost (β) graph, the optimal Pareto front
can be seen, because as the load decreases the cost grows. The cost (β) vs. consumption (γ)
graph shows that solutions move in cost values of 80, 120 and 160, and zero-cost solution is quite
atypical. Finally, in the load (α) vs. consumption (γ) graph can be seen that some optimal
solutions are on value 4 and others on power consumption value 7.

Making a comparison between the two sets of solutions obtained (Table 3 and 4), the proposed
algorithm found several intermediate solutions belonging to the Pareto optimal front. These
solutions cannot be found under mono-objective approaches because they are clearly not a linear
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Table 3: Mathematical model solutions obtained using GAMS

LTE (load) WiFi g (load) HSPA+ (load) α β γ

Solution 1 0.086 0.080 0.080 0.086 160 4
Solution 2 0 0.213 0 0.213 0 7
Solution 3 0.103 0.080 0 0.103 160 4

Table 4: Solution results for the first study case

LTE (load) WiFi g (load) HSPA+ (load) α β γ

Solution 1 0.051 0.115 0.113 0.115 120 7
Solution 2 0.051 0.124 0.080 0.124 80 4
Solution 3 0.086 0.080 0.080 0.086 160 4

combination of the objective functions. By looking at the solutions obtained by GAMS, it is
possible to see that the solution 3 is dominated by solution 1, so that the solution 3 is not part
of the Pareto optimal front. Moreover, it is highly improbable that the zero solution cost (found
with GAMS) can be found by our algorithm, because this solution must connect all the services
to the same network that goes against the main objective of our proposal.

Finally, in order to evaluate the quality of the solutions found by the algorithm, a performance
metric called spacing was calculated. This metric, as its name implies, analyze the distribution
of the solutions in a Pareto Front.

S =

√√√√ 1

|Q|
·
|Q|∑
i=1

(di − d)2

where:

di = mink∈Q∧k∧≠i

M∑
m=1

|f im − fkm|

d =

|Q|∑
i=1

di
|Q|

It is important to note that di are the distance measure, d is the mean value of the above
distance measure, and fkm is the mth objective function value of the kth member of the population
[7].

For our implementation the value of S obtained was 21.505. This value was influenced in a
strongest way by the difference in the cost values.

4.2 Second Experimental Scenario

We proceed to perform of the algorithm with the same external and elite population size
M = 20, M ′ = 4; but changing to 20 mobile devices, 5 services for each device, and 7 access
networks. This scenario was randomly generated according to the characteristics presented in
Table 5 and 6. The feasible solutions obtained are presented in Table 7.

The solutions obtained show that the services present a tendency to be allocated into the
networks with the highest capacity restricted only by the cost that each mobile could pay. The
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Table 5: Network parameters

Network Technology LTE WiFi n WiFi g WiMAX HSPA+ HSDPA UMTS
Theoretical Bandwidth (Mbps) 70 300 54 15 15 2 0.3

Costj (monetary units) 80 0 0 60 40 20 10

Table 6: Bandwidth demand of services for second study case

Service Voice Video Web Game Chat
Demand (Mbps) 0.1 3 0.5 2 0.2

Table 7: Network parameters

LTE WiFi n WiFi g WiMAX HSPA+ HSDPA UMTS α β γ

Solution 1 0.057 0.205 0.652 0.527 0.447 0.4 0.667 0.667 160 29
Solution 2 0.086 0.205 0.585 0.587 0.493 0.467 0.587 0.587 240 27

solutions obtained by our algorithm show that if the model constrains are met, then the algorithm
trends to allocate the mobile services in those networks with the highest capacity and low cost

In addition, we plot three same graphics as the previous scenario (see Figure 5:(a)). In the first
two graphs it is observed the optimal Pareto fronts. These first two graphs shows that in order
to achieve a better load distribution across networks and to reach a lower power consumption
of mobile devices, the services should be grouped into the higher-cost networks. However, it
can be said that the load variations are little in comparison with the cost difference that can be
obtained; so that the operator may prefer the solution which means lower cost. The value of the
spacing metric (S) was 35.542, despite having three repeated solutions. The difference in the
values of cost and load shows that the solutions are not equally distant.

