
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. IV (2009), No. 3, pp. 253-262

Mutation Based Testing of P Systems

Florentin Ipate, Marian Gheorghe

Florentin Ipate

The University of Pitesti
Department of Computer Science, Faculty of Mathematics and Computer Science
Str Targu din Vale 1, 110040 Pitesti
E-mail: florentin.ipate@ifsoft.ro

Marian Gheorghe

The University of Sheffield
Department of Computer Science
Regent Court, Portobello Street, Sheffield S1 4DP, UK
E-mail: M.Gheorghe@dcs.shef.ac.uk

Received: April 5, 2009
Accepted: May 30, 2009

Abstract: Although testing is an essential part of software development, until re-
cently, P system testing has been completely neglected. Mutation testing (mutation
analysis) is a structural software testing method which involves modifying the pro-
gram in small ways. In this paper, we provide a formal way of generating mutants
for systems specified by context-free grammars. Furthermore, the paper shows how
the proposed method can be used to construct mutants for a P system specification.
Keywords: mutation testing, P systems, Kripke structures, context-free grammars

1 Introduction

Membrane computing, the research field initiated by Gheorghe Păun in 1998 [12], aims to define
computational models, called P systems, which are inspired by the behaviour and structure of the living
cell. Since its introduction in 1998, the P system model has been intensively studied and developed:
many variants of membrane systems have been proposed, a research monograph [13] has been published
and regular collective volumes are annually edited. Furthermore, a comprehensive bibliography of P
systems can be found at [16]. Of the many variants of P systems that have been defined, in this paper we
consider cell-like P systems without priority and membrane dissolving rules [13].

Testing is an essential part of software development and all software applications, irrespective of
their use and purpose, are tested before being released. Testing is not a replacement for a formal veri-
fication procedure, when the former is also present, but rather a complementary mechanism to increase
the confidence in software correctness [5]. Although formal verification has been applied to different
models based on P systems [1], until recently testing has been completely neglected in this context.

The main testing strategies involve either (1) knowing the specific function or behaviour a product
is meant to deliver (functional or black-box testing) or (2) knowing the internal structure of the product
(structural or white-box testing). In black-box testing, the test generation is based on a formal spec-
ification or model, in which case the process could be automated. A number of recent papers devise
black-box testing strategies for P systems based on rule coverage [4], finite state machine [8] and stream
X-machine [7] conformance techniques. In this paper, we propose an approach to P system testing based
on mutation analysis.

Mutation testing (mutation analysis) is a structural software testing method which involves modi-
fying the program in small ways [14], [9]. The modified versions of the program are called mutants.

Copyright c© 2006-2009 by CCC Publications

254 Florentin Ipate, Marian Gheorghe

Consider, for example, the following fragment of a Java program:

if (x ≥ &&a) y = y+; else y = y+;

Then mutants for this code fragment can be obtained by substituting: (i) && with another logic
operator, e.g., ||; (ii) ≥ with another comparison operator, e.g., >, =; (iii) + with another arithmetic
operators, e.g., −; (iv) substituting one variable (e.g., x) with another one, e.g., y (we assume that the two
variables have the same type).

Some (not all) mutants of the above code fragment are given below.

if (x ≥ ||a) y = y+; else y = y+;

if (x > &&a) y = y+; else y = y+;

if (x ≥ &&a) y = y−; else y = y+;

if (x ≥ &&a) y = y+; else y = y−;

if (x ≥ &&a) x = y+; else y = y+;
if (x ≥ &&a) y = y+; else x = y+;

A variety of mutation operators (ways of introducing errors into the correct code) for imperative
languages are defined in the literature [9], [10] (a few examples are given above). These are called
traditional mutation operators. Beside these, there are mutation operators for specialised programming
environments, such as object-oriented languages [10]. A popular tool for generating mutants for Java
programs is MuJava [15], [10].

The underlying idea behind mutation testing is that, in practice, an erroneous program either differs
only in a small way from the correct program or, alternatively, a bigger fault can be expressed as the
summation of smaller (basic) faults and so, in order to detect the fault, the appropriate mutants need to
be generated. If the test suite is able to detect the fault (i.e., one of the tests fails), then the mutant is said
to be killed. Two kinds of mutation have been defined in the literature: weak mutation requires the test
input to cause different program states for the mutant and the original program; strong mutation requires
the same condition but also the erroneous state to be propagated at the end of the program.

