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Abstract: P Systems are computing devices inspired by the structure and the func-
tioning of a living cell. A P System consists of a hierarchy of membranes, each of
them containing a multiset of objects, a set of evolution rules, and possibly other
membranes. Evolution rules are applied to the objects of the same membrane with
maximal parallelism. In this paper we present an extension of P Systems, called
P Systems with Endosomes (PE Systems), in which endosomes can be explicitly
modeled. We show that PE Systems are universal even if only the simplest form of
evolution rules is considered, and we give one application example.
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1 Introduction

P Systems were introduced by Paun in [10] as distributed parallel computing devices inspired by the
structure and the functioning of a living cell. A P System consists of a hierarchy of membranes, each
of them containing a multiset of objects, representing molecules, a set of evolution rules, representing
chemical reactions, and possibly other membranes. For each evolution rule there are two multisets of
objects, describing the reactants and the products of the chemical reaction. A rule in a membrane can be
applied only to objects in the same membrane. Some objects produced by the rule remain in the same
membrane, where each membrane is identified by its labels, others are sent out of the membrane, others
are sent into the inner membranes. Evolution rules are applied with maximal parallelism, meaning that
it cannot happen that some evolution rule is not applied when the objects needed for its triggering are
available.

Many variants and extensions of P Systems exist that include features to increase their expressiveness
and that are based on different evolution strategies. Among the most common extensions we mention
P Systems with dissolution rules that allow a membrane to disappear and release in the surrounding
membrane all the objects it contains. We mention also P Systems with priorities, in which a priority
relationship exists among the evolution rules of each membrane and can influence the applicability of
such rules, and P Systems with promoters and inhibitors, in which the applicability of evolution rules
depends on the presence of at least one occurrence and on the absence, respectively, of a specific object.
See [11] for the definition of these (and other) variants of P Systems and [14] for a complete list of
references to the bibliography of P Systems.

In this paper we present another extension of P Systems, called P Systems with Endosomes (PE
Systems), with the following features:

e objects can be contained inside the regions delimited by the membranes and on the surfaces of the
membranes (as in P Systems with peripheral proteins [6, 13] and as in membrane systems with
surface objects [1, 2]);
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e rules are contained on the surfaces of the membranes (they can rewrite objects outside/on/into the
membranes);

e endosomes can be explicitly created in order to model a biologically inspired transportation mech-
anism.

The definition of this extension of P Systems has a biological inspiration. In fact, the endocytosis of
macromolecules is the process by which cells absorb material (molecules such as proteins) from outside
the cell by engulfing it with their cell membrane. It is used by all cells because most substances important
to them are large polar molecules that cannot pass through the hydrophobic plasma membrane or cell
membrane. There exist three kinds of endocytosis: phagocytosis, pinocytosis, and receptor-mediated
endocytosis. In particular, phagocytosis (literally, cell-eating) is the process by which cells ingest large
objects, such as cells which have undergone apoptosis, bacteria, or viruses. The membrane folds around
the object, and the object is sealed off into a large vacuole known as a phagosome. Pinocytosis (literally,
cell-drinking) is concerned with the uptake of solutes and single molecules such as proteins, and, finally,
receptor—mediated endocytosis is a more specific active event where the cytoplasm membrane folds in-
ward to form coated pits. These inward budding vesicles bud to form cytoplasmic vesicles [11]. Figure 1
summarizes the kinds of endocytosis. From the point of view of the modeler, these three processes are
made possible by vesicles (in fact, this transportation mechanism is known as vesicle-mediated trans-
portation) which, in the most general case, engulf the macromolecules together with molecules from the
surface of the membranes (i.e., receptors). This leads to the creation of endosomes containing the en-
gulfed molecules. The endosomes transfer their content inside the cell by possibly interacting with other
components. The endosomes could also be degraded by the interaction with the lysosomes. We define
an extension of P Systems (PE Systems) which can explicitly model the creation of endosomes and their
interaction inside the cells and, consequently, can easily model these three kinds of endocytosis.

