
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844

Vol. IV (2009), No. 1, pp. 82-91

Development Journey of QADPZ - A Desktop Grid Computing Platform

Monica Vlădoiu, Zoran Constantinescu

Monica Vlădoiu
Petroleum-Gas University of Ploieşti, Departament of Informatics
Bd. Bucureşti, Nr. 39, Ploieşti, Romania
E-mail: mmvladoiu@acm.org

Zoran Constantinescu
Zealsoft Ltd.
Str. Tg. Neamţ, Nr. 60, Bucureşti, Romania
E-mail: zoran@unde.ro

Abstract: In this paper we present QADPZ, an open source system for desktop grid
computing, which enables users of a local network or Internet to share resources.
QADPZ allows a centralized management and use of the computational resources
of idle computers from a network of desktop computers. QADPZ users can submit
compute-intensive applications to the system, which are then automatically scheduled
for execution. The scheduling is performed according to the hardware and software
requirements of the application. Users can later monitor and control the execution of
the applications. Each application consists of one or more tasks. Applications can
be independent, when the composing tasks do not require any interaction, or parallel,
when the tasks communicate with each other during the computation. The paper
describes both QADPZ functionality and the process of design and implementation,
with focus on requirements, architecture, user interface and security. Some future
work ideas are also presented.
Keywords: desktop grid computing, distributed and parallel computing.

1 Introduction

Grid computing and Peer-to-Peer (P2P) are both concerned with the pooling and coordinated use of
resources within distributed communities, and are constructed as overlay structures that operate largely
independently of institutional relationships [1]. The Grid is foreseen as a system that coordinates dis-
tributed resources using standard, open, general-purpose protocols and interfaces to deliver nontrivial
qualities of service [1, 2]. Grid computing systems can be classified into two broad types: heavy-weight,
feature-rich systems that provide access to large-scale, intra- and inter-institutional resources, such as
clusters or multiprocessors, and Desktop Grids, in which cycles are scavenged from idle desktop com-
puters. P2P networks are typically used for connecting nodes via largely ad-hoc connections. A pure
P2P network does not have the notion of clients or servers but only equal peer nodes that simultaneously
function as both “clients” and “servers” to the other nodes on the network [3].

This paper deals with QADPZ [’kwod ’pi: ’si:], an open source system for desktop grid computing,
which enables users from a local network or Internet to share their resources [4, 5]. QADPZ (Quite
Advanced Distributed Parallel Zystem) is a system for heterogeneous desktop grid computing that allows
a centralized management and use of the computational resources of idle computers from a network of
desktop computers. QADPZ users can submit compute-intensive applications to the system, which are
then automatically scheduled for execution. Applications can be independent, when the composing tasks
do not require any interaction, or they can be parallel, when the tasks communicate with each other
during the computation. Thus, the system provides support for both task- and data-parallelism. Here are
some important features of QADPZ [4]:

• native support for multiple operating systems: Linux, Windows, MacOS and Unix;

• support for legacy applications, which for different reasons could not be rewritten;

• object-oriented development framework that supports either low-level programming languages as
C and C++, or high-level language applications (such as Lisp, Python, or Java), and that provides
for using such applications in a computation;

Copyright © 2006-2009 by CCC Publications



Development Journey of QADPZ - A Desktop Grid Computing Platform 83

• master worker-model that is improved with some refined capabilities: pushing of work units,
pipelining, sending more work-units at a time, adaptive number of workers, adaptive timeout in-
terval for work units, and the use of multithreading [6];

• a master can act as a client to another master. That makes it possible to create a distributed master,
which consists of independent master nodes which communicate with each other, thus creating a
virtual master;

• extended C/C++ API, which supports creation of lightweight tasks and parallel computing, using
the message passing paradigm (MPI) [7];

• low-level optimizations: on-the-fly compression and encryption for communication. To increase
performance, an experimental, adaptive compression algorithm, which can transparently choose
from different algorithms, is also provided;

• efficient communication by using two different protocols (UDP and TCP/IP);

• autonomic computing characteristics: self-knowledge, self-configuration, self-optimization and
self-healing [8].

