
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. IV (2009), No. 3, pp. 206-213

Dictionary Search and Update by P Systems
with String-Objects and Active Membranes

Artiom Alhazov, Svetlana Cojocaru, Ludmila Malahova, Yurii Rogozhin

Artiom Alhazov, Svetlana Cojocaru, Ludmila Malahova, Yurii Rogozhin

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: {artiom,sveta, mal, rogozhin}@math.md

Artiom Alhazov

IEC, Department of Information Engineering, Graduate School of Engineering
Hiroshima University, Higashi-Hiroshima 739-8527 Japan

Yurii Rogozhin

Rovira i Virgili University, Research Group on Mathematical Linguistics
Av. Catalunya, 35, Tarragona 43002 Spain
E-mail: yrogozhin@yahoo.com

Received: April 5, 2009
Accepted: May 30, 2009

Abstract: Membrane computing is a formal framework of distributed parallel com-
puting. In this paper we implement the work with the prefix tree by P systems with
strings and active membranes. We present the algorithms of searching in a dictionary
and updating it implemented as membrane systems. The systems are constructed as
reusable modules, so they are suitable for using as sub-algorithms for solving more
complicated problems.
Keywords: Membrane computing, P systems, active membranes, dictionary, prefix
tree

1 Introduction

Solving most problems of natural language processing is based on using certain linguistic resources,
represented by corpora, lexicons, etc. Usually, these collections of data constitute an enormous volume
of information, so processing them requires much computational resources. A reasonable approach for
obtaining efficient solutions is that based on applying parallelism; this idea has been promoted already
in 1970s. For instance, the possibilities of applying massive parallelism in Machine Translation are con-
sidered in [5, 2]. Many of the stages of text processing (from tokenization, segmentation, lematizing to
those dealing with natural language understanding) can be carried out by parallel methods. This justifies
the interest to the methods offered by the biologically inspired models, and by membrane computing in
particular.

However, there are some issues that by their nature do not allow complete parallelization, yet exactly
they are often those “computational primitives" that are inevitably used during solving major problems,
like the elementary arithmetic operations are always present in solving difficult computational problems.
Among such “primitives" in the computational linguistics we mention handling of the dictionaries, e.g.,
dictionary lookup and dictionary update. Exactly these problems constitute the subject of the present
paper. In our approach we speak about dictionary represented by a prefix tree.

P (membrane) systems are a convenient framework of describing computations on trees. Since mem-
brane systems are an abstraction of living cells, the membranes are arranged hierarchically, yielding a
tree structure.

Copyright c© 2006-2009 by CCC Publications

Dictionary Search and Update by P Systems
with String-Objects and Active Membranes 207

2 Definitions

Membrane computing is a recent domain of natural computing initiated by Gh. Păun in [12]. The
components of a membrane system are a cell-like membrane structure, in the regions of which one
places multisets of objects which evolve in a synchronous maximally parallel manner according to given
evolution rules associated with the membranes. The necessary definitions are given in the following
subsection; see also [4] for an overview of the domain and [6] for a comprehensive bibliography.

2.1 Computing by P systems

Let O be a finite set of elements called symbols; then set of words over O is denoted by O∗, and the
empty word is denoted by λ .

Definition 1. A P system with string-objects and input is a tuple

Π =
(

O,Σ ,H,E,µ,M, · · · ,Mp,R, i
)

, where:

• O is the working alphabet of the system (the objects are strings over O),

• Σ is an input alphabet,

• H is an alphabet whose elements are called labels, i identifies the input region,

• E is the set of polarizations,

• µ is a membrane structure (a rooted tree) consisting of p membranes injectively labeled by ele-
ments of H,

• Mi is an initial multiset of strings over O associated with membrane i,  ≤ i ≤ p,

• R is a finite set of rules defining the behavior of objects from O∗ and of membranes labeled by
elements of H.

A configuration of a P system is its “snapshot", i.e., the current membrane structure and the multisets
of string-objects present in regions of the system. The initial configuration is C = (µ,M, · · · ,Mp).
Each subsequent configuration C ′ is obtained from the previous configuration C by maximally par-
allel application of rules to objects and membranes. This is denoted by C ⇒ C ′ (no further rules
are applicable together with the rules that transform C into C ′). A computation is thus a sequence
of configurations starting from C, respecting relation ⇒ and ending in a halting configuration (i.e.,
such one that no rules are applicable). If M is a multiset of strings over the input alphabet Σ ⊆ O,
then the initial configuration of a P system Π with an input M over alphabet Σ and input region i is
(µ,M, . . . ,Mi−,Mi ∪M,Mi+, . . . ,Mp).

