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Abstract: Besides usual spikes employed in spiking neural P systems, we consider
“anti-spikes", which participate in spiking and forgetting rules, but also annihilate
spikes when meeting in the same neuron. This simple extension of spiking neural
P systems is shown to considerably simplify the universality proofs in this area: all
rules become of the form bc → b ′ or bc → λ , where b,b ′ are spikes or anti-spikes.
Therefore, the regular expressions which control the spiking are the simplest possi-
ble, identifying only a singleton. A possible variation is not to produce anti-spikes
in neurons, but to consider some “inhibitory synapses", which transform the spikes
which pass along them into anti-spikes. Also in this case, universality is rather easy
to obtain, with rules of the above simple forms.
Keywords: membrane computing, P system, spiking neural P system, computability

1 Introduction

The spiking neural P systems (in short, SN P systems) were introduced in [4], and then investigated
in a large number of papers. We refer to the respective chapter of [7] for general information in this area,
and to the membrane computing website from [9] for details.

In this note, we consider a variation of SN P systems which was suggested several times, i.e., in-
volving inhibitory impulses/spikes or inhibitory synapses and investigated in a few papers under various
interpretations/formalizations – see, e.g., [1], [2], [5], [8]. The definition we take here for such spikes –
we call them anti-spikes (somewhat thinking to anti-matter) – considers having, besides usual “positive"
spikes denoted by a, objects denoted by ā, which participate in spiking or forgetting rules as usual spikes,
but also in implicit rules of the form aā → λ : if an anti-spike meets a spike in a given neuron, then they
annihilate each other, and this happens instantaneously (the disappearance of one a and one ā takes no
time, it is like applying the rule aā → λ without consuming any time for that). We do not claim having
a clear biological counterpart of such issues, we only look for an elegant mathematical definition.

This simple extension of SN P systems is proved to entail a surprising simplification of both the
proofs and the form of rules necessary for simulating Turing machines (actually, the proofs here are
based on simulating register machines) by means of SN P systems: all rules have a singleton regular
expression, which, moreover, indicates precisely the number of spikes or anti-spikes to consume by the
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rule. (Precisely, we have rules of the forms bc → b ′ or bc → λ , where b,b ′ are spikes or anti-spikes; such
rules, having the regular expression E such that L(E) = bc are called pure; formal definitions will be
given immediately.) This can be considered as a (surprising) normal form for this case; please compare
with the normal forms from [3], especially with the simplifications of regular expressions obtained there.

Anti-spikes are produced from usual spikes by means of usual spiking rules; in turn, rules consum-
ing anti-spikes can produce spikes or anti-spikes (actually, as we will see below, the latter case can be
avoided). A possible variant is to produce always only spikes and to consider synapses which “change
the nature" of spikes. Also in this case, universality is easily proved, using only pure rules.

2 Prerequisites

We assume the reader to be familiar with basic elements about SN P systems, e.g., from [7] and [9],
and we introduce here only a few notations, as well as the notion of register machines, used later in the
proofs of our results. We also assume familiarity with very basic elements of automata and language
theory, as available in many monographs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V , the empty string is
denoted by λ , and the set of all nonempty strings over V is denoted by V +. When V = {a} is a singleton,
then we write simply a∗ and a+ instead of {a}∗, {a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each a ∈ V is a regular
expression, (ii) if E,E are regular expressions over V , then (E)(E), (E)∪(E), and (E)

+ are regular
expressions over V , and (iii) nothing else is a regular expression over V . With each regular expression
E we associate a language L(E), defined in the following way: (i) L(λ ) = {λ } and L(a) = {a}, for all
a ∈ V , (ii) L((E)∪ (E)) = L(E)∪L(E), L((E)(E)) = L(E)L(E), and L((E)

+) = (L(E))
+, for

all regular expressions E,E over V . Non-necessary parentheses can be omitted when writing a regular
expression, and also (E)+∪ {λ } can be written as E∗.

The family of Turing computable sets of natural numbers is denoted by NRE.
A register machine is a construct M = (m,H, l, lh, I), where m is the number of registers, H is the

set of instruction labels, l is the start label (labeling an ADD instruction), lh is the halt label (assigned
to instruction HALT), and I is the set of instructions; each label from H labels only one instruction from
I, thus precisely identifying it. The instructions are of the following forms:

• li : (ADD(r), l j, lk) (add 1 to register r and then go to one of the instructions with labels l j, lk),

• li : (SUB(r), l j, lk) (if register r is non-empty, then subtract 1 from it and go to the instruction with
label l j, otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way: we start with all
registers empty (i.e., storing the number zero), we apply the instruction with label l and we proceed to
apply instructions as indicated by the labels (and made possible by the contents of registers); if we reach
the halt instruction, then the number n stored at that time in the first register is said to be computed by M.
The set of all numbers computed by M is denoted by N(M). It is known that register machines compute
all sets of numbers which are Turing computable, hence they characterize NRE.

