Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. III (2008), No. 2, pp. 183-195

CoMDEVALCO framework - the modeling language for procedural
paradigm

Bazil Parv, Ioan Lazdr, Simona Motogna

Abstract: This work is part of a series referring to COMDEVALCO - a framework
for Software Component Definition, Validation, and Composition. Its constituents
are: a modeling language, a component repository and a set of tools. This is the
first paper describing the object-oriented modeling language, which contains fine-
grained constructions, aimed to give a precise description of software components.
The current status of the language reflects the procedural paradigm constructs.
Keywords: Software/Program Verification, Validation, Modeling methodologies,
Computer-aided software engineering, Flow charts, Object-oriented design methods,
Testing tools.

1 Introduction

Two main forces drive the software development today: complexity and change. Software develop-
ment community looks for methods and practices to deal with these challenges.

Complexity in software development [6] is the same as in mathematics, dealing with problem-solving.
The usual way of solving it is its reduction by reorganization. Brooks [2] makes a distinction between
essential and accidental complexity. Essential complexity belongs to the problem to be solved and cannot
be reduced or eliminated. Accidental complexity belongs to its solution, being created when fine-grained,
general-purpose abstractions are used to directly implement coarse-grained, problem-specific concepts.
It can be reduced or even eliminated by increasing the level of abstraction, i.e. by using more coarse-
grained, problem-specific concepts (classes).

The other challenge in software development is change management. how to build software systems
able to change. Software needs to change in response to changes in its operational environment and in
its requirements. Sources of change are both in the problem domain (invalidating existing requirements,
adding new ones) and in the solution domain, due to technological evolution.

Both challenges can be addressed in a disciplined manner using models, which increase the level of
abstraction and allow for the automation of the software development process. Model-driven develop-
ment (MDD) processes propose the creation of extensive models before the source code is written. An
example of MDD approach is the Object Management Group’s Model Driven Architecture [12] standard.
Agile versions of MDD approaches have been defined in order to better deal with change management.
Agile MDD processes [1] create agile models (models “just barely good enough”) that drive the over-
all development efforts, instead of creating extensive models before writing source code. Another agile
approach, Agile MDA [8], emphasizes on complete executable models [9].

Our work follows the idea of executable models, proposing an object-based modeling language that
fits the procedural paradigm and allows construction and execution of models. Software components
considered in our approach to the procedural paradigm are Program (the only executable), Procedure,
and Function, and the software development process is component-based and model-driven. The mod-
eling language constructs allow both precise definition of these components (called program units), and
their verification and validation (V & V), by simulating their execution. Once these components pass
the V & V process, they can be stored in a component repository, ready for later use in the development
process.

The structure of this paper is as follows. After this introductory section, the next one is discussing
current status, problems, and ideal properties of a modeling language. The third section presents the
proposed modeling language, starting with low-level constructs, followed by statements, and finally

Copyright © 2006-2008 by CCC Publications

184 Bazil Parv, Ioan Lazir, Simona Motogna

program units. The current status of our work is described in the fourth section, while the last one
contains some conclusions and plans further efforts.

2 Modeling process: current status, problems, and desired features

2.1 Modeling languages

It is generally recognized that the use of models raises the level of abstraction and favors the au-
tomation of the software development process. Unfortunately, as Greenfield and Short stated in [6], the
largest impediment to achieve these tasks was “the promulgation of imprecise general-purpose modeling
languages as both de facto and de jure standards”, namely UML.

Martin Fowler [5] identifies three different UML goals: informal design (sketching), model-driven
development (blueprinting), and direct execution (model interpretation), noticing a similar and indepen-
dent opinion made by Steve Mellor [8]. The conclusion is that UML succeeded in the first goal and failed
in the others; the reasons for this failure, as they are discussed in [6], are: (1) lack of precision, (2) poor
support for component-based development, and (3) weak extensibility mechanisms.

UML 2 and its Action Semantics [15] provide the foundation to construct executable models, but
the standardization efforts for defining a subset of actions sufficient for computational completeness are
still in progress [14]. In order to make UML a computational-complete specification language, there
are some tools [3, 17, 18, 11] which have defined non-standard subsets of actions. Other issues related
to UML 2 refer to the graphical notations and textual notations. The current version of UML does not
define graphical notations for easy manipulation of UML elements. Moreover, there are UML elements
(e.g. UML structured activity nodes) without a proposed graphical notation, and textual notations for
behavioral elements are still in the process of standardization [14].