Mutation analysis has been largely used in white-box testing, but only a few tentative attempts to use
this idea in black-box testing have been reported in the literature [11]. Offutt et al. propose a general
strategy for developing mutation operators for a grammar based software artefact, but the ideas that
outline the proposed strategy for mutation operator development are rather vague and general and no
formalisation is provided.

In this paper we provide a formal way of generating mutants for systems specified by context-free
grammars. Given such a specification, a derivation (or parse) tree can be associated with it. Based on the
tree, we formally describe the process of generating the mutants for the given specification. Furthermore,
the paper shows how the proposed method can be used to construct mutants for a P system specification.

2 Preliminaries

For an alphabet V = {a, ...,ap}, V ∗ denotes the set of all strings over V ; λ denotes the empty string.
For a string u ∈V ∗, |u|ai

denotes the number of ai occurrences in u. Each string u has an associated vector
of non-negative integers (|u|a , ..., |u|ap

). This is denoted by ΨV (u).
The concept of context-free grammar is assumed to be known, for details we refer to a classical

textbook [6]. Only proper context-free grammar, i.e., with no useless symbols and no λ or renaming
productions, will be used in this paper. For any derivation from the start symbol to a string of terminal
symbols, w, a derivation (or parse) tree with the yield, the string of terminals obtained by concatening
the leaves from left to right, w, is associated. The set of terminal strings derived from the start symbol

Mutation Based Testing of P Systems 255

is called the language generated by the language. A grammar is said to be ambiguous if there exists a
string and in any leftmost derivation (always the leftmost nonterminal is rewritten) this can be generated
by more than one derivation (parse) tree. In the sequel possibly ambiguous grammars will be considered.

2.1 P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes identifying corre-
sponding regions of the system. With each region there are associated a finite multiset of objects and a
finite set of rules; both may be empty. A multiset is either denoted by a string u ∈ V ∗, where the order
is not considered, or by ΨV (u). The following definition refers to one of the many variants of P systems,
namely cell-like P systems, which uses non-cooperative transformation and communication rules [13].
We will call these processing rules. Since now onwards we will refer to this model as simply P system.

Definition 1. A P system is a tuple Π = (V,µ,w, ...,wn,R, ...,Rn), where V is a finite set, called al-

phabet; µ defines the membrane structure, which is a hierarchical arrangement of n compartments called
regions delimited by membranes - these membranes and regions are identified by integers 1 to n; wi,
 ≤ i ≤ n, represents the initial multiset occurring in region i; Ri,  ≤ i ≤ n, denotes the set of processing
rules applied in region i.

The membrane structure, µ , is denoted by a string of left and right brackets ([, and]), each with the
label of the membrane it points to; µ also describes the position of each membrane in the hierarchy.
The rules in each region have the form u → (a, t)...(am, tm), where u is a multiset of symbols from V ,
ai ∈ V , ti ∈ {in,out,here},  ≤ i ≤ m. When such a rule is applied to a multiset u in the current region,
u is replaced by the symbols ai with ti = here; symbols ai with ti = out are sent to the outer region or
outside the system when the current region is the external compartment and symbols ai with ti = in are
sent into one of the regions contained in the current one, arbitrarily chosen. In the following definitions
and examples all the symbols (ai,here) are used as ai. The rules are applied in maximally parallel mode
which means that they are used in all the regions in the same time and in each region all the symbols that
may be processed, must be.

A configuration of the P system Π , is a tuple c = (u, ...,un), where ui ∈V ∗, is the multiset associated
with region i,  ≤ i ≤ n. A derivation of a configuration c to c using the maximal parallelism mode
is denoted by c =⇒ c. In the set of all configurations we will distinguish terminal configurations;
c = (u, ...,un) is a terminal configuration if there is no region i such that ui can be further derived.

For the type of P systems we investigate in this paper, multi-membranes can be equivalently col-
lapsed into one membrane through properly renaming symbols in a membrane. Thus, for the sake of
convenience, subsequently we will only focus on P systems with only one membrane.

