
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844

Vol. IV (2009), No. 1, pp. 92-98

A Note on the Generative Power of Axon P Systems

Xingyi Zhang, Jun Wang, Linqiang Pan

Huazhong University of Science and Technology, Department of Control Science and Engineering
Key Laboratory of Image Processing and Intelligent Control
Wuhan 430074, Hubei, People’s Republic of China
E-mail: xyzhanghust@gmail.com, junwangjf@gmail.com, lqpan@mail.hust.edu.cn

Abstract: Axon P systems are a class of spiking neural P systems. In this paper,
the axon P systems are used as number generators and language generators. As a
language generator, the relationships of the families of languages generated by axon
P systems with finite and context-free languages are considered. As a number gen-
erator, a characterization of the family of finite sets can be obtained by axon P sys-
tems with only one node. The relationships of sets of numbers generated by axon P
systems with semilinear sets of numbers are also investigated. This paper partially
answers some open problems formulated by H. Chen, T.-O. Ishdorj and Gh. Păun.
Keywords: Membrane computing, SN P systems, Axon P systems

1 Introduction

The spiking neural P systems (in short, SN P systems) are a class of bio-inspired computing devices
introduced in [6], which attempts to incorporate the idea of spiking neurons into the area of membrane
computing. The resulting models are a variant of tissue-like and neural-like P systems, with specific in-
gredients and way of functioning inspired from spiking neurons. In SN P systems, the main “information-
processor" is the neuron, while the axon is only a channel of communication without any other role –
which is not exactly the case in neurobiology. So, recently, a special form of spiking neural P systems,
called axon P systems, is introduced in [3], which corresponds to the activity of Ranvier nodes of neuron
axon. Actually, axon P systems are a sort of linear SN P systems. Spikes are transmitted along the axon,
to the left and to the right, from one node to another node, and an output is provided by the rightmost
node. A symbol bi is associated with a step when i spikes exit the system, in this way a string is as-
sociated with a computation. In [3], the language generating power of axon P systems under the above
definition was investigated, and many open problems and research topics were formulated. In this paper,
we continue the study of axon P systems, specifically, the number generative power and the language
generative power are investigated, and in this context we answer some open problems formulated in [3].

SN P systems can be used as number generators (e.g., [2, 4, 6, 7]) or language generators (e.g.,
[1, 2, 5, 10, 12]). As a variant of SN P systems, axon P systems can also be used as number generators
and language generators. As a number generator, we do not care whether or not the computation halts,
but we only request that the output node spikes exactly twice during the computation, and the result of a
computation is the number of steps elapsed between the two moments when the output node spikes. In
this case, a characterization of the family of finite sets is given by axon P systems with one node. Also,
the relationships of sets of numbers generated by axon P systems with semilinear sets of numbers are
also investigated. As a language generator, each configuration is described by a corresponding string,
and the result of a halting computation is defined as the strings associated with configurations where the
system emits a spike. In this case, the relationships of the families of languages generated by axon P
systems with finite and context-free languages are considered.

The paper is organized as follows. In Section 2, formal language theory prerequisites useful in
the following sections are recalled. In Section 3, the definition of axon P systems and the problems
considered in this paper are given. Axon P systems as number generators and language generators are
investigated respectively in Section 4 and Section 5. Conclusions and remarks are drawn in Section 6.

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory, as well as basic
membrane computing [8] (for more updated information about membrane computing, please refer to
[11]), so that we specify here only a few notations and basic definitions.

Copyright © 2006-2009 by CCC Publications

A Note on the Generative Power of Axon P Systems 93

Let us start by mentioning the following convention: when comparing two generative or accepting
devices, number zero is ignored (this corresponds to the usual convention in language theory of ignoring
the empty string).

For an alphabet V , V ∗ denotes the set of all finite strings over V , with the empty string denoted by
λ . The set of all nonempty strings over V is denoted by V+. When V = {a} is a singleton, then we write
simply a∗ and a+ instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|. For a language
L⊆V ∗, the set length(L) = {|x| | x ∈ L} is called the length set of L. The families of finite, regular, linear
and context-free languages are denoted by FIN, REG, LIN, CF , respectively. The families of length
sets of languages in FIN, REG, LIN and CF are denoted by NFIN, NREG, NLIN, NCF , respectively.
The family of languages generated by L systems is denoted by L, and we add the letter E in front of
L if extended L systems are used. We also denote by SLIN the family of semilinear sets of numbers
(the subscript indicates that we work with one-dimensional vectors, not with semilinear sets of vectors
in general). It is known that the following equalities hold true: NREG = NLIN = NCF = SLIN (see,
e.g., [8]).