2.2 Component-based development and the modeling process

The process of component-based software development (or CBD for short) has two sub-processes
more or less independent: component development process and system development process. Naturally,
the requirements concerning the components are derived from system requirements; the absence of a
relationship, such as causal, may produce severe difficulties in both sub-processes mentioned above.

The system construction by assembling software components [4] has several steps: component speci-
fication, component evaluation, component testing, and component integration. The system development
sub-process focuses on identifying reusable entities and selecting the components fulfilling the require-
ments, while in the component development sub-process the emphasis is on component reuse: from
the beginning, components are designed as reusable entities. Component’s degree of reuse depends on
its generality, while the easiness in identification, understanding, and use is affected by the component
specification. The sole communication channel with the environment is the component’s interface(s).
In other words, the client components of a component can only rely on the contracts specified in the
interfaces implemented by the component. Thus, it is obvious that component development must be
interface-driven.

In our opinion, the main CBD challenge is to provide a general, flexible and extensible model,
for both components and software systems. This model should be language-independent, as well as
programming-paradigm independent, allowing the reuse at design level.

The design process of a component-based system [7] follows the same steps as in the classical meth-
ods: the design of architecture, which depicts the structure of the system (which are its parts) and the
design of behavior (how these parts interact in order to fulfill the requirements). The structural descrip-
tion establishes component interconnections, while behavioral description states the ways in which each
component uses the services provided by interconnected components in order to fulfill its tasks.

CoMDEVALCO framework - the modeling language for procedural paradigm 185

2.3 Ideal properties of a modeling language

Our discussion here follows the general uses of a modeling language identified by Martin Fowler
[5] and Steve Mellor [8]: informal design, model-driven development, and direct execution. In order to
fulfill these goals, a modeling language should have: (1) good degree of precision, (2) good support for
CBD, (3) good support for Agile MDA processes, and (4) good extensibility mechanisms.

In order to be precise, a modeling language needs to have fine-grained constructs, which allow both
the complete definition of computing processes and the simulation of their execution. The language ele-
ments should cover low-level constructs referring to data types, expressions, program state and behavior
(body of statements).

As we stated above, in order to offer a good support for CBD, a modeling language needs to build
general, flexible and extensible models for both components and software systems. The resulting models
should be both language-independent and programming-paradigm independent.

In order to offer a good support for agile MDA processes, a modeling language should provide a
metamodel, together with graphical and textual notations for easy manipulation of language constructs.
The metamodel should satisfy two important properties: computability and completeness.

The extensibility of a modeling language means the extensibility of its set of constructs, like data
types, expressions, statements, and program units.

3 A modeling language proposal: COMDEVALCO solution

This section discusses in more detail our proposal of a modeling language, part of a framework for
component definition, validation, and composition.

The proposed solution is COMDEVALCO - a conceptual framework for Software CoOMponents DEfinition,
VALidation, and Composition. Its constituents are meant to cover both CBD-related sub-processes de-
scribed in 2.2: component development and component-based system development.

The sub-process of component development starts with its definition, using an object-oriented mod-
eling language, and graphical tools. The modeling language provides the necessary precision and con-
sistency, and the use of graphical tools simplifies developer’s work, which doesn’t need to know the no-
tations of the modeling language. Once defined, component models are passed to a V & V (verification
and validation) process, which is intended to check their correctness and to evaluate their performances.
When a component passes the V & V step, it is stored in a component repository, for later (re)use.

The sub-process of component-based system development takes the components already stored in
repository and uses graphical tools, intended to: select components fulfilling a specific requirement,
perform consistency checks regarding component assembly and include a component in the already
existing architecture of the target system. When the assembly process is completed, and the target system
is built, other tools will perform V & V, as well as performance evaluation operations on it.

Constituents of the conceptual framework are: the modeling language, the component repository
and the toolset. Any model of a software component is described as a compound object, using the
elements of the object-based modeling language. The component repository represents the persistent
part of the framework and its goal is to store and retrieve valid component models. The toolset is aimed
to help developers to define, check, and validate software components and systems, as well as to provide
maintenance operations for the component repository.

Starting in a top-down manner, program units considered are Program (the only executable) and
proper software components specific to the procedural paradigm - Procedure and Function (see Figure
1). Each of these software components has a name, a state, and a body; the state is given by all Variables
local to the component, and the body is, generally speaking, a Statement.