2.2 Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four tuple M = (S,H, I,L),
where S is a finite set of states; I ⊆ S is a set of initial states; H ⊆ S×S is a transition relation that must
be left-total, that is, for every state s ∈ S there is a state s ′ ∈ S such that (s,s ′) ∈ H; L : S −→ AP is an
interpretation function, that labels each state with the set of atomic propositions true in that state.

Usually, the Kripke structure representation of a system results by giving values to every variable
in each configuration of the system. Suppose var, . . . ,varn are the system variables, Vali denotes the
set of values for vari and vali is a value from Vali,  ≤ i ≤ n. Then the states of the system are S =

{(val, . . . ,valn) | val ∈Val, . . . ,valn ∈Valn}, and the set of atomic predicates are AP = {(vari = vali) |

 ≤ i ≤ n,val ∈ Vali}. Naturally, L will map each state (given by the values of variables) onto the
corresponding set of atomic propositions. Additionally, a halt (sink) state is needed when H is not left-
total and an extra atomic proposition, that indicates that the system has reached this state, is added to AP.
For convenience, in the sequel AP and L will be omitted from the definition of a Kripke structure.

256 Florentin Ipate, Marian Gheorghe

3 Mutation testing from a context-free grammar

In this section we provide a way of constructing mutants for systems specified by context-free gram-
mars. Given the system specification, in the form of a parse tree, we formally describe the generation of
mutants for the given specification.

Consider a context-free grammar G = (V,T,P,S) and L(G) the language defined by G. We assume
that, for every production rule p : A −→ X . . .Xk, we have defined a set Mut(p), called the set of mutants

of p. A mutant p ′ of p is a production rule of the form A −→ X ′
 . . .X ′

n such that each symbol X ′
, . . . ,X

′
n

is either a terminal or is found among X, . . . ,Xk. Furthermore, p ′ is either a production rule of G itself
or has the form A −→ A, A ∈V ; this condition ensures that the yield of the mutated tree is syntactically
correct.

Among the mutants of p, the following types of mutants can be distinguished:

• A terminal replacement mutant is a production rule of the form A −→ X ′
 . . .X ′

k if there exists j,
 ≤ j ≤ k, such that X j,X

′
j ∈ T , X j 6= X ′

j and X ′
i = Xi,  ≤ i ≤ n, i 6= j.

• A terminal insertion mutant is a production rule of the form A −→ w where w is obtained by
inserting one terminal into the string X . . .Xk (at any position).

• A string deletion mutant is a production rule of the form A −→ w where w is obtained by removing
one or more symbols from X . . .Xk.

• A string reordering mutant is a production rule of the form A −→ w where w is obtained by
reordering the string X . . .Xk.

Given any parse tree Tr for G, the set of mutants of Tr is defined as follows:

• A one-node tree has no mutants.

• Let Tr be the tree with root A and subtrees Tr, . . . ,Trk having roots, nodes X, . . . ,Xk, respectively
and p ∈ P the corresponding production rule of G, of the form A −→ X . . .Xk. This is denoted by
Tr = MakeTree(A,Tr, . . . ,Trk). Let Tr ′ denote a mutant of Tr. Then either

– (subtree mutation) Tr ′ = MakeTree(A,Tr ′, . . . ,Tr ′k), where there exists j,  ≤ j ≤ k, such
that Tr ′j is mutant of Tr j and Tr ′i = Tri,  ≤ i ≤ k, i 6= j, or

– (rule mutation) Tr ′ = MakeTree(A,Tr ′, . . . ,Tr ′n), where there exists a mutant p ′ of p of the
form A −→ X ′

 . . .X ′
n such that for every i,  ≤ i ≤ n, there exists ji,  ≤ ji ≤ k, such that

Tr ′i = Tr ji .

According to [11] these operations can be made such as to keep the result produced by them in the
same language or in a larger one. In the first case a much simpler approach can be considered whereby
each rule having a certain nonterminal in the left hand side is replaced by another different rule having
the same nonterminal as left hand side. However the above set of operations provide a two stage method
which generates mutants by considering first the rule level and then the derivation (parse) tree. If these
operations are restricted to produce strings in the same language then we have the following result.

Lemma 3. Every mutant of a parse tree from G is also a parse tree from G.

Proof. Follows by induction on the depth of the tree.