Without loss of generality, we may assume that in the halting configuration, all registers different
from the first one are empty, and that the output register is never decremented during the computation,
we only add to its contents.

We can also use a register machine in the accepting mode: a number is stored in the first register
(all other registers are empty); if the computation starting in this configuration eventually halts, then
the number is accepted. Again, all sets of numbers in NRE can be obtained, even using deterministic
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register machines, i.e., with the ADD instructions of the form li : (ADD(r), l j, lk) with l j = lk (in this case,
the instruction is written in the form li : (ADD(r), l j)).

Again, without loss of generality, we may assume that in the halting configuration all registers are
empty.

Convention: when evaluating or comparing the power of two number generating/accepting devices,
number zero is ignored.

3 Spiking Neural P Systems with Anti-Spikes

We recall first the definition of an SN P system in the classic form (without delays, because this
feature is not used in our paper) and of the set of numbers generated or accepted by it.

An SN P system of degree m ≥  is a construct

Π = (O,σ, . . . ,σm,syn, in,out), where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ, . . . ,σm are neurons, of the form

σi = (ni,Ri), ≤ i ≤ m, where:

a) ni ≥  is the initial number of spikes contained in σi;

b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a, where E is a regular expression over a and c ≥ ;

(2) as → λ , for some s ≥ ;

3. syn ⊆ {,, . . . ,m}× {,, . . . ,m} with (i, i) /∈ syn for  ≤ i ≤ m (synapses between neurons);

4. in,out ∈ {,, . . . ,m} indicate the input and output neurons, respectively.

The rules of type (1) are firing (we also say spiking) rules, and they are applied as follows. If the
neuron σi contains k spikes, and ak ∈ L(E),k ≥ c, then the rule E/ac → a can be applied. The application
of this rule means removing c spikes (thus only k − c remain in σi), the neuron is fired, and it produces a
spike which is sent immediately to all neurons σ j such that (i, j) ∈ syn.

The rules of type (2) are forgetting rules and they are applied as follows: if the neuron σi contains
exactly s spikes, then the rule as → λ from Ri can be used, meaning that all s spikes are removed from
σi.

Note that we have not imposed here the restriction that for each rule E/ac → a of type (1) and as → λ
of type (2) from Ri to have as /∈ L(E).

If a rule E/ac → a of type (1) has E = ac, then we will write it in the simplified form ac → a and we
say that it is pure.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri must be used. Since two
firing rules, E/ac → a and E/ac → a, can have L(E)∩L(E) 6= /0, it is possible that two or more rules
can be applied in a neuron, and in that case only one of them is chosen non-deterministically. Thus, the
rules are used in the sequential manner in each neuron, but neurons function in parallel with each other.

The configuration of the system is described by the number of spikes present in each neuron. The
initial configuration is n,n, . . . ,nm. Using the rules as described above, one can define transitions among
configurations. Any sequence of transitions starting in the initial configuration is called a computation. A
computation halts if it reaches a configuration where no rule can be used. With any computation (halting
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or not) we associate a spike train, the sequence of zeros and ones describing the behavior of the output
neuron: if the output neuron spikes, then we write 1, otherwise we write 0.

When using an SN P system in the generative mode, we start from the initial configuration and we
define the result of a computation as the number of steps between the first two spikes sent out by the
output neuron. We denote by N(Π) the set of numbers computed by Π in this way. In the accepting
mode, a number n is introduced in the system in the form of a number f (n) of spikes placed in neuron
σin, for a well-specified mapping f , and the number n is accepted if and only if the computation halts.
We denote by Nacc(Π) the set of numbers accepted by Π . It is also possible to introduce the number n

by means of a spike train entering neuron σin, as the distance between the first two spikes coming to σin.
In the generative case, the neuron (with label) in is ignored, in the accepting mode the neuron out is

ignored (sometimes below, we identify the neuron σi with its label i, so we say “neuron i" understanding
that we speak about “neuron σi"). We can also use an SN P system in the computing mode, introducing
a number in neuron in and obtaining a result in (by means of) neuron out, but we do not consider this
case here.

We denote by NαSNP(rulek) the families of all sets Nα(Π), α ∈ {,acc}, computed by SN P systems
with at most k ≥  rules (spiking or forgetting) in each neuron.

Let us now pass to the extension mentioned in the Introduction. A further object, ā, is added to the
alphabet O, and the spiking and forgetting rules are of the forms

E/bc → b ′, bc → λ ,

where E is a regular expression over a or over ā, while b,b ′ ∈ {a, ā}, and c ≥ . As above, if L(E) = bc,
then we write the first rule as bc → b ′ and we say that it is pure.