According to the imperative paradigm, the program execution is seen as a set of state changes, i.e.
the execution of a statement changes the Value of a Variable, usually by evaluating an Expression.

186 Bazil Parv, Ioan Lazir, Simona Motogna

—body
Program > Statement
\f—state

| State —

| -vayiables

Procedure| | Function Variable

Figure 1: COMDEVALCO modeling language. Main constructs in the procedural paradigm
We describe below, in a bottom-up manner, the language elements as they are considered so far.

3.1 Low-level constructs

Basic language constructs are Type and Declaration. Type class abstracts the concept of data type,
while a Declaration object is used to associate a specific Type object to a name (identifier). This corre-
sponds to explicit variable declaration in imperative programming languages.

The next important concept is Value. Each Value object encapsulates a value of a specific Type.
Values are fundamental in our model, because a variable represents an alternate name for a value stored
in the memory, a function returns a value, or, more generally, the process of evaluating an expression
returns a value.

Having these facts in mind, we designed the Expression class hierarchy shown in Figure 2. The
root of the hierarchy, Expression, is abstract and has a single abstract operation, getValue(), overriden by
subclasses and returning a Value result. The concrete specializations of Expression are: Value, Variable,
BinaryExpression, UnaryExpression, and DefinedFunction.

Expression
+getValue ()

T

Value Variable DefinedFunction
—value: String -name: String —name: String s
—dataType: Type —walue: Value —expr: Expression
+getValue () +getValue () tgetValue ()
+getDataType () +getiame {) +tgetName ()
+zetValue () +getDataTypei) —evaluate ()
+getValueString () +zetValue ()

BinaryExpression| |UnaryExpression

—op: Operatox —op: Operator
-ol: Expression —o: Expression
—nZ: Fuxpnression +getValus ()

+getValue ()

Figure 2: Expression class hierachy

Value is the simplest Expression descendant, its instances corresponding to typed literals (constants).
Its proper operations are: getDataType(), which returns the data type of the value stored in the object,

CoMDEVALCO framework - the modeling language for procedural paradigm 187

getValueString(), returning the value as a string, and setValue().

Variable is probably one of the most important subclasses of Expression, having multiple uses in
our model: (1) a Variable is a simple Expression; (2) all Statement objects deal with Variable instances,
and (3) the state of a program unit is seen as a collection of Variable objects. According to the general
definition, each Variable object has a name (identifier) and a value (a Value object). Its own operations
are: getName(), getDataType(), and setValue().

Specific expression classes considered so far are BinaryExpression and UnaryExpression, having
an operator and two, respectively one expression operands. The extensible Operator class implements
evaluate() operations for all operand types, called by getValue() code in BinaryExpression and UnaryEx-
pression.

DefinedFunction object corresponds to a one-argument function call. Its instance variables are the
name of the function and its actual parameter, an expression.

3.2 Statements

Statement class hierarchy employs Composite design pattern, with subclasses SimpleStatement and
CompoundStatement. A CompoundStatement object contains a list of Statement objects; both concrete
simple and compound statement objects are treated uniformly.

As Figure 3 shows, Statement class is abstract and represents the root of all simple and compound
statement classes. Its single abstract operation is execute(), which usually produces a state change.
Statement’s concrete subclasses will implement this operation accordingly.

Statement

—descx
+execute ()

—statements

SimpleStatement CompoundStatement

+execute ()
+add () e
+remove ()
+zize ()
+()

[I I I]
AssignmentStatement| (| InputStatement| |QutputStatement| |LoopStatement| (BranchStatement
-var —var —var —body -test

—EXpr +execute {) +execute () A —thenStatement
+execute () —elssStatement

+execute ()

CallStatement I I
B ForStatement RepeatStatement| |WhileStatement

—inkrgs
—inOQutirgs -minCounter —test —test
—cutdrgs -maxCounter +execute () +execute ()
+exescute () +counter
+execute ()

Figure 3: Statement class hierachy

SimpleStatement subclasses cover all important control statements in any imperative programming
language: AssignmentStatement, CallStatement, InputStatement, OutputStatement, LoopStatement, and
BranchStatement.