A regular expression over an alphabet V is defined as follows: (i) λ and each a ∈ V is a regular
expression, (ii) if E,E are regular expressions overV , then (E)(E), (E)∪(E), and (E)

+ are regular
expressions over V , and (iii) nothing else is a regular expression over V . With each expression E we
associate a language L(E), defined in the following way: (i) L(λ) = {λ } and L(a) = {a}, for all a ∈ V ,
(ii) L((E)∪ (E)) = L(E)∪L(E), L((E)(E)) = L(E)L(E), and L((E)

+) = L(E)
+, for all regular

expressions E,E over V . Non-necessary parentheses are omitted when writing a regular expression,
and also (E)+∪ {λ } can be written as E∗.

A Chomsky grammar is given in the form G = (N,T,S,P), with N being the nonterminal alphabet,
T the terminal alphabet, S ∈ N the axiom, and P is the finite set of productions. For regular grammars,
the productions are of the form u → v, for some u ∈ N,v ∈ T ∪TN (in regular grammars, we also allow
productions of the form u → λ , but only when this is useful for simplifying the grammar: because of
the convention that the empty string is not counted when comparing the languages generated by two
grammars, such productions are not necessary in regular grammars).

3 Axon P Systems

We now introduce the axon P systems.
An axon P system of degree m≥  is a construct of the form

Π = (O,ρ, . . . ,ρm),

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. ρ, . . . ,ρm are (Ranvier) nodes, of the form

ρi = (ni,Ri), ≤ i≤ m,

where:

a) ni ≥  is the initial number of spikes contained in ρi;

b) Ri is a finite set of rules of the form E/ac → (al,ar), where E is a regular expression over a,
c≥ , and l,r ≥ , with the restriction that R contains only rules with l = .

The nodes are arranged along an axon in the order ρ, . . . ,ρm, with ρm at the end of the axon; this
means that node ρm is the output node of the system.

A rule E/ac → (al,ar) ∈ Ri is used as follows. If the node ρi contains k spikes, and ak ∈ L(E),k≥ c,
then the rule can be applied, and this means consuming (removing) c spikes from ρi (thus only k− c
spikes remain in ρi), and it sends l spikes to its left hand neighbor and r spikes to its right hand neighbor;
the first node, ρ does not send spikes to the left, while in the case of the rightmost node, ρm, the spikes
sent to the right are “lost” in the environment. A global clock is assumed, marking the time for the whole
system, hence the functioning of the system is synchronized.

If a rule E/ac → (al,ar) has E = ac, then we will write it in the simplified form ac → (al,ar).
If several rules can be used at the same time, then the one to be applied is chosen non-deterministically.

94 Xingyi Zhang, Jun Wang, Linqiang Pan

During the computation, a configuration of the system is described by the number of spikes present
in each node; thus, the initial configuration is 〈n, . . . ,nm〉.

Using the rules as described above, one can define transitions among configurations. A transition be-
tween two configurationsC,C is denoted byC ⇒C. IfC = 〈k,k, . . . ,km〉, thenC = 〈k ′,k ′, . . . ,k ′m〉,
where k ′i = (ki −ci)+ ri− + li+, i is the current node, ci is number of spikes consumed in this node, and
ri−, li+ are the numbers of spikes sent to this node by the neighboring nodes,  ≤ i ≤ m− . In the
case of i =  or i = m, there is only one neighbor. Any sequence of transitions starting in the initial
configuration is called a computation. A computation halts if it reaches a configuration where no rule
can be used.

In this paper, we consider the following two ways of defining the result of a computation for axon P
systems.