This variant of P Systems, together with other modeling features such as the modeling of exocytosis
(the biologically counterpart of endocytosis), and enriched with channel-mediated communication [3],
would provide a powerful and complete modeling language for naturally describing transportation mech-
anism of molecules inside cells.
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Figure 1: Three kind of endocytosis: phagocytosis, pinocytosis and receptor-mediated endocytosis.
Picture taken from http://cellbiology.med.unsw.edu.au/units/science/lecture0806.htm

We show that PE Systems are universal even if only the simplest form of evolution rules is considered,
namely non—cooperative rules. Finally, we give one application example to show that endosomes can
ease the description of biological systems when PE Systems are used as a modeling formalism.
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2 P Systems with Endosomes

In this section we formally define P Systems with endosomes (PE Systems). We assume the reader
to be familiar with the standard definition of P Systems [11]. We start by assuming the same membrane
structure i of a P System. As regards objects, similarly to P Systems with peripheral proteins [6, 13], we
assume that objects can be contained inside a membrane (as in classical P Systems) and on the surface of
a membrane. In order to qualify in an evolution rule the position of an object with respect to a membrane,
we use in to identify the object inside the membrane, out to identify the object outside the membrane
and here to identify the object on the surface of the membrane. Let TAR be the set of message targets
{in,out, here}; given a set of objects V we denote with V,,, the corresponding set of messages O x TAR.

We can now introduce the evolution rules of PE Systems; rules are conceptually divided in evolution
rules (in the same sense of P Systems) and rules for the creation of endosomes. We recall that, differently
from P Systems, the rules of PE Systems are conceptually associated with the surfaces of the membranes
of the system. Evolution rules are of the form u — v where u € V., v € V%, V.l = V% \{€} and € is the
empty string. The definition of cooperative and non—cooperative rules are the same as for P Systems.

Notice that this format for evolution rules, which are syntactically different from those of P System:s,
may seem to be less expressive than the one of P Systems, in particular for rule moving objects into
specific regions enclosed by membranes (communication rules). In order to show that this is not the
case, let us assume an hypothetical membrane structure p such that (/,I’) € g, namely a membrane
structure in which [’ is nested into /. In order to give a rule which moves an object inside membrane [’
we cannot use the identifier iny/ in a rule of the surface of the membrane / (as in P Systems) because we
cannot use the identifier [’ as subscript to in. However, the same behaviour can be obtained by replacing
the rule u — (v,in;/) in the membrane /, as in usual P Systems, with the PE System rule (u,out) — (v, in)
on the surface of the membrane I’. The behaviour modeled by this rule, which is in some sense an
“attraction” by the nested membrane rather than the “sending” from the top membrane, leads to results
analogous to those obtained by P Systems, namely to the transportation of the object inside the nested
membranes.

The rules for creating endosomes are of the form endog (u,v), where u,v € V* and:

e FE is a set of evolution rules for the endosome;
e 14 is the multiset of objects that must appear on the surface of the membrane containing the rule;

e v is the multiset of objects that must appear outside the membrane containing the rule.

Note that each endosome has got its own evolution rules in set £E. These rules model the behaviour of
the endosome. As regards the creation of an endosome, it is necessary that objects in u are present on
the surface of the membranes (they can be seen as the receptors) and that objects in v are present outside
of the membrane creating the endosome (they can be seen as the molecules to be engulfed). We remark
that in our endosome rules, the objects inside and on the surface of the created endosome are explicitely
defined. This is different from the approach of [5] in which in the case of pino rules the surface objects are
randomly distributed to the two resulting membranes. More formally, the applicability of an endosome
rule is possible in the following general case: let (j,i) € u and let endog (u,v) be a rule belonging to the
surface of the membrane i, then it can be applied only if u is a submultiset of the objects contained on the
surface of the membrane i, and only if v is a submultiset of the objects contained inside the membrane j.
The result of the application of such a rule is the creation of an endosome inside membrane i containing
u on its surface and containing v inside. The endosome itself behaves like a membrane having on its
surface rules E.
We can now formally define a PE System as follows.