Thus, the yield of any mutant constructed as above belongs to the language described by G and so
only syntactically correct mutants will be generated. Syntactically incorrect mutants are useless (they do
not produce test data) and so the complexity of the testing process is reduced by making sure that these
are ruled out from the outset.

Mutation Based Testing of P Systems 257

Let us consider the grammar G = (V,T,P,S) where V = {S}; T = {, . . . ,N}∪ {+,−}, with N a fixed
upper bound; P = {p, p}∪ {pi

 | ≤ i ≤N}, with p : S −→ S+S, p : S −→ S−S, pi
 : S −→ i, ≤ i ≤N.

Suppose we have the following rule mutants:

• for p : S −→ S −S (terminal replacement), S −→ S (string deletion)

• for p : S −→ S +S (terminal replacement), S −→ S (string deletion)

• for pi
 : S −→ i −  and S −→ i +  if  < i < N, S −→  if i =  and S −→ N −  if i = N.

The mutants of pi
 are of terminal replacement type and are based on a technique widely used in

software testing practice, called boundary value analysis. According to practical experience, many
errors tend to lurk close to boundaries; thus, an efficient way to uncover faults is to look at the
neighbouring values

Consider the string + −  and a parse tree for this string as represented in Figure 1 (leaf nodes
are in bold). The construction of mutants for the given parse tree is illustrated in Figures 2, 3 and 4.
Thus, the mutated strings are +−, +−, +−, +−, −, −, +−, +−,
++, −−, +, . Some of these produce the same result as the original string; these are called
equivalent mutants. Since no input value can distinguish these mutants from the correct string, they will
not affect the test suite when strong mutation is considered.

S + S

S

3

1 2

-

S

S

Figure 1: Example parse tree

4 P system mutation testing

Consider a 1-membrane P system Π = (V,µ,w,R), where R = {r, . . . ,rm}; each rule ri,  ≤ i ≤ m,
is of the form ui −→ vi, where ui and vi are multisets over the alphabet V . In the sequel, we treat
the multisets as vectors of non-negative integers, that is each multiset u is replaced by ΨV (u) ∈ NNNk,
where k denotes the number of symbols in V . In order to keep the number of configurations finite
we will assume that each component of a configuration u cannot exceed an established upper bound
denoted Max. We denote u ≤ Max if ui ≤ Max for every  ≤ i ≤ k and Nk

Max = {u ∈ NNNk | u ≤ Max}.
Analogously to [3], the system is assumed to crash whenever u ≤ Max does not hold (this is differ-
ent from the normal termination, which occurs when u ≤ Max and no rule can be applied). Under
these conditions, the 1-membrane P system Π can be described by a Kripke structure. In order to de-
fine the Kripke structure equivalent of Π we use two predicates, MaxParal and Apply, defined by:

258 Florentin Ipate, Marian Gheorghe

S

1

S

2

S

3

Tree 1
st
 Level Mutants

S

0

S

1

S

2

S

2

S

3

S

4

Figure 2: 1st level mutants

MaxParal(u,u,v,n, . . . ,um,vm,nm), u ∈ Nk
Max, n, . . . ,nm ∈ NNN signifies that a derivation of the config-

uration u in maximally parallel mode is obtained by applying rules r : u −→ v, . . . ,rm : um −→ vm,
n, . . . ,nm times, respectively; Apply(u,v,u,v,n, . . . ,um,vm,nm), u ∈ Nk

Max, n, . . . ,nm ∈ NNN, denotes
that v is the result of applying rules r, . . . ,rm, n, . . . ,nm times, respectively.

Then the Kripke structure equivalent M =(S,H, I,L) of Π is defined as follows: S = Nk
Max∪{Halt,Crash}

with Halt,Crash /∈ Nk
Max, Halt 6= Crash; I = w; H is defined by:

• (u,v) ∈ H, u,v ∈ Nk
Max, if ∃n, . . . ,nm ∈ NNN ·MaxParal(u,u,v,n, . . . ,um,vm,nm)∧

Apply(u,v,u,v,n, . . . ,um,cm,nm);

• (u,Halt) ∈ H, u ∈ Nk
Max, if ¬∃v ∈ Nk

Max,n, . . . ,nm ∈ NNN·
Apply(u,v,u,v,n, . . . ,um,vm,nm);

• (u,Crash) ∈ H if ¬∃v ∈ Nk
Max ∪ {Halt} · (u,v) ∈ H;

• (Halt,Halt) ∈ H, (Crash,Crash) ∈ H.