(i) Similar to [6] and [10], we do not care whether or not the computation halts, but we only request
that the output node spikes exactly twice during the computation. Then, the number of steps elapsed be-
tween the two spikes is the number computed by the axon P system along that computation. We denote by
N(Π) the set of numbers computed in this way by the axon P system Π , and by SpikAPm(rulek,consp)
the family of sets N(Π) generated by axon P systems with at most m nodes, at most k rules in each
node, each rule consuming at most p spikes. As usual, any of these parameters is replaced by ∗ if it is
not bounded.

(ii) As formulated in [3], a language is associated with a computation of axon P systems in the
following way: for each node ρi we consider a symbol ci and a configuration 〈k, . . . ,km〉 is described

by the string ck
 . . .ckmm ; then, the result of a halting computation is defined as the strings associated

with configurations where the system emits a spike. All these strings form the language generated by
the system. We denote by L(Π) the language generated in this way by the axon P system Π , and by
LAPm(rulek,consp) the family of languages L(Π) with m,k, p having the same meaning as above.

4 Axon P Systems as Number Generators

In this section, we investigate the number generative power of axon P systems.

4.1 A Characterization of NFIN

In [6], it has been proved that SN P systems can characterize NFIN by using only one neuron. For
axon P systems, we have a similar result.

Theorem 1. NFIN = SpikAP(rule∗,cons∗).

Proof. The inclusion SpikAP(rule∗,cons∗) ⊆ NFIN can be easily proved: in each step, the number of
spikes in an axon P system with only one node decreases by at least one, hence any computation lasts at
most as many steps as the number of spikes present in the system at the beginning. Thus, axon P systems
with only one node can only compute finite sets of numbers.

To prove the opposite inclusion NFIN ⊆ SpikAP(rule∗,cons∗), let us take a finite set of numbers,
F = {n, . . . ,nk}, and we assume that we have n < n < .. . < nk.

An axon P system that generates F is shown in Figure 1.

Initially, the node contains nk +  spikes, hence, only the rule ank+/a → (λ ,a) can be used in the
first step. It consumes one spike and immediately sends a spike to the environment. In the next step, we
have to continue with rules ank+−t/a → (λ ,λ), for t = , and then for the respective t = , . . . ,n. But
for t = n (in step n +), there is another rule ank+−t → (λ ,a) which can be used, non-deterministically
chosen. If we choose the second rule, the system will send a spike to the environment again and then the
computation halts. Therefore, the number n will be generated. If we choose the first rule, the process
will continue, and in a similar way the numbers n, . . . ,nk− can be generated in turn. In step nk + 
(the last step) only the rule ank+−t → (λ ,a) with t = nk can be used, therefore, the number nk can be
generated and this concludes the computation.

Consequently, all the numbers in F can be generated by the above axon P system, which concludes
the proof.

A Note on the Generative Power of Axon P Systems 95

ank+

ank+/a → (λ ,a)

ank+−t/a → (λ ,λ)

t = ,, . . . ,nk −

ank+−t → (λ ,a)

t = ni, ≤ i≤ k

-

Figure 1: An axon P system generating a finite set of numbers

4.2 Relationships with Semilinear Sets of Numbers

As mentioned in Section 4.1, SN P systems with one neuron generate exactly the family of finite sets
of numbers. Actually, SN P systems with two neurons also characterize the family of finite sets. So, the
following results on axon P systems are unexpected: such systems with two nodes generate all semilinear
sets of numbers.

Theorem 2. SLIN ⊆ SpikAP(rule∗,cons∗).

Proof. Consider a regular grammar G = (N,T,S,P) with N = {A,A, . . . ,An},n ≥ , S = An, T =
{b,b, . . . ,bs}, and the productions in P are of the forms Ai → bkA j, Ai → bk,  ≤ i, j ≤ n,  ≤ k ≤ s.

Then length(L(G)) can be generated by an axon P system as shown in Figure 2.
In the initial configuration we have n+  spikes in node ρ and n+  spikes in node ρ, therefore,

in the first step, only the rule an+/a → (λ ,a) can be used in node ρ, and the rule an+/a → (λ ,λ) is
used in node ρ. Thus, a spike is sent to the environment and n spikes remain in node ρ and n spikes in

node ρ. In the next step, node ρ fires by a rule an+i/an+i− j → (an,λ) or an+i → (λ ,a) associated with
a production An → bkA j or An → bk from P, for i = n. If the second rule is used, another spike is sent
to the environment and the computation halts. In this way, the generated number is . If the first rule is
used, n− j spikes are consumed from node ρ. In this step node ρ also fires and sends n spikes to node
ρ. It will send n spikes back to node ρ as long as it receives n spikes from node ρ.