Definition 1. A PE System IT is a tuple (V, U, wy,...,Wy,Z1,...,Zn, R, .., R,) Where:

e V is an alphabet whose elements are called objects;
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U C N x N is a membrane structure;

w; with 1 < i < n are strings from V* representing multisets over V associated with the content of
membranes 1,2,...,n of u;

e z; with 1 <i < n are strings from V* representing multisets over V associated with the surfaces of
membranes 1,2,...,n of u;

R; with 1 < < n are finite sets of evolution and endosome rules associated with the surfaces of the
membranes 1,2,...,n of W.

The notions of (successful) computation and of result of computations of PE Systems are the same
as for standard P Systems.

3 Universality of PE Systems

In this section we prove a universality result for PE Systems by showing that any matrix grammar
with appearance checking can be simulated by a PE System. Before giving the result and its proof, we
recall from [11] the definition of this variant of matrix grammars and some related notions.

3.1 Matrix grammars with appearance checking

A (context-free) matrix grammar with appearance checking is a tuple G = (N, T,S,M,F), where N
and T are disjoint alphabets of non—terminals and terminals, respectively, S € N is the axiom, M is a
finite set of matrices, namely sequences of the form (A, — x,,...,A, — x,) of context—free rules over
NUT with n > 1, and F is a set of occurrences of rules in the matrices of M. For a string w, a matrix
m: (ry,...,r,) can be executed by applying its rules to w sequentially in the order in which they appear
in m. Rules of a matrix occurring in F can be skipped during the execution of the matrix if they cannot
be applied, namely if the symbol in their left—hand side is not present in the string.

Formally, given w,z € (NUT)*, we write w = z if there is a matrix (A, — x,,...,A, = x,) in M
and the strings w; € (NUT)* with 1 <i <n+ 1 such that w =w,, z=w,, and, for all 1 <i < n, either
(1) wi =w!/Aw!" and wiy, = wix;w/’, for some w/,w!" € (NUT)*, or (2) w; = wi,, A; does not appear in
w; and the rule A; — x; appears in F'. We remark that F' consists of occurrences of rules in M, that is, if
the same rule appears several times in the matrices, it is possible that only some of these occurrences are
contained in F.

The language generated by a matrix grammar with appearance checking G is defined as L(G) ={w €
T* | S =" w}, where =" w is the reflexive and transitive closure of =—>. The family of languages of
this form is denoted by MAT;;, when rules having the empty string A as right hand side (A-rules) are
allowed, and by MAT,. when such rules are not allowed. Moreover, the family of languages generated
by matrix grammars without appearance checking (i.e., with F = ) is denoted by MAT*, when A-rules
are allowed, and by MAT, when such rules are not allowed. It is known that (1) MAT C MAT,. C CS; (2)
MAT* MATa{. = RE, where CS and RE are the families of languages generated by context—sensitive
and arbitrary grammars, respectively.

Let ac(G) be the cardinality of F in G and let |x| denote the length of the string x. A matrix grammar
with appearance checking G = (N, T,S,M,F) is said to be in the strong binary normal form if N =
N, UN, U{S, #}, with these sets mutually disjoint, ac(G) < 2 and the matrices in M are in one of the
following forms:

(S — XA), withX € N,,A € N,;

1.
2. (X >Y,A—x),withX,Y eN,,A€N,,xe€ (N,UT)*, x| < 2;
3. X >Y,A—#),withX,Y eN,,AEN,;
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4. (X 5 A,A—x),withX e N,,A € N,,x € T* |x| < 2.

Moreover, there is only one matrix of type 1, and F consists exactly of all rules A — # appearing in
matrices of type 3. We remark that # is a trap symbol, namely once introduced it cannot be removed, and
a matrix of type 4 is used only once, in the last step of a derivation.

For each matrix grammar (with or without appearance checking) there exists an equivalent matrix
grammar in the strong binary normal form. Consequently, for each language L € RE there exists a matrix
grammar with appearance checking G satisfying the strong binary normal form and such that L(G) = L.