2 Justification for a new desktop grid system

The idea of using the idle computational resources from existing desktop computers is not new,
though the use of such distributed systems, especially in a research environment, has been limited. This
is due to the lack of supporting applications, and challenges regarding security, management, and stan-
dardization. The need to develop QADPZ has arisen from the following main reasons:

o many existing systems were highly specialized in a very limited set of computationally challeng-
ing problems, and hence did not allow the execution of a general application. For example,
SETI@home was programmed to solve one specific task: the analysis of data from telescopes
[9, 10]. Similarly, distributed.net aimed to test the vulnerability of some particular encryption
schemes [11];

o at the time of the development, the source code was generally not available, hence making difficult the
extension or analysis of any new, non-standard application. Commercial systems such as Entropia,
Office Grid and United Devices offered numerous features, but they were not free [4, 12]. On
the other hand, some open source systems were available, e.g. XtremWeb [13], BOINC [14, 15],
Condor [16], but they were limited in functionality;

o very few existing systems allowed specific considerations to be made wrt. challenges of computation-
ally intensive applications, especially those of scientific computing and visualization [4]. Systems
like BOINC and Bayanihan [12] allowed only task parallelism, where there was no communica-
tion between the running tasks during a computation. Most computationally intensive applications
need such communication;

o most of the existing systems usually had a complicated deployment procedure, requiring high-level,
privileged access to the desktop computers, which made very hard to use such systems on a larger
scale, and also made further maintenance of the computers complicated - e.g. Condor and Globus
Toolkit [12, 17, 18];

o many of today’s networks are heterogeneous, thus requiring a distributed computing system with sup-
port for various architectures and different type of operating systems. The Java language provides
the incentives for such requirements, and many Java based systems emerged: JXTA, Bayanihan,
XtremWeb, Javelin [12]. There were very few systems supporting different architectures and oper-
ating systems in native mode, some of them being Condor and BOINC. There were also systems,
which run only on one type operating system, either Windows or Unix, thus limiting their usability
in heterogeneous environments - for instance, Entropia [12].



84 Monica Vlădoiu, Zoran Constantinescu

3 QADPZ Requirements

Given the reasons mentioned in the previous section, we have set up a set of requirements that a
successful desktop grid computing system should satisfy to support computationally intensive applica-
tions. The overall goal of the system was to be friendly, flexible and suitable to a variety of needs. The
main prerequisite has therefore been an open architecture that could evolve in pace with the needs and
challenges of the real world.

Two sets of requirements for QADPZ have been specified: one for the system as a whole, mostly
from a functional point of view, and another for the system interface. Additionally, a set of non-functional
requirements that concern the development of the platform itself has been established. System require-
ments are concerned mainly with sharing and management of both resources and application jobs, in a
heterogeneous environment. They also involve performance and usability of the system, as required by
our conceptual model (extended master-worker). The system interface covers both user interfaces and
programming interfaces [4, 6].

The system requirements are listed further on:

o resource sharing: idle computational cycles, storage space, specific data, etc. of the desktop machines
which contribute to the system;

o resource management: efficient management of the available shared resources, which remain under
the control of their owners via use policies and specific mechanisms;

o job management: users should be able to submit, monitor and control the execution of computational
jobs on the system;

o heterogeneity: ability to work on a network of heterogeneous desktop computers, with different archi-
tectures (Intel, RISC, etc.) and different operating systems (UNIX, Windows, Mac OS, Linux);

o simple installation and minimal maintenance;

o parallel programming support: support for different parallel programming paradigms, for example
both task- and data-parallelism, by using well known standards;

o network support: ability to work both in a LAN environment and in Internet;

o communications: the higher level communication protocol should rely on both TCP/IP and UDP/IP,
this dual support increasing the efficiency;

o autonomous features: support for different autonomicity aspects: self-management, self-optimization,
self-healing, self-configuration, and self-knowledge;

o provide performance measurements, which could be exploited for better usage of the available re-
sources;

o on-line/off-line support for both batch (the user submits jobs which will be executed at a later time)
and interactive applications (the user can inspect the partial result and interact with the execution
of the application).