2.2 P systems with active membranes

To speak about P systems with active membranes, we need to specify the rules, i.e., the elements of
the set R in the description of a P system. Due to the nature of the problem of this paper, the standard
model was generalized in the following:

• Cooperative rules: a rule operates on a substring of an object (otherwise, the system cannot even
distinguish different permutations of a string); this feature is represented by a superscript * in the
rule types;

• String replication (to return the result without removing it from the dictionary);

208 Artiom Alhazov, Svetlana Cojocaru, Ludmila Malahova, Yurii Rogozhin

• Membrane creation (to add words to the dictionary).

Hence, the rules can be of the following forms:

(a∗) [a → b]
e
h for h ∈ H,e ∈ E,a,b ∈ O∗- evolution rules

(associated with membranes and depending on the label and the polarization of the membranes,
but not directly involving the membranes: the membranes are neither taking part in the application
of these rules nor are they modified by them);

(a∗r) [a → b||c]
e
h for h ∈ H,e ∈ E,a,b,c ∈ O∗ (as above, but with string replication);

(b∗) a[]
e
h → [b]

e
h for h ∈ H,e,e ∈ E,a,b ∈ O∗ - communication rules

(an object is introduced into the membrane, possibly modified; the polarization of the membrane
can be modified, but not its label);

(c∗) [a]
e
h → []

e
h b for h ∈ H,e,e ∈ E,a,b ∈ O∗ - communication rules

(an object is sent out of the membrane, possibly modified; also the polarization of the membrane
can be modified, but not its label);

(d∗) [a]
e
h → b for h ∈ H,e ∈ E,a,b ∈ O∗ - dissolving rules

(in reaction with an object, a membrane can be dissolved, while the object specified in the rule can
be modified);

(g∗) [a → [b]
e
g]

e
h for g,h ∈ H, e,e ∈ E, a,b ∈ O∗ - membrane creation rules

(an object is moved into a newly created membrane, possibly modified).

Additionally, we will write /0 in place of some strings on the right-hand side of the rules, meaning
that the entire string is deleted.

The rules of types (a∗),(a∗r) and (g∗) are considered to only involve objects, while all other rules are
assumed to involve objects and membranes mentioned in their left-hand side. An application of a rule
consists in replacing a substring described in the left-hand side of a string in the corresponding region
(i.e., associated to a membrane with label h and polarization e for rules of types (a∗),(a∗r) and (d∗), or
associated to a membrane with label h and polarization e for rules of type (c∗), or immediately outer of
such a membrane for rules of type (b∗)), by a string described in the right-hand side of the rule, moving
the string to the corresponding region (that can be the same as the source region immediately inner or
immediately outer, depending on the rule type), and updating the membrane structure accordingly if
needed (changing membrane polarization, creating or dissolving a membrane). Only the rules involving
different objects and membranes can only be applied in parallel; such parallelism is maximal if no further
rules are applicable in parallel.

3 Dictionary

Dictionary search represents computing a string-valued function {ui −→ vi |  ≤ i ≤ d} defined on a
finite set of strings.

We represent such a dictionary by the skin membrane containing the membrane structure correspond-
ing to the prefix tree of {ui | ≤ i ≤ d}, with strings vi ′ in regions corresponding to the nodes associated
to ui. Let A, A be the source and target alphabets: ui ∈ A∗

, vi ∈ A∗
,  ≤ i ≤ d. Due to technical reasons,

we assume that for every l ∈ A, the skin contains a membrane with label l. We also suppose that the
source words are non-empty.

For instance, the dictionary {bat −→ flying,bit −→ stored} is represented by

[[]

a[[[$ f lying$ ′]


t]


a[[$stored$ ′]


t]


i]b[]


c · · · []


z]




Dictionary Search and Update by P Systems
with String-Objects and Active Membranes 209

Consider a P system corresponding to the given dictionary:

Π =
(

O,Σ ,H,E,µ,M, · · · ,Mp,R, i
)

,

O = A∪A∪ {?, ? ′,$,$ ′,$,$,fail}∪ {?i |  ≤ i ≤ }∪ {!i |  ≤ i ≤ },

Σ = A∪A∪ {?, ? ′, !,$,$ ′},

H = A∪ {}, E = {,+,−}, i = ,

µ and sets Mi,  ≤ i ≤ p, are defined as described above.

So only the rules and input semantics still have to be defined.

3.1 Dictionary search

To translate a word u, input the string ?u? ′ in region 1. Consider the following rules.

S1 ?l[]

l → [?]


l , l ∈ A

Propagation of the input into the membrane structure, reaching the location corresponding to the input
word.

S2 [?? ′]

l → []

−
l /0, l ∈ A

Marking the region corresponding to the source word.

S3 [$ → $||$]
−
l , l ∈ A

Replicating the translation.

S4 [$]
e
l → []


l $, l ∈ H, e ∈ {−,}

Sending one copy of the translation to the environment.