Assume that in some step t, the rule an+i/an+i− j → (an,λ), for Ai → bkA j, or an+i → (λ ,a), for
Ai → bk, is used, for some  ≤ i≤ n, and n spikes are received from node ρ.

If the first rule is used, then n spikes are sent to node ρ, n+ i− j spikes are consumed, and j spikes
remain in node ρ. Then in step t + , we have n+ j spikes in node ρ, and a rule for Ai → bkA j or
Ai → bk can be used. In step t+ node ρ also receives n spikes. In this way, the computation continues.

If the second rule is used, then no spike is sent to node ρ, all spikes in node ρ are consumed, and n
spikes are received from node ρ, which will remain in node ρ forever. Moreover, in this step another
spike is sent to the environment again. Then the computation halts.

We know that, if we use a production Ai → bkA j or Ai → bk one time, then the length of a string
generated by the grammar G increases by one, and this corresponds to the number of steps increasing

by one by using the associated rule an+i/an+i− j → (an,λ) or an+i → (λ ,a) one time in the axon P
system. Moreover, the second spike is sent to the environment and the computation halts whenever a rule

an+i → (λ ,a) is used, which corresponds to a production Ai → bk being used in G.
Therefore, the length set of all the strings in L(G) can be generated, and the proof is complete.

The inclusion in the previous theorem is proper.

Theorem 3. SpikAP(rule,cons)−SLIN 6= /0.

Proof. Let us consider the axon P system from Figure 3. In the initial configuration, only node ρ

contains  spikes, hence it fires in the first step by the rule a(a)+/a → (λ ,a) and sends  spikes to
node ρ. In the next step, the rule a→ (a,λ) or a→ (λ ,a) can be used in node ρ, non-deterministically
chosen.

If we use the rule a → (a,λ), then we get a number of spikes of the form k+ in the second node,
hence the first rule a(a)+/a → (a,λ) in node ρ is applied as many times as possible, thus returning

96 Xingyi Zhang, Jun Wang, Linqiang Pan

-¾ -

1

2

an+

an+/a → (λ ,λ)

an → (λ ,an)

an+

an+/a → (λ ,a)

an+i/an+i− j → (an,λ)

for Ai → bkA j ∈ P

an+i → (λ ,a)

for Ai → bk ∈ P

Figure 2: An axon P system generating a semilinear set

the spikes to node ρ. To end this returning, we have to use the rule a → (a,λ) in node ρ, which makes
again the number of spikes from node ρ be of the form k+  (note that no rule can be applied in any
node when the number of spikes is multiple of 4). This process can be iterated any number of times, thus
multiplying by  the number of spikes present in node ρ.

Assume that we have a configuration 〈n + ,〉 in step t, for some n ≥ ; initially, this is the case,

with n = . In node ρ, the rule a(a)+/a → (λ ,a) can be used as many times as possible until the
node remains with only one spike. It moves all spikes to the second node, multiplied by . Therefore,
in step t + n− + , we have a configuration 〈,n+〉. In the next step, node ρ can also use the rule
a→ (λ ,a) instead of a→ (a,λ). Then the number of spikes from node ρ is of the form k+ (n+ +
spikes), hence the rule a(a)+/a → (λ ,a) should be applied in step t + n− +  and a spike is sent to
the environment. At the same time, the number of spikes decreases by one and will be of the form k+
(n+ + spikes). Therefore, the rule a(a)+/a → (λ ,λ) should be applied in step t +n− +. This
rule does not change the form of the number of spikes and it remains in the form of k+ , hence it is
used as many times as possible. In this way, no spike is sent to the environment until the number of
spikes from ρ becomes  and this process needs n −  steps. Then, in the step t + n− + n + , the
rule a → (λ ,a) should be used and the second spike is sent to the environment. Therefore, the number
of steps elapsed between the two spikes which were sent to the environment is n and the computation
halts.

Consequently, the set {n | n ≥ } can be generated by this system, which, obviously, is not a semi-
linear set.