The interface requirements can be split up into two parts: first, the user interfaces that is the graphical
interface, which the human users use to access the system. Using this interface, the users can either
monitor or control the behavior of the system. The other interface is the programming interface (API),
which allows different user applications to interact with the system. The interface requirements are
enlisted beneath:

o personalization: different levels of access for various users, according to their personal skills and
preferences;

o job management interface: a simple, platform independent, graphical user interface, to allow submis-
sion, monitoring and control of the different computational jobs;

o resource sharing interface: a simple, intuitive graphical user interface, which allows the control of
shared resources.

The main non-functional requirements concern object oriented programming, for its well-known
advantages, and open source development, which is a natural choice for modern research, as it encourages
integration, cooperation and boosting of new ideas [19].



Development Journey of QADPZ - A Desktop Grid Computing Platform 85

Figure 1: The QADPZ close-up architecture

4 QADPZ Architecture

The QADPZ system has a centralized architecture, based on the client-server model, which is the
most common paradigm used in distributed computing. In our case, the server manages the available
computational resources of the desktop computers. The client is a process that needs computational
services in order to accomplish a certain work. It sends a request to the server, in which it asks for the
execution of a concrete task that is covered by the services. Usually, the server carries out the task and
sends back the result to the client. In our situation, the server has two parts: a single master, which
accepts new requests from the clients, and multiple slaves, which handle those requests. The system
consists of three types of entities: master, client, and slave (Figure 1).

The control and data flow in the system are separated. The data files (represented by binary, input,
and output files) that are necessary to run the applications are not sent to the master. They are stored
on one or more data servers. The smallest independent execution unit of the QADPZ is called a task.
To facilitate the management, multiple tasks can be grouped into jobs. Different types of jobs can be
submitted to the system: programs written in scripting languages (e.g. LISP, Java, Python), legacy
applications and parallel programs (MPI). A job can consist of independent tasks, which do not require
any kind of communication between them. This is usually called task parallelism. Jobs can also consist
of parallel tasks, where different tasks running on different computers can communicate with each other.
Inter-slave communication is accomplished using a MPI subset.

The current implementation of QADPZ considers only one central master node. This can be an
inconvenience in certain situations, when computers located in different networks are used together.
However, our high-level communication protocol between the entities allows a master to act as a client
to another master, thus making possible to create a virtual master, consisting of independent master
nodes, which communicate with each other.

4.1 Master

The main role of the master is to start and control the tasks, and to keep track of the availability, ca-
pabilities and configuration of the slaves. The master is responsible for managing the available resources
and it has always an up-to-date overview of the system resources. It knows which slaves can accept
jobs for execution and how to contact them. It schedules also the computational tasks submitted by any
authorized user. Jobs are sent to the appropriate slave based on the hardware and software requirements
from the job description. Tasks can be started, stopped, or re-scheduled by the master. Users create tasks
that can be submitted to the master by using a client, which acts as an interface to the system. To make



86 Monica Vlădoiu, Zoran Constantinescu

Figure 2: Simplified UML Diagram of QADPZ’s architecture

this possible, the master keeps a database of authorized users (Figure 2).