Note that we have four categories of rules, identified by (b,b ′) ∈ {(a,a),(a, ā),(ā,a),(ā, ā)}.
The rules are used as in a usual SN P system, with the additional fact that a and ā “cannot stay

together", they instantaneously annihilate each other: if in a neuron there are either objects a or objects
ā, and further objects of either type (maybe both) arrive from other neurons, such that we end with ar

and ās inside, then immediately a rule of the form aā → λ is applied in a maximal manner, so that either
ar−s or ās−r remain, provided that r ≥ s or s ≥ r, respectively.

We stress the fact that the mutual annihilation of spikes and anti-spikes takes no time and that an-
nihilation has priority over spiking and forgetting rules, so that the neuron always contains either only
spikes or anti-spikes. That is why, for instance, the regular expressions of the spiking rules are defined
either on a or on ā, but not on both symbols. Of course, we can also imagine that the annihilation takes
one time unit, when the explicit rule aā → λ is used, but we do not consider this case here (if the rule
aā → λ has priority over other rules, then no essential change occurs in the proofs below; the no priority
case also remains to be investigated).

The computations and the result of computations are defined in the same way as for usual SN P
systems – but we consider the restriction that the output neuron produces only spikes, not also anti-
spikes (again, this is a restriction which is only natural/elegant, but not essential). As above, we denote
by NαSaNP(rulek, f org) the families of all sets Nα(Π), α ∈ {,acc}, computed by SN P systems with at
most k ≥  rules (spiking or forgetting) in each neuron, using also anti-spikes. When only pure rules are
used, we write NαSaNP(prulek).

4 Universality Results

We start by considering the generative case, for which we have the next result (universality is known
for usual SN P systems, without anti-spikes, but now both the proof is simpler and the used rules are all
pure):

Theorem 1. NRE = NSaNP(prule).
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Proof. We only have to prove the inclusion NRE ⊆ NSaNP(prule, f org).
Let us consider a register machine M = (m,H, l, lh, I) as introduced in Section 2. We construct an

SN P system Π (with O = {a, ā}) which simulates M in the way already standard in the literature when
proving that a class of SN P systems is universal. Specifically, we construct modules ADD and SUB to
simulate the instructions of M, as well as an output module FIN which provides the result (in the form
of a suitable spike train). Each register r of M will have a neuron σr in Π , and if the register contains
the number n, then the associated neuron will contain n spikes, except for the neuron σ associated
with the first register (the neurons associated with registers will either contain occurrences of a, hence
ā disappears immediately, or only ā is present, and it is consumed in the next step by a rule ā → a).
Two spikes are initially placed in the neuron σ associated with the first register, so if the first register
contains the number n, then neuron σ will contain n+ spikes. These two spikes are used for outputting
the computation result.
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Figure 1: Module ADD, simulating li : (ADD(r), l j, lk)

Note that the number of spikes in the neuron σ will not be smaller than two before the simulation
reaches the instruction lh and the output module FIN is activated, because we assume that the output
register is never decremented during the computation. One neuron σli is associated with each label
li ∈ H, and some auxiliary neurons σ

l
( j)
i

, j = ,,, . . . , will be also considered, thus precisely identified

by label li (remember that each li ∈ H is associated with a unique instruction of M).
The modules will be given in a graphical form, indicating the synapses and, for each neuron, the as-

sociated set of rules. In the initial configuration, all neurons are empty, except for the neurons associated
with label l of M and the first register, which contain one spike and two spikes, respectively. In general,
when a spike a is sent to a neuron σli , with li ∈ H, then that neuron becomes active and the module
associated with the respective instruction of M starts to work, simulating the instruction.

The functioning of the module from Figure 1, simulating an instruction li : (ADD(r), l j, lk), is obvious;
the non-deterministic choice between instructions l j and lk is done by non-deterministically choosing the
rule to apply in neuron σ

l
()
i

.

The simulation of an instruction li : (SUB(r), l j, lk) is also simple – see the module from Figure 2. The
neuron σli sends a spike to neurons σ

l
()
i

and σ
l
()
i

. In the next step, neuron σ
l
()
i

sends an anti-spike to

neuron σr, corresponding to register r; at the same time, σ
l
()
i

sends a spike to each neuron σ
l
()
i

,σ
l
()
i

. If

register r is non-empty, that is, neuron σr contains at least one a, then ā removes one occurrence of a,
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Figure 2: Module SUB, simulating li : (SUB(r), l j, lk)

which corresponds to subtracting one from register r, and no rule is applied in σr. This means σ
l
()
i

and

σ
l
()
i

receive only two spikes, from σ
l
()
i

and σ
l
()
i

, hence σl j
is activated and σlk not. If register r is empty,

then the rule ā → a is used in σr, hence σ
l
()
i

and σ
l
()
i

receive three spikes, and this leads to the activation

of σlk , which is the correct continuation also in this case.
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Figure 3: The FIN module