S5 [$ → $]

l , l ∈ A

Keeping the other copy in the dictionary.
The system will send the translation of u in the environment. This is a simple example illustrating

search. If the source word is not in the dictionary, the system will be blocked without giving an answer.
The following subsection shows a solution to this problem.

3.2 Search with fail

The set of rules below is considerably more involved than the previous one. However, it handles 3
cases: a) the target word is found, b) the target word is missing in the target location, c) the target location
is unreachable.

F1 [? → ?||?]



Replicate the input.

F2 [? → ?]



Delay the second copy of the input for one step.

F3 ?l[]

l → [?]

+
l , l ∈ A

Propagation of the first copy towards the target location, changing the polarization of the entered mem-
brane to +.

210 Artiom Alhazov, Svetlana Cojocaru, Ludmila Malahova, Yurii Rogozhin

F4 ?l[]
+
l → [?]


l , l ∈ A

Propagation of the second copy towards the target location, restoring the polarization of the entered
membrane.

F5 [?l → [?]
−
l]


k , l,k ∈ A

If a membrane corresponding to some symbol of the source word is missing, then the first copy of
the input remains in the same membrane, while the second copy of the input restores its polarization.
Creating a membrane to handle the failure.

F6 [??
′ → ?]


l , l ∈ A

Target location found, marking the first input copy.

F7 [?]

l → []

−
l /0, l ∈ A

Marking the target location.
In either case, some membrane has polarization −. It remains to send the answer out, or fail if it is

absent. The membrane should be deleted in the fail case.

F8 [$ → $||$]
−
l , l ∈ A

Replicating the translation.

F9 [$]
e
l → []


l $, l ∈ H, e ∈ {,−}

Sending one copy of the translation out.

F10 [$ → $]

l , l ∈ A

Keeping the other copy in the dictionary.

F11 [? → ?]
−
l , l ∈ A

The second copy of input will check if the translation is available in the current region.

F12 ?l[]
−
l → [?]

−
l , l ∈ A

The second copy of input enters the auxiliary membrane with polarization −.

By now the second copy of the input is in the region corresponding to either the search word, or to
its maximal prefix plus one letter (auxiliary one).

F13 [? → ?]
−
l , l ∈ A

It waits for one step.

F14 [? → /0]

l , l ∈ A

If the target word has been found, the second copy of the input is erased.

F15 [?]
−
l → []


l ?, l ∈ A

If not, the search fails.

F16 [?]

l → []


l ?, l ∈ A

Sending the fail notification to the skin.

Dictionary Search and Update by P Systems
with String-Objects and Active Membranes 211

F17 [?l → ?]



Erasing the remaining part of the source word.

F18 [??
′]


 → []


fail

Answering fail.

F19 [? → ?]
−
l , l ∈ A

F20 [? → ?]
−
l , l ∈ A

F21 [? → ?]
−
l , l ∈ A

If the target location was not found, the first input copy waits for 3 steps while the membrane with
polarization − handles the second input copy.

F22 [?]

l → /0, l ∈ A

Erasing the auxiliary membrane.

3.3 Dictionary update

To add an entry u −→ v to the dictionary, input the string !uv ′ in region 1. Consider the following
rules.

U1 [! → !||!]



Replicate the input.

U2 [! → !]



Delay the second copy of the input for one step.

U3 !l[]

l → [!]

+
l , l ∈ A

Propagation of the first copy towards the target location, changing the polarization of the entered mem-
brane to +.

U4 !l[]
+
l → [!]


l , l ∈ A

Propagation of the second copy towards the target location, restoring the polarization of the entered
membrane.

U5 [! → !]

l , l ∈ A

If a membrane corresponding to some symbol of the source word is missing, then the first copy of
the input remains in the same membrane, while the second copy of the input restores its polarization.
Marking the fist copy of the input for creation of missing membranes.

U6 [!l → [!]
+
l]


k , l,k ∈ A

Creating missing membranes.

U7 [!$ → $]

l , l ∈ A

Releasing the target word in the corresponding location.

212 Artiom Alhazov, Svetlana Cojocaru, Ludmila Malahova, Yurii Rogozhin

U8 [!$ → /0]

l , l ∈ A

Erasing the second copy of the input.

We underline that the constructions presented above also hold in a more general case, i.e., when the
dictionary is a multi-valued function. Indeed, multiple translations can be added to the dictionary as
multiple strings in the region associated to the input word. The search for a word with multiple transla-
tions will lead to all translations sent to the environment. The price to pay is that the construction is no
longer deterministic, since the order of application of rules S4 or F9 to different translations is arbitrary.
Nevertheless, the constructions remain “deterministic modulo the order in which the translations are sent
out". All constructions work in linear time with respect to the length of the input. The parallelism is vital
for checking for the absence of a needed submembrane, or for checking for the absence of a translation
of a given word; sending multiple translation results out is also parallel.