4.2 Slave

Each computer contributing with computing resources to the system is called a slave and has two
roles: first, it has to report the shared resources to the master. These are mainly computational resources
(CPU cycles), but can also be storage space, input or output devices etc. The slave periodically sends to
the master information about the system, which describes the hardware architecture of the slave (CPU
type, CPU speed, physical memory, etc.), the software environment available on that architecture (op-
erating system, available application or libraries), and the resources available on that slave (Figure 5).
Secondly, the slave can accept computational jobs from the master. After accepting a computational re-
quest from the master, the slave downloads the corresponding binaries and data files for the task, executes
the task, and uploads the result files after finishing. This can be done only when the slave is free, and any
interactive, local user is not using the resources. The presence of a user logging into a slave computer
is automatically detected and the task is killed or moved to another slave to minimize the disturbance to
the regular computer users. The slave decides for itself whether or not to accept a computational job to
be run (by setting some configuration parameters). The user can configure different times of day when
the slave may accept computational jobs. It can also disable the slave at any time. The slave component
runs as a small background process on the user’s desktop. It starts automatically when the system starts.
The program does not need any special privileges to run, which makes it very easy to install and control
by an ordinary user. Below we present a simple example on how to create a computational application
to be executed on a slave.

// SlaveDumb - simple example of how to create a computational job
#include "SlaveServ.h"
// callback functions for notification from the slave service

void taskStop ()
{ isTaskStop = 1; DBUG_PRINT("taskStop"); }

void taskCtrl (const char *arg)
{ isTaskCtrl = 1; DBUG_PRINT("taskCtrl arg=%s", arg); }
// this is the exec loop on each task-thread
int taskExec (char *data, char *datares, char *userData)
{
int isFinished = 0; DBUG_PRINT("task started");
// set callback functions
q2adpz_slv_setcb_task_stop (taskStop);
q2adpz_slv_setcb_task_ctrl (taskCtrl);



Development Journey of QADPZ - A Desktop Grid Computing Platform 87

DBUG_PRINT("input data ’%s’", data);
// start main task loop
while (! isFinished) {
//do some crunching of the data
{ ... if (ok) isFinished = 1; }
//task needs to be stopped
if (isTaskStop) { ... DBUG_PRINT("task stop executed"); break; }
if (isTaskCtrl) {

... q2adpz_slv_task_status (task_ok, "task ctrl");
DBUG_PRINT("info", ("task ctrl executed"); }

//if crunching finished
if (isFinished) {

DBUG_PRINT("task finished res=’%s’", datares); break; }
} // while

}

4.3 Client

The client represents the interface for submitting jobs in the system. There are two execution modes
for the client: a batch mode and an interactive mode. In the batch mode, a project file describes a job by
specifying the required resources and how to start the tasks. This information is sent to the master, which
is responsible for scheduling the tasks. The client can detach from the master and connect later for the
results. Each project is described by using the XML language. In the interactive mode, the client remains
connected to the master for the entire execution of the job. Also, the client can get direct connection to
each of the slaves involved in the computation. The client has a lot of freedom over the creation and
controlling of new tasks: it can dynamically create new tasks, send messages to the tasks already in
execution, and receive feedback from the running tasks, either through the master node, or by means of
direct communication with the slaves running the respective tasks. An example of a job description in
XML is listed beneath.

<Job Name="executable_example">
<Task ID="1" Type="Executable">
<RunCount>3</RunCount>
<DataPathPrefix>./datafiles/</DataPathPrefix>
<FilesURL>http://www-data/qadpz/cgi-bin</FilesURL>
<InputFile Constant="Yes">simple/source.txt</InputFile>
<OutputFile>simple/dest.txt</OutputFile>
<TaskInfo>

<Memory Unit="MB">1</Memory>
<Disk Unit="MB">1</Disk>
<TimeOut>3600</TimeOut>
<OS>Linux</OS>
<CPU>i386</CPU>
<URL>
http://www-data/qadpz/app/lib/Linux/i386/libslv-app.so

</URL>
<Executable Type="File">simple</Executable>

</TaskInfo>
<TaskInfo>

<Memory Unit="MB">1</Memory>
<Disk Unit="MB">1</Disk>
<TimeOut>3600</TimeOut>
<OS>Win32</OS>
<CPU>i386</CPU>
<URL>
http://www-data/qadpz/app/lib/Win32/i386/slv_app.dll