Conventions A matrix grammar with appearance checking in (strong) binary normal form is always
given as G = (N,T,S,M,F), with N = N, UN, U{S,#} and with n+ 1 matrices in M, injectively labeled
with my,my, ... ,m,. The matrix my : (S — XiuiAinir) is the initial one, with X;,;; a given symbol from N,
and A;,;; a given symbol from N,; the next k matrices are without appearance checking rules, m; : (X —
o, A — x), with 1 < i<k, where X € N,,a € N,U{A},A € N,,x € (N,UT)*,|x] < 2 (if & = A, then
x € T*); the last n — k matrices have rules to be applied in the appearance checking mode, m; : (X —
Y, A—#), withk+1<i<nX,Y €N,and A € N,.

Since the grammar is in strong binary normal form, we have (at most) two symbols B™") and B?) in
N, such that the rules B'/) — # appear in matrices m; with k+1 < i < n.

We remark that in matrix grammars in strong binary normal forms we can assume that all symbols
X € N, appear as the left-hand side of a rule from a matrix: otherwise, the derivation is blocked after
introducing such a symbol, hence we can remove these symbols and the matrices involving them.

3.2 Universality

We prove that PE Systems are universal by showing that the family, denoted PsE,(ncoo), of sets
Ps(I1,) of results computed by PE Systems with at least two membranes and with non—cooperative rules
is equivalent to the family, denoted PsRE, of the images of all the languages in RE obtained through the
Parikh mapping (this is the family of recursively enumerable sets of vectors of natural numbers). As P
Systems with non-cooperative rules are not universal, our result implies that universality is due to the
presence of endosomes.

Theorem 2. PsE,(ncoo) = PsRE.

Proof. 1t is enough to show that for a matrix grammar G in strong binary normal form there is a PE
System I such that Ps(Il;) = ¥ (L(G)). We assume that the output of this PE System is given by the
objects sent out from the skin membrane. The alphabet of objects V we take into consideration is given
by TUN, UN, U{c}U{c;,d;,d] | i = 1,2}. We build Il as a system with a root membrane, labeled 1, and
one child membrane labeled 2, namely 1 ={(1,2)}. All the objects encoding the grammar will be stored
inside membrane 1 and the matrices will be simulated by membrane 2. The initial configuration is given
by the objects corresponding to Xj,; and A;,; contained in membrane 1, namely objects of w,, and by
the token ¢ contained on the surface of membrane 2, namely z, = {c}. Differently, w, and z, are initially
empty multisets.

This PE System works as follows: it has a cyclic behaviour such that, at the beginning of the cycle,
at most one endosome in membrane 2 can be created and, if possible, all terminal symbols inside mem-
brane 1 are sent out as output symbols. The created endosome can start a series of steps resulting in the
interpretation of the application of a matrix or, differently, it can start a checking phase to model the fact
that, if there exist non—terminal symbols which cannot be rewritten by any grammar, then the computa-
tion will not halt. In the case in which Il; starts the simulation of a matrix of type 2 or 4 (a matrix m;
with 1 <17 < k), the involved non—terminals are taken by the endosome which contains as rules the ones
interpreting the matrix. Objects will be sent into membrane 2 by these rules creating the result of the
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application of the the corresponding matrix to the non—terminals. Subsequently, these objects are sent
out to membrane 1 to restart the cyclic behaviour. We recall that during this process no other endosomes
can be created, hence no other matrices can be simulated. Differently, in the case in which a matrix of
type 3 (a matrix m; with k41 <i < n) is applied, the single non—terminal of &, is taken into the endo-
some. The endosome will work in the same sense of the endosomes interpreting matrices of type 2 and 4
even though, at the end of the application of this matrix, instead of restarting with the cyclic behaviour,
a checking process is started. This process checks, by creating endosomes, the presence of the proper
non—terminal symbol B'/). If this symbol is found, a special endosome is created which will introduce a
trap symbol in this PE System so that the computation will not halt. Analogously, if the symbol is not
found, an endosome will restore the configuration of this PE System so that the cyclic behaviour can start
again.

