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Abstract: This paper describes experimental results applying artificial neural net-
works to perform the position control of a real scara manipulator robot. The general
control strategy consists of a neural controller that operates in parallel with a conven-
tional controller based on the feedback error learning architecture. The main advan-
tage of this architecture is that it does not require any modification of the previous
conventional controller algorithm. MLP and RBF neural networks trained on-line
have been used, without requiring any previous knowledge about the system to be
controlled. These approach has performed very successfully, with better results ob-
tained with the RBF networks when compared to PID and sliding mode positional
controllers.
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1 Introduction

This paper describes and discusses practical results obtained with the use of computational intelli-
gence techniques, specifically artificial neural networks, applied to the position control of a real manip-
ulator robot. The neural controller proposed in this work was applied in a real scara robot installed at
the Industrial Automation Laboratory of the Federal University of Santa Catarina, Brazil. The work is
the result of a cooperation between the Automation and Mechanical Engineering departments. The robot
was manufactured by the Institute of Robotics (IfR) of the ETH (Swiss Federal Institute of Technology,
http://www.ifr.mavt.ethz.ch/). Differently from most industrial manipulator robots, this one has an open
architecture, which allows the implementation of any type of control law. The main purpose was to eval-
uate new algorithms for position/force control, since the robot is also equipped with a force sensor. Fig.
1 shows the Inter/Scara robot.

Manipulator robots are a type of non-linear and time variant systems. Conventional controllers, such
as PD and PID, are used among other advanced and robust controllers that require some knowledge about
the dynamic model of the system under control. In the case of manipulator robots, it is difficult to obtain
some parameters, as the inertia matrix and mass centers of any joint, with sufficient accuracy. Therefore,
either adaptive controller are required to overcome these inaccurate parameters or control laws based
on Lyapunov functions are developed to guarantee some kind of stability [1]. Both approaches require
some knowledge about the system. This work explores a computational intelligence technique, namely
artificial neural networks, to deal with this situation. In particular, control algorithms based on neural
networks and fuzzy logic techniques are considered intelligent control approaches that do not require
any previous knowledge about the system to be controlled. The main goal of this work is to explore an
effective computational intelligence technique to control this complex system using a structure as simple
as possible, with preference to one that requires less change in the previous conventional controller that
has installed in the system, do not overload the main processor and is robustness against disturbance and
load effect variations.
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Figure 1: Inter/Scara robot and its coordinate system.

2 Neural Controller Types

Artificial Neural Networks (NNs) have been applied to several cases of control systems, showing
special adequacy when we have to deal with complexity, non-linearity or uncertainty [13]. The neural
approach is interesting, notably in the cases where:

a) Mathematical models of the process are poor or do not even exist and linear models are inadequate
to represent the system with sufficient accuracy;

b) The system works satisfactorily with an existing controller but its performance deteriorates sub-
stantially when high performances (e.g. speeds) are required, so non-linear controllers become
necessary.

NN have proved their ability to approximate arbitrary nonlinear maps and the availability of methods
for adjusting their parameters on basis of input and output data makes them particularly attractive in
identifiers and controllers [2]. Narendra also comments that it seems to be valuable to keep linear and
non-linear components working in parallel, where the neural networks represent the non-linear compo-
nents [2]. He also mentions the brief learning time periods and the increase of accuracy that result from
this kind of integration. In the control systems area, a few neural models have been proved to be more
suitable than others, mainly:

1) Multilayer Perceptron networks (MLP), and;
2) Radial Base Function networks (RBF).

Among several ways to apply NNs in a control scheme, we can cite: (i) inverse identification (requires
undesirable off-line training), (ii) reference model structure, (iii) internal model control, (iv) predictive
control (uses two NNs, one of them trained off-line to identify the system), (v) optimal control (also
requires two nets: the first one is used to quantify the state space of the system and the next acts as a
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classifier). Kati¢ and Vukobratovi¢ [3] and Morris and Khemaissia [4] discuss two learning architectures
that seem to be the most appropriate and promising: a) Feedback-error learning architecture; and b)
Adaptive learning architecture. The feedback error learning approach is characterized by the NN inserted
in the feedback path to capture the nonlinear characteristics of the system. The ANN weights are tuned
on-line with no off-line learning phase and, when compared with the adaptive technique, we do not
require any knowledge of the robot dynamics, linearity in the unknown system parameters or the tedious
computation of a regression matrix. Thus, this approach is model-free and represents an improvement
over adaptive techniques [5].