Note that if there are several sub instructions lt which act on register r, then σr will send one spike
to neurons σ

l
()
t

and σ
l
()
t

while simulating the instruction li : (SUB(r), l j, lk), but this spike is immediately

removed by the rule a → λ present in all neurons σ
l
()
t

,σ
l
()
t

.
The module FIN, which produces a spike train such that the distance between the first two spikes

equals the number stored in register 1 of M, is indicated in Figure 3. At some step t, the neuron σlh is
activated, which means that the register machine M reaches the halt instruction and the system Π starts
to output the result. Suppose the number stored in register 1 of M is n. At step t + , neurons σh , σh
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and σh contain a spike. Neurons σh and σh exchange spikes among them, and thus σh sends a spike
to neuron σh continuously until neuron σ spikes and neurons σh , σh , σh are “flooded". At step t +,
neuron σout receives a spike, and in the next step σout sends a spike to the environment; at the same
time, σ receives an anti-spike that decreases by one the number of spikes from σ. At step t + n + ,
the neuron σ contains one spikes, and in the next step neuron σ sends a spike to neuron σout . At step
t + n + , neuron σout spikes again. The distance between the first two spikes emitted by σout equals n,
which is exactly the number stored in register 1 of M. The spike produced by neuron σ “floods" neurons
σh , σh , and σh , thus blocking the work of these neurons. After the system sends the second spike out,
the whole system halts.

From the previous explanations we get the equality N(M) = N(Π) and this concludes the proof.

Note that in the previous construction there is no rule of the form āc → ā; is it possible to also avoid
other types of rules? For instance, the rule ā → a only appears in the neurons associated with registers in
module SUB. Is it possible to remove the ā → a by replacing it with the rules ac → a and a → ā?

If the SN P systems are used in the accepting mode, then a further simplification is entailed by the fact
that the ADD instructions are deterministic. Such an instruction li : (ADD(r), l j) can be directly simulated
by a simple module as in Figure 4.
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Figure 4: Module ADD, simulating li : (ADD(r), l j)

Together with SUB modules, this suffices in the case when the number to accept is introduced as the
number of spikes initially present in neuron σ. If this number is introduced in the system as the distance
between the first two spikes which enters the input neuron, then a input module is necessary, as used, for
instance, in [3]. Note that the module INPUT from [3] uses only pure rules (involving only spikes, not
also anti-spikes), hence we get a theorem like Theorem 1 also for the accepting case, for both ways of
providing the input number.

It is worth mentioning that in the previous constructions we do not have spiking rules which can be
used at the same time with forgetting rules.

5 Using Inhibitory Synapses

Let us now consider the case when no rule can produce an anti-spike, but there are synapses which
transform spikes into anti-spikes. The previous modules ADD, SUB, FIN can be modified in such a
way to obtain a characterization of NRE also in this case. We directly provide these modules, without
any explanation about their functioning, in Figures 5, 6, and 7; the synapses which change a into ā are
marked with a dot.

Note that this time the non-determinism in the ADD instruction is simulated by allowing the non-
deterministic choice among the spiking rule ā → a and the forgetting rule ā → λ of neuron σ

l
()
i

, which

is not allowed in the classic definition of SN P systems. Removing this feature, without introducing rules
which are not pure or other ingredients, such as the delay, remains as an open problem.

Denoting by NαSaNPs(prulek) the respective families of sets of numbers (the subscript s in Ps indi-
cates the use of inhibitory synapses, in the sense specified above), we conclude having the next result:
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Theorem 2. NRE = NSaNPs(prule).

6 Final Remarks

There are several open problems and research topics suggested by the previous results. Some of
them were already mentioned, but further questions can be formulated. For instance, can the proofs be
improved so that less types of rules are necessary? We have avoided using rules āc → ā, but not the other
three types, corresponding to the pairs (a,a),(a, ā),(ā,a). Then, following the idea from [6], can we
decrease the number of types of neurons, in the sense of having a small number of sets of rules which are
used in each neuron (three such sets are found in [6] to be sufficient for universality in the case of usual
SN P systems; do the anti-spikes helps also in this respect?). What about cases when the annihilation rule
aā → λ takes one time unit or/and it has no priority over other rules? By allowing the output neuron to
also produce anti-spikes we can get a spike train over a three letter alphabet: no output, producing spikes,
and producing anti-spikes, respectively. This can be an interesting way to produce languages (over three
letters or perhaps over two, ignoring the no-output steps).
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