AssignmentStatement object takes an Expression and a Variable; after its execution, the variable takes
the value of that expression. InputStatement takes only a Variable, being considered as a special kind of
assignment: its execution means reading a value from standard input, evaluating and assigning it to the
considered variable. The execution of an OutputStatement extracts the value of its Variable to standard
output.

CallStatement object corresponds to a procedure call. Its instance variables are the procedure being

188 Bazil Parv, Ioan Lazir, Simona Motogna

called (the callee object) and actual (call) parameters, whose values belong to the caller object. According
to the definition of a Procedure object (see next subsection), three different parameter lists are needed,
corresponding to in-, in-out, and out parameters. The execution of this statement has five steps: (1)
extracting the values of in- and in-out parameters from the caller state; (2) building the callee state; (3)
running the callee object; (4) extracting the values of in-out and out parameters from the callee state and
(5) updating the state of the caller object with these values.

All loop statements execute repeatedly their body, a Statement object. Three different loop statements
were considered in our design, considered as subclasses of the abstract LoopStatement: ForStatement,
RepeatStatement, and WhileStatement.

In the case of a ForStatement object, the number of iterations is known a priori, and its execution
uses a counter Variable, with values ranging from lower to upper bounds. WhileStatement and Repeat-
Statement objects use a test Expression to continue the iterative process. Their execution differs by the
test strategy, i.e. evaluate test then execute body (while), respectively execute body then evaluate test
(repeat).

BranchStatement objects correspond to if-then-else constructs. The condition to be checked is an
Expression object, and both branches are Statement objects. Its execution evaluates test expression and
then, based on its value, executes the corresponding statement.

3.3 Program units

As we already stated, the program units considered so far are Program, Procedure, and Function (see
Figure 4), specific to the procedural paradigm.

Program is the only executable software component, having a name, a state, and a body; the state is
made up by all Variables local to the component, and the body is a Statement object. The only operation
of a Program object is its run() method, implemented by a call to the execute() method of its body.

—body
Program = Statement
—niame —descr
+getHame () +execute ()
tgetStatel)
+run)
ﬁs —state
State Variable
+add{) -variables —naTe
= +remove () =g
Procedure Function| [{777700 < Tgetvalus)
—-inParams —inFParams tallocate() +tgetiame ()
A nOMEDE EatG SEEaTe +deallocate () +getDataType ()
—sutParams +get{) +zetValues ()

Figure 4: Program units class hierachy

Proper software components are Procedure and Function. As in the imperative programming world,
a Procedure declaration must define its name, formal parameters, local state and procedure body. Con-
sequently, it is easy to consider Procedure as a Program subclass; the proper instance variables of the
Procedure class are the lists of in-, in-out, and out parameters, needed for a complete implementation of
execute() method from CallStatement class, discussed in 3.2.

The concept of a user-defined function in imperative programming languages considers it without
side-effects, i.e. the only result of its execution is the value it produces, without affecting the caller’s
state. Having this in mind, we designed the Function class accordingly, i.e. it has only input (in) formal
parameters, and produces as result a Value object.

CoMDEVALCO framework - the modeling language for procedural paradigm 189

4 Experimental results

From a methodological viewpoint, our main concern was to model all theoretical aspects in concrete
objects - constructs of the modeling language. The idea was to apply an iterative and incremental process:
start with simple objects, perform checks after each modeling step, in order to be sure that things work.

Each modeling step covers both theoretical/analytical activities - the abstract model of the concept -
and practical/applicative ones - coding, testing and integrating it in the already existing language.

The initial step of our work was to prove that things are working well. So we conducted first a
proof-of-concept study, and then we started the development of graphical tools.

4.1 Modeling language: proof-of-concept stage

The modeling language described in Section 3 was implemented in Java. The classes containing the
current implementation are included in three packages: syntax (Expressionclasses, Declaration,
DeclarationList, Operator, State, and Type), statements (all classes in Figure 3), and
programUnits (Program, Procedure, and Function). The implementations were tested by
building some simple components, like solving of polynomial equations of first and second degree, or
computing the integer square root (1 sgrt ()) of a positive integer.

As we discuss below, in order to test a proper component P, two program units need to be designed:
the component P itself and the corresponding test driver (a Program component). In each situation, the
building process has two main steps: (1) build the state of the component and (2) build its body. As the
state is a set of Variable objects, its creation is a sequence of allocate () messages. Additionally,
in the case of Procedure and Function components, the parameter lists need to be also defined,
in the same way. Next, the body of a component is a CompoundStatement, so the building process
needs to create all the Statement objects which describe the computing process, and to include them
into the body, preserving the sequence of computing steps.