2.1 Multilayer Perceptron Net

This network consists of a set of sensory input units (source nodes) that constitute the input layer,
one or more hidden layers and an output layer. The input signal propagates through the network in
a forward direction, on a layer-by-layer basis [6]. Multilayer perceptrons could be trained in a super-
vised manner using the back-propagation algorithm. Back-propagation is based on the error-correction
learning rule and uses a least-mean-square error algorithm to adjust its connection weights. The error
back-propagation learning consists of two stages: first, a forward phase, when the input vector is applied
to the sensory nodes of the network, and its effect propagates through the network layer by layer. Finally,
an output set is produced as the current response of the network. During the forward phase the weights of
the network are kept unchanged. In the second phase, the backward phase, an error signal is propagated
backward through the network against the direction of synaptic connections and the weights are adjusted
to make the current response of the network move closer to the desired response based on a steepest
descent algorithm, or back propagation weight update rule, also called generalized delta-rule [6].

2.2 Radial Base Functions Net

The basic structure of the RBF network consists of three layers. Different from the MLP networks,
the layers here have different tasks. The first layer is passive and only connects the model to the real
world. The second layer is a unique hidden layer. It performs a non-linear transformation from the input
vector space to the internal vector space. The last layer is the output layer and transforms internal vector
space into output vector space in a linear manner. There are several algorithms available to train the
network [6, 7, 8]. These two types of neural nets can be universal function approximators [6, 8].

3 Controller Proposed

The controller proposed here uses a conventional PD or PID that performs in parallel with an artificial
neural network trained on-line. This kind of architecture for neural controllers is known as feedback error
learning because the net uses the output signal generated by the conventional controller as its own error
signal that is back propagated for learning purposes ([2, 5]). Fig. 2 shows the architecture applied in this
case.

Both types of NNs tested deal with the same input data vector: xnN = [ d q da ], where ¢ is
the vector of current joint positions; ¢ is the vector of current joint speeds (obtained through numerical
differentiation); {4 corresponds to the desired joint accelerations (like in other manipulators, there is no
accelerometer available for each joint, so the desired acceleration computed by the path generator was
used). These inputs were bounded into its maximum and minimum possible operational values for this
robot and then scaled between the neural input range -0.9 up to +0.9 only for the MLP nets. Note that,
different from MLP nets, the RBF nets do not need a scale procedure sice that they could deal directly
with rough data, but it was necessary to organize the input data into three different classes: 1) joint
positions, 2) joint speeds and 3) joint accelerations — see fig. 3. The idea behind organizing the data



Applying RBF Neural Nets for Position Control of an Inter/Scara Robot 151

a qL N
Neural

Oy ~ >  Network
. Uy
Ug
Path Y + Conventional Robot 4
Generator " Controller obo g q

Figure 2: Feedback-error-learning neural controller used.

in different classes comes from previous skills with fuzzy inference systems. RBF networks could be
compared with fuzzy inference systems [9]. Each class of input data could be understood as linguistic
operations of fuzzy systems. Each class of data is mapped using m Gaussian functions and could be
compared to the m membership functions that will be used in a fuzzy system. And finally, the rules
and the way they are evaluated in a fuzzy system were performed by the output layer of a RBF network.
Each synaptic connection of the output layer could be compared to the fuzzy IF-THEN-rules. The overall
outputs are derived from the weighted sum done by the output layer [10]. Hence, m Gaussian functions
were created to categorize each vector of each class of input data, as can be seen in fig. 3. It could
be argumented that the massive amount of data required for the input layer (3 classes x 4 d.o.f. xm
Gaussian functions) is a drawback of this approach, but this solution was related to the final application in
mind in this case. Motions in the plane XY were done by the first two joints of the robot. Height (Z) and
final orientation (0) is performed by the last two joints of this robot but there is a mechanical coupling
between them (a ball-screw-spline system), i.e., changes only in the final orientation of the robot result
in a small change in the final height reached by the robot. That, represents an extra challenge to develop
an effective controller to this kind of robot.