-¾

1

2

a

a(a)+/a → (λ ,a)

a → (λ ,a)

a → (λ ,a)

a(a)+/a → (a,λ)

a → (a,λ)

a(a)+/a → (λ ,a)

a(a)+/a → (λ ,λ)

a → (λ ,a)

-

Figure 3: An axon P system generating a non-semilinear set {n|n≥ }

In [6], it has been shown that semilinear sets of numbers can be characterized by SN P systems with
a bound on the number of spikes present in any neuron, but the number of neurons is not bounded. The
following theorem also gives a characterization of semilinear sets of numbers, but here only two nodes
are used in the axon P systems.

Theorem 4. SLIN = SpikAP(rule∗,cons∗,bound∗), where bound∗ indicates that axon P systems have
a bound on the number of spikes present in any node, but this bound is not specified.

Proof. From Theorem 2, it is enough to prove the inclusion SpikAP(rule∗,cons∗,bound∗) ⊆ SLIN.
The proof is similar to the one of Lemma 9.1 in [6], so we do not recall it here.

A Note on the Generative Power of Axon P Systems 97

5 Axon P Systems as Language Generators

We now pass to considering the language generative power of axon P systems.
All strings generated by an axon P system in the way mentioned in Section 3 are of the form

ck
 ck

 . . .ckmm , where 〈k,k, . . . ,km〉 is a configuration of the system. Therefore, if there is a bound on
the number of spikes in any node of axon P systems, we can directly have the following result.

Remark 5. LAPn(rule∗,cons∗,bound∗) ⊆ FIN, for n≥ .

Moreover, as a direct consequence of this restrictive way of defining the languages associated with
axon P systems, we cannot find a characterization of finite languages for the general axon P systems. For
instance, it is not difficult to find that the string ccc cannot be generated by any axon P system.

5.1 Beyond CF

Theorem 6. There exists at least a language L ∈ EL−CF, which can be generated by axon P systems.

Proof. Let us consider the language L = {cn
 cn

 cn
 | n≥ }; it is obvious that L ∈ EL−CF .

We construct the axon P system whose initial configuration is shown in Figure 4.

1 2 3

a

(a)+/a → (λ ,a)

a

(a)+/a → (a,a)

a

(a)+/a → (a,λ) -

(a)+/a → (a,a)

-¾-¾

Figure 4: An axon P system generating the language {cn
 cn

 cn
 | n≥ }

Initially, each node of the system contains two spikes. Hence, each node can be activated, and in node
ρ both the rule (a)+/a → (a,λ) and the rule (a)+/a → (a,a) can be applied, non-deterministically
chosen. If the first rule is applied, then the two spikes in each node are consumed and no spike is sent to
the environment. At the same time, each node accumulates 4 spikes (the 4 spikes in nodes ρ and ρ are
received from node ρ; the 4 spikes in node ρ are received from both node ρ and node ρ, two from
node ρ and two from node ρ). In this way, all the nodes can be activated in the next step. If in node ρ

we continue using the rule (a)+/a → (a,λ), then in a similar way each node obtains 6 spikes. This
process can be iterated until the second rule is applied. In this case, the number of spikes in each node
increases by two in each step. Therefore, each node of the system accumulates n spikes in step n, for
n≥ .

At any moment, we can also apply the second rule in node ρ. Assume that it is applied in step n+,
then node ρ sends a spike to the environment, which means that the string cn

 cn
 cn

 is generated by this

system. At the same time, node ρ accumulates n+  spikes, node ρ accumulates n+  spikes, and
node ρ accumulates n+  spikes. In the next step, only node ρ can be activated. Thus, it consumes
two spikes and sends two spikes to node ρ. This process can be iterated until all the spikes in node ρ
are moved to node ρ, and then the computation halts.

Therefore, the language {cn
 cn

 cn
 | n≥ } can be generated by the axon P system and this concludes

the proof.

6 Conclusions and Remarks

In this paper, the number generative power and the language generative power of axon P systems
are investigated. As a variant of SN P systems, there remain many open problems and research topics
about axon P systems to be considered. One important aspect is suggested by the research about SN P
systems. For instance, as usual in SN P systems, an arbitrary delay can be considered in axon P systems.
What about considering the spike trains (finite or infinite) themselves as the result of a computation in
axon P systems, as investigated in [10]. The various applications for axon P systems also deserve to be
considered.