We list now the rules of Il;. Membrane 1 contains just one single set of rules to create the output of
the PE System:

1. {(a,in) — (a,out) | Ya € T} . All terminal objects in membrane 1 are sent out as output.
The simulation of any matrix is done by the rules of membrane 2 which are the following:

1. VX € Ny UN,. endox jn)— #0u)(c,X). If any non—terminal is present in membrane 1, Il will
always be able to create, by using an endosome, a trap symbol inside membrane 2. This will
ensure that, if a derivation of G reaches a deadlock configuration, then Il can always enter an
endless configuration.

2. Ya € NyUN,UT. (a,in) — (a,out). Every terminal and non—terminal present inside membrane 2
is sent out to membrane 1.

3. (c¢,in) — (c,here). Object ¢ inside membrane 2 is restored on the surface of membrane 2 so that
other endosomes can be created.

4. (#,in) — (#,in). The trap symbol lets this computation not to be recognized such.

5. m;: (X —o,A—x),1<i<k endO(X,in)H(a,out),[A,in)ﬁ(x,out),(c,here)ﬁ(c,out) (C’XA)- For any rule of
type 2 and 4, we create an endosome by taking XA from membrane 1 and ¢ from the surface of
membrane 2 (this locks the creation of other endosomes). The endosome contains rules to rewrite
X and A with the result of applying the matrix. Object c is not consumed and sent out to membrane
2 together with o and x.

6. mi: (X = Y,A—=#),k+1 <i<n endox in—(v.ou),chere)—(c.ou) (¢, X). For any rule with ap-
pearance checking, we create an endosome by taking only X from membrane 1 and ¢ from the
surface of membrane 2 (this locks the creation of other endosomes). The endosome contains rules
to rewrite X with ¥ and ¢ with ¢;. Both objects are sent out to membrane 2.

7. (ci,in) — (c;, here)(d;, here). Object ¢;, together with a new object d;, is moved on the surface of
membrane 2.

8. endo g in)— (#.0ur) (c;,B"). This implements the appearance checking feature of grammar G. We

create, if possible, an endosome by taking only B! from membrane 1 and ¢; from the surface of
membrane 2. The endosome creates a trap symbol in membrane 2; this will make Il start an
endless computation.

9. (d;,here) — (d],here). The symbol d; is rewritten in the same place as d/. This is done even if
also rule 8 can be applied. However, in the case that rule 8 cannot be applied (namely B! was not
present), this completes the appearance checking operation and lets Il; start an operation which
will restart its cyclic behaviour.

10. endo(c; pere)— (c,our).(d! here)— a(cid!,0). This endosome lets IT; restart its cyclic behaviour. We
create an endosome by simply taking both the control symbols only ¢, and d/ from the surface of
membrane 2. The endosome destroys d/ and rewrites ¢; with ¢ in membrane 2 (restarting IT; will
be obtained by applying rule 3).
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It is clear that these rules, applied in a proper order, provide the correct interpretation of the applica-
tion of any matrix to the starting symbols of the grammar and, consequently, we get Ps(I1;) = ¥ (L(G))
which concludes the proof. d

4 An Application: the EGF Signaling Pathway

In this section we give an application of PE systems to the description of the initial phases of the
EGFR signalling cascade.

phosphorylations

""" Endosome

Lysosome

CELL MEMBRANE

Figure 2: The EGF signaling pathway (picture taken from [3]).

In Biology, signal transduction refers to any process by which a cell converts one kind of signal or
stimulus into another. Signals are typically proteins that may be present in the environment of the cell.
In order to be able to receive the signal, namely to recognize that the corresponding ligand is available in
the environment, a cell exposes some receptors on its external membrane. A receptor is a transmembrane
protein that can bind to a signal protein on its extracellular end. When such a binding is established, the
intracellular end of the receptor undergoes a conformational change that enables interaction with other
proteins inside the cell. This typically causes an ordered sequence of biochemical reactions inside the
cell, usually called signalling pathway, that are carried out by enzymes and may produce different effects
on the cell behaviour.