</URL>
<Executable Type="File">simple.exe</Executable>

</TaskInfo>
<TaskInfo>

<Memory Unit="MB">1</Memory>
<Disk Unit="MB">1</Disk>
<TimeOut>3600</TimeOut>
<OS>SunOS</OS>
<CPU>sun4u</CPU>
<URL>
http://www-data/qadpz/app/lib/SunOS/sun4u/libslv-app.so



88 Monica Vlădoiu, Zoran Constantinescu

</URL>
<Executable Type="File">simple</Executable>

</TaskInfo>
</Task>

</Job>

4.4 Jobs, tasks and subtasks

The QADPZ users can submit, monitor, and control computing applications to be executed on the
computers that share resources. Tasks can be binary programs, which can run on any of the sharing
computers. A task comes in the form of an executable program, compiled for a specific architecture
and operating system. For better performance, a task can be also in the form of a shared (dynamic)
library, which can be more efficiently loaded by the slave program. As an alternative to native binary
programs for a specific platform, a task can also be an interpreted or precompiled program. For example,
it can be a compiled Java application or an interpreted program (e.g. Perl, Python), which further needs,
respectively, a Java Virtual Machine or a specific interpreter, on the host computer.

Multiple tasks, which are related to each other, can be grouped into a job that is actually what a user
submits to the system (see job life in Figure 3). A job can be composed of one or more tasks. Using jobs
provides for easier structuring and management of the computational applications for both the user and
the system. Each job is assigned uniquely to one user, however, a user can have multiple jobs submitted
at the same time to the system. The tasks that correspond to a job can be independent or not at execution
time. Tasks can further be divided into subtasks, consisting of finer work units that are executed within a
task. Subtasks are used for interactive applications, which require permanent connection between a client
and the slaves. They are usually generated at run-time at the client, and sent for execution to an already
running task, which can solve them. The main reason for having subtasks is to improve the efficiency of
smaller execution units without the overhead of starting a new task each time.

Figure 3: QADPZ job life

4.5 User interface

The QADPZ user interface provides for a user-friendly environment, in which the user can interact
with the system. This interaction involves mainly the submission, the monitoring, and the management
of the submitted computational applications, along with the resource monitoring and control. The first
interface is the job-monitoring interface that is a web-based interface that provides detailed information
about all existing jobs in the system. The user can browse the jobs, see their status, and view their
component tasks. S/he can also easily create new jobs and tasks. Using this interface, each job can be
stopped or deleted (Figure 4). The second interface is also web-based and provides information related to
the resources in the system. Basically it gives a list of the slaves registered in the system and their current
status (Figure 5). The owner of a desktop computer running a slave is given an interactive application,



Development Journey of QADPZ - A Desktop Grid Computing Platform 89

which permits easy configuration of the slave. The user has complete control over the slave running on
her computer.

Figure 4: Job-monitoring web interface Figure 5: Slave information/configuration interface

5 Security

Because of the unreliability of the UDP protocol, which is our first option for the low-level com-
munication protocol due to its benefits, it is not guaranteed that the execution tasks arriving to the slave
computers are undoubtedly sent by the master. This is a serious security threat since it allows for a ma-
licious hacker to submit any piece of code to the slave nodes (IPspoofing). For that reason, and on the
cost of a decreased performance, all communication from clients to master and from master to slaves
is encrypted and/or signed. Particularly, the data flow from client to master has to be authorized by the
name and the password of a QADPZ user, and encrypted using a master public key. A master private
key signs the data flow from master to slaves and the authenticity is verified using a master public key
on slave nodes.