4 Discussion

In this paper we presented the linear-time algorithms of searching in a dictionary and updating it
implemented as membrane systems. We underline that the systems are constructed as reusable modules,
so they are suitable for using as sub-algorithms for solving more complicated problems.

The scope of handling dictionaries is not limited to the dictionaries in the classical sense. Under-
standing a dictionary as introduced in Section 3, i.e., a string-valued function defined on a finite set of
strings, leads to direct applicability of the proposed methods to handle alphabets, lexicons, thesauruses,
dictionaries of exceptions, and even databases. At last, it is natural to consider these algorithms together
with morphological analyzer and morphological synthesizer.

Acknowledgments All authors gratefully acknowledge the support by the Science and Technology
Center in Ukraine, project 4032. Artiom Alhazov gratefully acknowledges the support of the Japan So-
ciety for the Promotion of Science and the Grant-in-Aid for Scientific Research, project 20·08364. Yurii
Rogozhin gratefully acknowledges the support of the European Commission, project MolCIP, MIF1-CT-
2006-021666.

Bibliography

[1] G. Ciobanu, G. Păun, M.J. Pérez-Jiménez Eds., Applications of Membrane Computing, Springer-
Verlag, 2006.

[2] H. Kitano, Challenges of Massive Parallelism, Proceedings of the 13th International Joint Confer-

ence on Artificial Intelligence, Chambery, France, 1993, vol. 1, 813–834.

[3] Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences 61(1), 2000,
108–143.

[4] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, 2002.

[5] E. Sumita, K. Oi, O. Furuse, H. Iida, T. Higuchi, N. Takahashi, H. Kitano, Example-Based Ma-
chine Translation on Massively Parallel Processors, Proceedings of the 13th International Joint

Conference on Artificial Intelligence, Chambery, France, 1993, vol. 2, 1283–1289.

[6] P systems webpage. http://ppage.psystems.eu/.

Dictionary Search and Update by P Systems
with String-Objects and Active Membranes 213

Artiom Alhazov (born on October 11, 1979), graduated in Mathematics and Computer Science (The
State University of Moldova, Chişinău, Moldova) and received Ph.D. in Languages and Information
Systems (Rovira i Virgili University, Tarragona, Spain). A researcher at the Institute of Mathematics and
Computer Science of the Academy of Sciences of Moldova. He completed a postdoc in Åbo Akademi
University, Turku, Finland, and currently has a postdoc in Hiroshima University, Higashi-Hiroshima,
Japan. His main research interests are theoretical computer science, formal language theory, parallel
distributed computational models, and in particular the descriptional complexity of P systems with weak
forms of interaction. He published over 90 research papers (collaborating with more than 30 researchers
from many countries in Europe and Asia). He won numerous prizes for programming in school and
university years, and the National Youth Prize in Science, Technics, Literature and Arts in 2006 for a
collection of research works.

Svetlana Cojocaru (born on July 26, 1952), graduated in Mathematics (The State University of
Moldova, Chişinău, Moldova, 1974), received Ph.D. in Computer Science (Institute of Cybernetics,
Ukrainian Academy of Sciences, Kiev, 1982) and doctor in habilitation in Computer Science (Institute
of Mathematics and Computer Science, Academy of Sciences of Moldova, 2007). A deputy director at
the Institute of Mathematics and Computer Science of the Academy of Sciences of Moldova. Her main
research interests are formal languages and grammars, natural language processing, computer algebra,
molecular computing. She published over 120 research papers.

Ludmila Malahova (born on July 22, 1947), graduated in Computer Science (The State University
of Moldova, Chişinău, Moldova, 1970). A researcher at the Institute of Mathematics and Computer
Science of the Academy of Sciences of Moldova. She has a significant experience in computer science
including computer graphics, formal languages, computer algebra, natural language processing, and
molecular computing with more than 80 papers published in international journals, books and conference
proceedings.

Yurii Rogozhin (born on November 13, 1949), graduated in Mathematics (The Kuban State Uni-
versity, Krasnodar, Russia, 1971), received Ph.D. in Mathematical Cybernetics (Computer Center of the
Russian Academy of Sciences, Moscow, 1981) and doctor in habilitation in Computer Science (Moscow
State University, Russia, Department of Computational Mathematics and Cybernetics, 1999). A prin-
cipal researcher at the Institute of Mathematica and Computer Science of the Academy of Sciences of
Moldova Republic and Marie Curie IIF researcher at Rovira i Virgili University, Research Group on
Mathematical Linguistics, Tarragona, Spain. His main research interests are mathematics, theoretical
computer science, formal language theory and its applications, natural (biomolecular) computing and
nanotechnology. He published over 110 research papers (collaborating with more than 45 researches
from many countries in Europe).