The centers x; of the m desired Gaussian functions are fixed, based on the range (minimal and
maximal values) of the input vector. That, allows defining the maximum Euclidian distance, dmax,
between each Gaussian centers as: dmax = (Xmax — Xmin) / (m — 1) and then fixing the standard deviation
(or spread) of each Gaussian function to be used according to:

0o =

dmax
1
oI ey

The traditional back-propagation algorithm expanded with momentum term was used to adjust in
real-time the weights of the MLP and RBF networks [6]. The addition of the momentum term to the delta
rule traditionally used to update the weights of the net (based on the method of the descending gradient
of the error signal), speeds up this algorithm, it eliminates decurrent oscillations of the calculation of the
gradient and prevents the net to get paralyzed into a point of minimum local (and not global) in its surface
errors [6]. Both networks end with 4 neurons, each one to evaluate the torque needed to command each
joint motor of the robot. The final torque sent to each joint is defined as:

TFinal = TFB T TNN ()

where Trp is related to the torque evaluated by the conventional feedback controller that performs in
parallel with one of these networks. PD and PID controllers working in the joint space have been used.
The equation for the PID used is given by:

tr = B(q) [qu—i‘Kqudt-i-Kda] 3)
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Figure 3: Structure of the RBF net implemented.

where ﬁ(q) refers to the inertia matrix of the robot (estimated); § = qq — g represents the error between
the desired and the actual joint position; § refers to the velocity error; K, is the vector of proportional
gains for each joint; Kj refers to the integral vector gains and Kg is the derivative gain vector for each
joint. To get a PD action over the system, the K; vector was not used (equal to zero).

4 Experimental Results

The proposed controllers were implemented to the Inter/Scara robot (fig 1). The first two links of the
Inter/Scara robot acts like an XY planar robot, and each one has 0.5 meters of length and its mechanical
transmissions use harmonic drives (HD) to reduce motor-joints frictions at a minimal level. The last two
joints use a ball-screw-spline mechanical scheme that allows movement in Z direction and the definition
of the final orientation of these robot (angle 0). This robot could be manipulated in the Z direction
between 18.45 (cm) and 44.55 (cm). Tab. 1 shows the Denavit-Hartenberg parameters among others of
this robot.

The Inter/Scara uses the XO/2 real-time object oriented operational system (www.XOZ2.org) devel-
oped by the Institute of Informatics of the Swiss Federal Institute of Technology (ETH). It includes a
high level object oriented programming language called Oberon which is a kind of successor of Modula
2 and Pascal (see http://www.oberon.ethz.ch. The robot runs a XO/2 version over a PowerPC 200 MHz



Applying RBF Neural Nets for Position Control of an Inter/Scara Robot 153

Table 1: Denavit-Hartenberg parameters of Inter/Scara robot.

’ Joint ‘ o ‘ ai ‘ di ‘ qi ‘ my, ‘ Tmax;
0 0 250 665 | qo | =6.3 | 333.0

1 180° 250 0 qi | =195 | 157.0

2 0 0 qz 0 * 877.0

3 0 0 0 qs * 16.7
(degrees) | (mm) | (mm) (Kg) (Nm)

Note: my, includes the last 2 joints(*).

equipped with 16 Mbytes of memory, which communicates with its I/O devices using an industrial VME
bus (67 MHz). The user interface is done through a TCP/IP connection with a PC running the Oberon
System 3 for Windows Win32 2.3 (http://www.oberon.ethz.ch/) over the Windows 2000 Pro. The user
develops the whole control system of the robot (including text command interface with the user, initial-
ization and security functions) and through a cross compiler the execution programm is downloaded to
the CPU of this robot (up to 4Mbytes of code). The algorithms for the proposed neural controllers were
implemented as a real-time task running within a sampling rate of 1 millisecond. In each millisecond is
evaluated the action of conventional controller, also it is evaluated the forward phase of the neural net
and still the backward phase when the trajectory error, § > 0.0001(radjm). The controller was tested
over the trajectory shown by fig. 4. Table 2 shows the joint positions, speeds and accelerations developed
for each joint. All the four joints were moved simultaneously.
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T T T

R
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Figure 4: Trajectory used for the tests.