It is important to note that the data flow from slaves to master and from master to clients is neither
encrypted nor signed, which means that a malicious hacker can monitor (packet sniffing) or alter (IP-
spoofing) the data or control information arriving back to master or client nodes, and thus put the slave
nodes and/or the master node out of operation, modify the resulted data that are submitted by the slaves,
or do any other kind of harm to the computational process. In other words, the current QADPZ security
scheme is designed to protect the security of the computers in the network, i.e. a malicious hacker cannot
submit an alien piece of code to be executed instead of a user computational task. However, this scheme
does not protect the QADPZ user data. We plan to provide optional data integrity in the future versions
of the system.

Security of the system is handled in two ways. On the one hand, only registered users are allowed to
submit applications for execution. This is done by using a user/password scheme, and allows a simple
access control to the computational resources. The QADPZ system manages its own user database,
completely independent of any of the underlying operating systems, thus simplifying users’ access to
the system. The QADPZ administrator can create new users by using some supporting tools. On the
other hand, security involves the encryption of messages exchanged between various components of
QADPZ. This is done by using public key encryption, and provides an additional level of protection
against malicious attacks.

6 Conclusions and future work

The present paper reveals the development experience of QADPZ, a desktop grid computing envi-
ronment. We summarized the main features of the system that make it a powerful platform for running
computationally intensive applications. The reasons that have justified the endeavor of developing a new
desktop grid platform are also presented. The QADPZ requirements have included all the core capabil-
ities that a successful desktop grid system should provide [12]. We presented the detailed architecture
of the system, along with some of the design details. When we started this work, our main goal was to
build an easy to use, open source system that provides the complex functionality that users expect from



90 Monica Vlădoiu, Zoran Constantinescu

such a platform [4, 12]. It is worth mentioning that QADPZ has over a thousand users who have already
downloaded it [20]. Many of them use it for their daily tasks and we have got valuable feedback from
them [4].

Further on we present some future work ideas that aim to improve the QADPZ system:

o many areas of the QADPZ system are incomplete. For example, many large scale parallel problems
require checkpointing: running a parallel application for hours or even days and loosing all results
due to one failing node is unacceptable;

o data integrity is an important issue, especially in an open environment (Internet);

o improved support for user data security: computation results data can be encrypted and/or signed so
that the user of the system can be sure the received data is correct;

o users could be provided with different scheduling algorithms to choose from, according to the type of
their problem;

o more complete implementation of the MPI layer and development of a complete library of the collec-
tive communication routines;

o adding a set of transparent profiling tools for evaluating the performance of the different components,
which is crucially important when running parallel applications;

o decentralizing the system by employing P2P services, which would permit to a group of users to form
an ad-hoc set of shared resources; moving towards a P2P architecture;

o interconnection with a grid computing environment that must be decentralized, robust, highly avail-
able, and scalable [21], while efficiently mapping application instances to available resources in
the system.

These future developments of QADPZ subscribe to the belief that the vision that motivates both
Grid and P2P, i.e. that of “a worldwide computer within which access to resources and services can be
negotiated as and when needed, will only become real if we are successful in developing a technology
that combines important elements of P2P and Grid computing” [1].

Bibliography

[1] I. Foster, and A. Iamnitchi,On death, taxes, and the convergence of peer-to-peer and grid computing,
in 2nd Int. Workshop on P2P Systems IPTPS 2003, pp. 118-128, 2003.

[2] I. Foster, C. Kesselman, The grid: blueprint for a new computing infrastructure, Boston: Morgan
Kaufmann, 2004.

[3] J. I. Khan and A. Wierzbicki, Eds., Foundation of Peer-to-Peer Computing, Special Issue, Elsevier
Journal of Computer Communication, Volume 31, Issue 2, Feb. 2008.

[4] Z. Constantinescu, A Desktop Grid Computing Approach for Scientific Computing and Visualization,
PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2008.

[5] QADPZ, [online] Available: http://qadpz.sourceforge.net. [Accessed August 1, 2008].