4.3 Third Experimental Scenario

For this scenario, we only change the number of mobile devices to 500 in comparison with the
latest scenario. The solutions obtained are shown in Table 8. Based on the achieved solutions
for this scenario we can assert that our algorithm present a good grade of sensitivity. We can
observe that small changes in the main parameters are reflected in the services allocation, which
mean changes in the set of optimal solutions.

In Figure 6:(a) you can see, well defined, the optimal Pareto fronts in the first two graphs.
This scenario also shows how small changes in load balancing produce appreciable changes in
the cost function. The value of S for this scenario was 30.168, again due to the wide differences
in cost values.

4.4 Fourth Experimental Scenario

In this last scenario we increased the number of mobile devices to 10000 in order to validate
the scalability of the algorithm. The other scenario parameters are kept as the scenario 2. The
feasible solutions are shown in Table 9.

Figure 6:(b) shows the optimal solutions found by our algorithm. It is possible to see that
solutions trend to maintain the the same power consumption in both graphs, cost (β) vs. con-
sumption (γ) and load (α) vs. consumption (γ). The S metric value was 1.0, so that the
solutions are fairly well spaced, being an unique solutions. The algorithm is fully adaptable to
any situation within the proposed mathematical model designed.
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(a) First Study Case (b) Second Study Case

Figure 5: 2D perspectives of solution distribution

Table 8: Solution results for the third study case

Solution 1 Solution 2 Solution 3 Solution 4
LTE 1.531 1.517 1.544 1.544

WiFi n 3.161 3.163 3.153 3.165
WiFi g 18.113 18.219 18.302 18.237
WiMAX 16.62 16.58 16.533 16.547
HSPA+ 27.247 26.947 26.747 26.747
HSDPA 48.6 48.467 48.6 48.533
UMTS 64.667 64.667 65.333 65
α 64.667 64.667 65.333 65
β 7560 7500 7440 7440
γ 732 734 732 733

After running the algorithm on this scenario, we prove that the algorithm maintains its
characteristics of high sensitivity in the searching for optimal solutions regardless of the number
of mobile devices on the problem. That means our algorithm is scalable.
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Table 9: Solution results for the fourth study case

Solution 1 Solution 2 Solution 3 Solution 4
LTE 30.46 30.26 30.263 30.463

WiFi n 65.56 65.63 65.62 65.57
WiFi g 358.61 358.64 358.61 358.55
WiMAX 329.43 328.86 328.69 329.6
HSPA+ 537.59 537.41 537.79 537.34
HSDPA 934.93 936.67 937.13 934.53
UMTS 1730 1730.33 1729 1731.33
α 1730 1730.33 1729 1731.33
β 152760 152520 152600 152680
γ 15024 15027 15027 15022

(a) First Study Case (b) Fourth Study Case

Figure 6: 2D perspectives of solution distribution
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5 Conclusions and Future Work

We have presented a Multihoming Load Balancing Model in Heterogeneous Wireless Networks
based on a multi-objective approach. In this model we take as objective functions the network
load, connection cost, and energy consumption; with the aim of performing an efficient use of
the capacity resources in the available networks.

Based on this model it was designed a Vertical Handover Algorithm (VHO) using evolution-
ary algorithms, specifically the Strength Pareto Evolutionary Algorithm (SPEA). Through the
proposed environments we validate the correct operation of our algorithm; in the first scenario
we validate the exactitude of the feasible solutions obtained by our algorithm in comparison to
the solutions of the mathematical model using GAMS. In the other scenarios, we validate the
sensibility and scalability of our evolutionary algorithm. The results obtained by our proposal
were satisfactory and provided a starting point for the mobile network operator to run a VHO
processes in their networks. With this process they could get an efficient use of their network
resources, reduce the connection costs, and extend the battery life of mobile devices.

Due to we proposes a multi-objective optimization algorithm, the model is opens up to in-
corporate additional parameters as objective functions; these parameters could be obtained from
both the available access networks and the mobile devices. As future work we propose to continue
this research, we want to introduce the concept of fairness in the load balance optimization and
also include the concept of quality of experience (QoE) in the objective functions.
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