As suggested by Gheorghe Păun in [9], a more general and probably more interesting problem is
combining neurons and axons in a global model; maybe also astrocytes can be added, thus obtaining a

98 Xingyi Zhang, Jun Wang, Linqiang Pan

more complex model, closer to reality. Please refer to [3, 9] for more open problems and research topics
related to axon P systems.

Acknowledgements

Comments and suggestions from Gheorghe Păun are greatly acknowledged. The project was sup-
ported by National Natural Science Foundation of China (Grant Nos. 60674106, 30870826, 60703047,
60503002, and 60533010), 863 Program of China (2006AA01Z104), Program for New Century Ex-
cellent Talents in University (NCET-05-0612), Ph.D. Programs Foundation of Ministry of Education of
China (20060487014), Chenguang Program of Wuhan (200750731262), and HUST-SRF (2007Z015A).

Bibliography

[1] H.M. Chen, M. Ionescu, M. J. Pérez-Jiménez, R. Freund, and Gh. Păun, On String Languages Gen-
erated by Spiking Neural P Systems, Fundamenta Informaticae, Vol. 75(1–4), pp. 141–162, 2007.

[2] H. M. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun and M. J. Pérez-Jiménez, Spiking Neural
P Systems with Extended Rules, in: M. A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F. J.
Romero-Campero, eds., Fourth Brainstorming Week on Membrane Computing, vol. I, RGNC Report
02/2006, Research Group on Natural Computing, Sevilla University, Fénix Editora, pp. 241–266,
2006.

[3] H. M. Chen, T.-O. Ishdorj and Gh. Păun, Computing Along the Axon, Progress in Natual Science,
vol. 17(4), pp. 417–423, 2007.

[4] O. H. Ibarra, S. Woodworth, F. Yu and A. Păun, On Spiking Neural P Systems and Partially Blind
Counter Machines, Natural Computing, Vol. 7(1), pp. 3–19, 2008.

[5] O. H. Ibarra and S. Woodworth, Characterizing Regular Languages by Spiking Neural P Systems,
International Journal of Foundations of Computer Science, Vol. 18(6), pp. 1247–1256, 2007.

[6] M. Ionescu, Gh. Păun and T. Yokomori, Spiking Neural P Systems, Fundamenta Informaticae, Vol.
71(2–3), pp. 279–308, 2006.

[7] M. Ionescu, Gh. Păun and T. Yokomori, Spiking Neural P Systems with Exhaustive Use of Rules,
International Journal of Unconventional Computing, Vol. 3(2), pp. 135–154, 2007.

[8] Gh. Păun, Membrane Computing – An Introduction, Springer-Verlag, Berlin, 2002.

[9] Gh. Păun, Twenty Six Research Topics about Spiking Neural P Systems, in: M. A. Gutiérrez-
Naranjo, Gh. Păun, A. Romero-Jiménez, A. Riscos-Núñez, eds., Fifth Brainstorming Week on Mem-
brane Computing, RGNC Report 01/2007, Research Group on Natural Computing, Sevilla Univer-
sity, Fénix Editora, pp. 263–280, 2007.

[10] Gh. Păun, M. J. Pérez-Jiménez and G. Rozenberg, Spike Trains in Spiking Neural P Systems,
International Journal of Foundations of Computer Science, Vol. 17(4), 975–1002, 2006.

[11] The P System Web Page: http://ppage.psystems.eu

[12] X. Y. Zhang, X. X. Zeng and L. Q. Pan, On String Languages Generated by Spiking Neural P
Systems with Exhaustive Use of Rules, Natural Computing, to appear.

Xingyi Zhang was born in China on June 6, 1982. He received his master degree in applied
mathematics from Huazhong University of Science and Technology in 2006. Currently, his main
research fields are formal language theory and its applications, unconventional models of compu-
tation, especially, membrane computing. He has published several scientific papers in international
journals.
Linqiang Pan was born in Zhejiang, China on November 22, 1972. He got PhD at Nanjing Uni-
versity in 2000. Since 2004, he is a professor at Huazhong University of Science and Technology,
China. His main research fields are graph theory and membrane computing.