The PD/PID controller were digitally implemented using a 1(ms) sampling rate, and also an anti
wind-up scheme was introduced with it to limit the integrative values up to 10000. Table 3 shows the
parameters used for the tested PD/PID controllers. Their gains was settled initially based on Ziegler-
Nichols parameters and then better adjusted using trial-and-error method.

Fig. 5 shows the output torques developed by different controllers for the joint 3 (the last and faster).
Note the different performances developed by the PD+MLP1c (MLP with one single hidden layer),
PD+MLP2c (MLP with two hidden layers), PD+RBF(5) (RBF with 5 Gaussian functions) and PID+RBF
controllers tested.
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Table 2: Parameters of the trajectory used for the tests.

Parameter | JointO Joint1 Joint2 Joint3

Jda 245 -1.85 -0.25 -1.57
dv 1.25 0.75 -0.46 0.00
[rad] [rad] [m] [rad]

Gmax -0.71 1.19  -0.22 0.85
[rad/s] [rad/s] [m/s] [rad/s]

Gmax 0.85 1.00 0.47 -0.93
[rad/s?] [rad/s?] [m/s?] [rad/s%]

Table 3: PD/PID gains used.
’ ‘ Joint 0 ‘ Joint 1 ‘ Joint 2 ‘ Joint 3 ‘

Kp 4900 | 12100 | 90000 | 14400
Kq 140 220 600 240
Ky 478 1200 9200 1410

Fig. 6 shows the trajectory error during all the time. During the initial one-third of the robot configu-
ration change period the NN are in their learning time and the conventional controller still predominates
in the joint control. But even before the end of this period of time, it could be seen that the NNs out-
put torque takes predominance over the final torque evaluated (fig. 6). It could be seen that the NN
learns the dynamic behavior of the system and then does the dynamic compensation that results in higher
performance compared to a conventional controller.

The best results for the MLP nets were achieved with learning rate 1 = 0.035 and momentum term
o« = 0.5. Related to the RBF nets, the best learning parameters founded were: 1 = 0.005 and o« = 0.5.
Note that a PID performing with a RBF net, allows the better performance (fig. 5(d) and 5(e)) followed
by the PD+RBF, PD+MLP and finally, the single PD. It was noted that the use of two hidden layers for
the MLP NN does not imply in a better performance and moreover adds a small residual memory effect
in presence of a disturbance on the system (this behavior has been observed in tests where an elastic
string was placed in the middle of a linear trajectory).

Experimental results have also demonstrated that the addition of more than 5 Gaussian functions in
the RBF NN controller, slightly increase the performance, but at the expenses of a significant higher
computational cost.

5 Conclusions

This paper has presented a practical and successful application of a neural controller performing in
parallel with a conventional controller in the position and trajectory following control of a real robot.
The use of a conventional controller performing in parallel with the NNs is advantageous to maintain the
robustness of the system when the NN become saturated (due to high learning rates) and it is important to
force the readjustment of the synaptic weights of the NN used when the robot changes its configuration.
As soon as the NN captures the dynamic behavior of the system, the final torque is given quite totally by
the NN and a higher performance could be achieved. Both the MLP and RBF ANN perform very well,
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Figure 5: Controllers output torques.
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Figure 6: Joint 3 some tracking error.

but RBF does it better and faster than a MLP, mainly if it works in parallel with a PID controller. An
additional and unexpected advantage could be achieved with the PID+RBF controller: robot motion with
lowest noise levels (quite silent). On the other hand, there is also a drawback: NN requires more pro-
cessing power to work in parallel with the conventional controller — see table 4 and fig 7 that summarize
the results achieved by the different controllers.

Table 4: Power computer resources required.

Processing time

Controller Min Max

PD 104 | 104
PD+MLP2c | 194 | 385
PD +RBF(5) | 333 | 579
PD +RBE(7) | 425 | 679
PD +RBF(©9) | 104 | 809

Note: values expressed in microseconds (LLs).

Even if computer resources are short, a simple PD+MLP with one hidden layer allows better results
than a PD controller. Otherwise, if higher processing power is available, a PID+RBF achieves the best
results. Since the neural controllers proposed here have performed very successfully, future directions
of this works intend to establish an integrated position/force control over a hybrid control architecture to
deal with robot applications that imply some contact with the environment.
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Figure 7: Relationship within computational cost x benefit of the controllers tested here.
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