[6] M. Vladoiu, Z. Constantinescu, An Extended Master-Worker Model for a Desktop Grid Computing
Platform (QADPZ), in 3rd Int. Conference on Software and Data Technologies -ICSOFT 2008, pp.
169-174, 2008.

[7] Z. Constantinescu, J. Holmen, P. Petrovic, Using Distributed Computing in Computational Fluid
Dynamics, in 15th Int. Conf. Parallel Computational Fluid Dynamics ParCFD-2003, pp. 123-129,
2003.

[8] Z. Constantinescu, Towards an autonomic distributed computing environment, in 14th Int. Workshop
on Autonomic Computing Systems, 14th Int. Conf. on Database and Expert Systems Applications
DEXA 2003, pp. 694-698, 2003.



Development Journey of QADPZ - A Desktop Grid Computing Platform 91

[9] D. P. Anderson, J. Cobb , E. Korpela , M. Lebofsky, D. Werthimer, SETIhome: an experiment in
public-resource computing, Communications of the ACM, vol. 45, no. 11, pp. 56-61, 2002.

[10] SETI@home [online] Available: setiathome.ssl.berkeley.edu [Accessed May 5, 2003].

[11] Distributed.net [online] Available: http://distributed.net. [Accessed May 5, 2008]

[12] M. Vladoiu, Z. Constantinescu, A Taxonomy for Desktop Grids from Users Perspective, in Int.
Conference on Parallel and Distributed Computing - ICPDC 2008, World Congress on Engineering
(WCE 2008), pp. 599-605, 2008.

[13] C. Germain, V. Neri, G. Fedak and F. Cappello, XtremWeb: Building an Experimental Platform for
Global Computing, in 1st IEEE/ACM Workshop on Grid Computing Grid2000, pp. 91-101, 2000.

[14] D. P. Anderson, BOINC: A System for Public-Resource Computing and Storage, in 5th IEEE/ACM
International Workshop on Grid Computing, pp. 365-372, 2004.

[15] BOINC - Open Source Software for Volunteer Computing and Grid Computing [online] Available:
http://boinc.berkeley.edu. [Accessed November 25, 2007].

[16] J. Basney, M. Livny, Managing network resources in Condor, in Proc. of the 9th IEEE Symposium
on High Performance Distributed Computing (HPDC9), pp. 298-299, 2000.

[17] Globus [online] Available: http://www.globus.org [Accessed May 15, 2008].

[18] I. Foster, and C. Kesselman., Globus: A Metacomputing Infrastructure Toolkit, Intl J. Supercom-
puter Applications, vol. 11, no. 2, pp. 115-128, 1997.

[19] J. Cassens, Z. Constantinescu, Free Software: An Adequate Form of Software for Research and
Education in Informatics?, in LinuxTag 2003 Conference, pp. 5-10, 2003.

[20] Sourceforge, [online] Available: http://sourceforge.net [Accessed April 1, 2008].

[21] F. Berman, G. Fox, A.J.G. Hey, Grid computing: making the global infrastructure a reality, New
York: J. Wiley, 2003.

Monica Vlădoiu got her MSc (1991) and PhD (2002) in the Department of Computer Science of
The Polytechnic University of Bucharest, Romania. Since then, she has been with the Dept. of
Informatics, Petroleum-Gas University of Ploieşti (UPG), Romania. Her main research interests
include digital libraries, learning objects, multimedia databases, reflective and blended learning,
desktop grid computing and e-society. She has published over 30 research papers concerning these
topics and she has (co-) authored 3 books.
Zoran Constantinescu got his MSc (1997) in the Dept. of Computer Science of The Polytechnic
University of Bucharest, Romania. Since then, he has been working both in the software engineer-
ing industry and in Higher Education. He got his doctoral degree in Computer Science (2008),
from The Norwegian University of Science and Technology, Trondheim, Norway. His research
interests include parallel and distributed computing, desktop grid computing, GPS systems and
embedded systems. He has published over 20 research papers dealing with the above mentioned
topics.