It can be observed that the relation H is left-total.
In order to use mutation analysis in P system testing we first have to describe an appropriate context-

free grammar, such that the P system specification can be written as a string accepted by this grammar.
The parse tree for the string is then generated and the procedure presented in the previous section is used
for mutant construction.

The grammar definition will depend on the level at which testing is intended to be performed. At a
high level (for instance in integration testing) the predicates MaxParal and Apply will normally be as-
sumed to be correctly implemented and so they will be presented as terminals in the grammar; obviously,
they can be themselves described by context-free grammars and appropriate mutants will be generated
in a similar fashion. On the other hand, it is possible to incorporate the definitions of the two predicates

Mutation Based Testing of P Systems 259

S

S + S

1 2

Tree 2nd Level Mutants

S

S + S

0 2

S

S + S

2 2

S

S + S

0 1

S

S + S

2 3

S

S + S

1 2

S

S

1

S

S

2

Figure 3: 2nd level mutants

into the definition of the transition relation H; in this case the corresponding grammar will be much more
complex and system testing will be performed in one single step.

The following (simplified) example illustrates the above strategy for high-level testing of P systems.

Example 4. Consider a 1-membrane P systems with 2 rules r : u −→ v, r : u −→ v. Then the

transition of the Kripke structure representation of Π is given by the formulae:

• (u,v) ∈ H, u,v ∈ N
Max, if ∃n,n ∈ N ·MaxParal(u,u,v,n,u,v,n)∧

Apply(u,v,u,v,n,u,c,n);

• (u,Halt) ∈ H, u ∈ N
Max, if ¬∃v ∈ N

Max,n,n ∈ NNN· Apply(u,v,u,v,n,u,v,n);

• (u,Crash) ∈ H if ¬∃v ∈ N
Max ∪ {Halt} · (u,v) ∈ H;

• (Halt,Halt) ∈ H, (Crash,Crash) ∈ H;

Then such a system can be described by a context-free grammar G = (V,T,P,S) where

V = {S,S,S,U,V,U,V,U,V}; T contains (bounded) vectors from NNN, the additional states Halt and

260 Florentin Ipate, Marian Gheorghe

S

S

3

- Left Tree

Mutant

S + S

1 2

-

S

S Right Tree

Mutant

S + S

S

3

1 2

+

S

S

S

S

3S + S

1 2

S

S

3
rd

 Level Mutants of the original tree

Figure 4: 3rd level mutants

Crash, predicates MaxParal and Apply, the "true" logical value, logical operators, quantifiers and other

symbols, i.e.,

T = N
Max ∪ {Halt,Crash,MaxParal,Apply, true,∧, ,∨,¬,∃,∀,n,n, ·,(,)}.

The set of production rules consists of: p : S −→ ¬S; p : S −→ S∧S; p : S −→ S∨S; p : S −→ true;

p : S −→ ∃n ·S; p : S −→ ∃n ·S; p : S −→ S ∧S; p : S −→ Apply(U,V,U,V,n,U,V,n);

p : S −→ MaxParal(U,U,V,n,U,V,n); rules that transform nonterminals U,U,V,U,V into

vectors from NNN.

The following mutants can be defined for the rules p to p: p ′
 : S−→ S; p ′

 : S−→ S∨S, p ′′
 : S−→ S;

p ′
 : S −→ S∧S, p ′′

 : S −→ S; p ′
 : S −→ ¬true; p ′

 : S −→ ∀n ·S; p ′
 : S −→ ∀n ·S. p ′

 : S −→ S∨S,

p ′′
 : S −→ S. For p mutants can be defined by negating de predicate, changing parameters such that

the obtained formula is syntactically correct, e.g., switch u and u. Similarly, mutants for p are obtained

by negating de predicate, changing parameters such that the obtained formula is syntactically correct.

For the remaining rules mutants are generated by adding  to or subtracting  from each integer value.