A complex signal transduction cascade, that modulates cell proliferation, survival, adhesion, mi-
gration and differentiation, is based on a family of receptors called epidermal growth factor receptors
(EGFRs). While EGFR signalling is essential for many normal morphogenic processes, the aberrant
activity of these receptors has been shown to play a fundamental role in proliferation of tumor cells. Epi-
dermal growth factor receptors (EGFR) are produced by specific genes in the DNA (through the RNA)
and they are located on the cell surface. Receptors are activated by the binding with a specific ligand
(epidermal growth factor, EGF) to form a EGFR (ligand-receptor) complex (COM). Upon activation,
EGFR undergoes a transition from a monomeric form to an active dimeric one (DIM). EGFR dimer-
ization stimulates its intracellular phosphorylation (DIM p) which activates signalling proteins. These
activated signalling proteins (effector proteins) initiate several signal transduction cascades, leading to
DNA synthesis and cell proliferation. After the activation of effector proteins, ligand-receptor dimers
are internalized in endosomes. An ubiquitin ligase, known as Cbl, binds an ubiquitin protein (U B) to the
dimer (ubiquitination). The ubiquitin protein targets the dimers for lysosomal degradation (see Figure 2).

The PE system modeling the EGF is given in Figure 3. Membrane 1 models the environment external
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EGF" ﬁ

(EGFR.in ) — (EGFR. here )
(EGF. out Y EGF R.here ) — (COM. here )
CC(")_‘LI. here ) (COM. here ) — (DIM, here )

DIM. here )(FP.in) — (DIMp. here )
DIMp. here )(SHC.in ) — ...
(rma.in)— (EGFR.in )

endo (D IMp, )

PIH

(dna.in ) — (dna.in )(rna. out )

dna

where L is the set of rules (DIMp. here ) — (EGFR® out)
and (DI Mp. here )J(UB.out )| — (F.out)

Figure 3: A PE systems model of the EGF signaling pathway. The rules are represented inside the
membranes.

to the cell, membrane 2 represents the cell surface and membrane 3 is the nucleus. In the external
environment EGF corresponds to the epidermal growth factor EGF which can bind the receptor on the
surface of the cell. The receptor is modeled by EGFR in membrane 2, which can move on the surface
of the membrane. The complex of EGF with the receptor is obtained by rewriting EGF and EGF R with
the complex COM on the surface of membrane 2. After the binding of two complexes we can bind them
leading to a dimer DIM. Such a dimer, present on the surface of the membrane, can be phosphorylated
by a phosphorus P inside the cell. Such phosphorilated dimer DIM p could interact with protein SHC
and start a chain of interactions we do not model here aimed at activating cell proliferation. Furthermore,
it can be enclosed in an endosome which could either decompose the DIMp dimer into its original
components (in order to recycle the two EGFR proteins) or, if ubiquitine UB is present, degradate the
DIM p dimer and release the phosporus. The nucleus of the cell (membrane 3) is responsible for the
production of EGF'R through the DNA and RNA (dna and rna). The rna reaches the cell cytoplasm and
there it produces EGF R which is sent, again, to the cell surface.

5 Future Work and Conclusions

In this paper we have presented an extension of P Systems, called P Systems with Endosomes (PE
Systems), in which endosomes can be explicitly modeled. PE Systems uses some ideas taken from
other variants of P Systems, in particular as regards objects which can be stored on the surface of the
membranes we got inspiration by P Systems with peripheral proteins [6, 13] and by membrane systems
with surface objects [1, 2]. Furthermore, as regards other calculi, operations for modeling transportation
mechanisms have already been introduced in Brane Calculi [4] and in P Systems with transport and em-
bedded proteins [9]. Although similar, PE Systems permit to model in a clearer way these mechanisms.
An analysis of PE Systems and Brane Calculi [4] (and also some of their variants like projective Brane
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Calculi [7]) could be done along the line of the one done in [5, 12] for P Systems and Brane Calculi.
As regards expressiveness of this formalism, we have shown that PE Systems are universal even if
only the simplest form of evolution rules is considered, namely non—cooperative rules. This expressive-
ness is achieved by the use of endosomes as classical P Systems with this kind of rules are shown not to
be universal [10].
At the end of the paper we have given an application example describing the modeling of the initial
phases of the EGFR signalling cascade.
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