Mutation Based Testing of P Systems 261

5 Conclusions

In many applications based on formal specification methods the test sets are generated directly from
the formal models. The same applies to formal models based on grammars. However the approach
presented in [11], although novel and with many practical consequences, lacks a rigorous method of
defining the process of generating the mutants. In this paper a formal method is introduced to rigorously
define operations with rules and subtrees of derivation trees for context-free grammar formalisms. This
is then extended to P systems and some examples are provided to illustrate the approach. In this paper,
the mutation operators are applied to the Kripke structure equivalent of the P system rather than to the P
system itself. The advantage of this approach is that test values can be simply generated using a model
checking tool (these are the counterexamples returned by the tool). Future work may investigate the
application of the mutation operators directly to the P system and the associated test generation process.

Acknowledgment. This work is supported by the CNCSIS grant IDEI 643/2009 (EvoMT). The
authors are grateful to reviewers for their comments.

Bibliography

[1] F. Bernardini, M. Gheorghe, J. J. Romero-Campero, N. Walkinshaw, A Hybrid Approach to Mod-
elling Biological Systems, Workshop on Membrane Computing 2007, Lecture Notes in Computer

Science, Vol. 4860, pp. 138–159, 2007.

[2] G. Ciobanu, Gh. Păun, M. J. Pérez-Jiménez (eds.), Applications od Membrane Computing, Springer,
2006.

[3] Z. Dang, O. H. Ibarra, C. Li, G. Xie, On the Decidability of Model-Checking for P Systems, Journal

of Automata, Languages and Combinatorics, Vol. 11, pp. 279–298, 2006.

[4] M. Gheorghe, F. Ipate, On Testing P Systems, Workshop on Membrane Computing, Lecture Notes

in Computer Science, Vol. 5391, pp. 204–216, 2008.

[5] M. Holcombe, F. Ipate, Correct Systems: Building a Business Process Solution, Springer, 1998.

[6] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages, and Com-

putation (2nd Edition), Addison-Wesley, 2001.

[7] F. Ipate, M. Gheorghe, Testing Non-determinstic Stream X-machine Model and P Systems, Elec-

tronic Notes in Theoretical Computer Science, Vol. 227, pp. 113–126, 2009.

[8] F. Ipate, M. Gheorghe, Finite State based Testing of P Systems, Natural Computing, to appear, 2009.

[9] J. Offutt, A Practical System for Mutation Testing: Help for the Common Programmer, International

Test Conference, pp. 824–830, 1994.

[10] Y.-S. Ma, J. Offutt, Y. R. Kwon, MuJava: An Automated Class Mutation System, Software Testing,

Verification and Reliability, Vol. 15, pp. 97–133, 2005.

[11] J. Offutt, P. Ammann, G. Mason, L. (Ling) Liu, Mutation Testing implements Grammar-Based
Testing, Proceedings of the Second Workshop on Mutation Analysis, 2006.

[12] Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences, Vol. 61, pp.
108–143, 2000.

[13] Gh. Păun, Membrane Computing: An Introduction, Springer-Verlag, Berlin, 2002.

262 Florentin Ipate, Marian Gheorghe

[14] http://en.wikipedia.org/wiki/Mutation_testing

[15] http://cs.gmu.edu/ offutt/mujava/

[16] http://ppage.psystems.eu

Florentin Ipate was born on 4th December 1967 in Constanta. FI holds a PhD and MSc degrees with
the University of Sheffield and a BSc with Politehnica University of Bucharest, all in Computer Science.
He is now a professor of Computer Science and PhD supervisor with the University of Pitesti. He has
been awarded In Hoc Signo Vinces Prize for research and publications, by the National Research Council
for Higher Education, Romania, 2002 and COPYRO Publishing Prize for Computer Science, Romania,
2000. FI’s research interests are in specification and model based testing, formal specification languages
for software systems, agile modelling and testing, modelling and testing biology-inspired computing
systems. His main research results have been published in a research monograph with Springer and in
high profile journals.

Marian Gheorghe was born on 2nd February 1953 in Bucharest. MG holds a PhD and a BSc with
the University of Bucharest. He is now Senior Lecturer with the University of Sheffield and head of the
Verification and Testing Group. MG’s research interests are in formal computational models, verification
and testing, modelling biological systems, agent technologies, artificial life, empirical software engineer-
ing. He has published in important international journals and is featured in the main computer science
publications database, DBLP, with around 60 items.