Consider the simplest example of designing a component EcGr1 which solves polynomial equations
of the first degree, and its corresponding test program. The building process of EcGr1 is defined in the
following static method:

public static Procedure buildEcGrl () {

DeclarationList inP = new DeclarationList (); // in params
DeclarationList outP = new DeclarationList (); // out params
DeclarationList inOutP = new DeclarationList(); // in-out params

DeclarationlList locale = new DeclarationList(); // local state
// input parameters
inP.allocate ("a", Value.tDouble);
inP.allocate ("b", Value.tDouble);
// output parameters
outP.allocate ("cod", Value.tInt);
outP.allocate ("x", Value.tDouble);
CompoundStatement body =
new CompoundStatement ("Solves the equation a x + b = 0");
Procedure proc =
new Procedure ("proc EcGrl", locale, body, inP, outP, inOutP);
// body: BranchStatement (sl, s2) (a == 0)
Statement sll =
new AssignmentStatement ("cod = 2", // infinite solution set
proc.getLocalState () .get ("cod"),
new Value (Value.tInt, "2"));
Statement sl2 =
new AssignmentStatement ("cod = 1", // no solution

190 Bazil Parv, Ioan Lazir, Simona Motogna

proc.getLocalState () .get ("cod"),

new Value (Value.tInt, "1"));
Expression el = proc.getLocalState() .get ("b");
Expression e2 = new Value (Value.tDouble, "O");

Expression e =
new BinaryExpression(el, e2, new Operator (Operator.EQ));

// sl: BranchStatement (sll, s12) (b == 0)
BranchStatement sl = new BranchStatement ("b == 0", e, sll, sl12);
CompoundStatement s2 = new CompoundStatement ("unique solution");
s2.add (new AssignmentStatement ("cod = 0",

proc.getLocalState () .get ("cod"), new Value (Value.tInt, "0")));
el = proc.getLocalState().get ("b");
e2 = new Value (Value.tInt, "-1");
Expression e3 = new BinaryExpression(el, eZ2,

new Operator (Operator.TIMES)); // -b
e2 = proc.getLocalState().get ("a");
e = new BinaryExpression(e3, e2, new Operator (Operator.DIV)); // -b/a
s2.add (new AssignmentStatement ("x = -b/a",
proc.getLocalState () .get ("x"), e));
el = proc.getlLocalState().get ("a");
e? new Value (Value.tInt, "0");
e = new BinaryExpression(el, e2, new Operator (Operator.EQ));
body.add (new BranchStatement ("a == 0", e, sl, s2));
return proc;

The method builds a Procedure object who implements the well-known algorithm for solving
first degree polynomial equations (its body being a BranchStatement object) and returns it when
the building process is done. This object has two in parameters (a and b) and two out parameters (x and
cod).

The test driver Program object is built as follows:

public static Program buildProgEcGrl () {

DeclarationList state = new DeclarationList ();
CompoundStatement body =

new CompoundStatement ("Test driver for EcGrl");
Program prog = new Program("DemoEcGrl", state, body);
state.allocate ("ca", Value.tDouble); // coefficient a
state.allocate ("cb", Value.tDouble); // coefficient b
state.allocate("rez", Value.tInt); // return code
state.allocate("sol", Value.tDouble); // the solution
// resets state
prog.setState (state);
// start program
body.add (new OutputStatement ("x%x Program " +

prog.getName () + " started x*x", null));

// read coeffs
body.add (new InputStatement ("Read coeff ca", prog.getState().get("ca")));
body.add (new InputStatement ("Read coeff cb", prog.getState().get("cb")));
// calls EcGrl
DeclarationList pIn = new DeclarationList ();
pIn.allocate(prog.getState() .get ("ca"));
pIn.allocate (prog.getState() .get ("cb"));
DeclarationList pOut = new DeclarationList ();
pOut.allocate (prog.getState () .get ("rez"));

CoMDEVALCO framework - the modeling language for procedural paradigm 191

pOut.allocate (prog.getState () .get ("sol"));

DeclarationList pInOut = new DeclarationList ();

Procedure ecGrl = buildEcGrl(); // create the EcGrl procedure object
SimpleStatement s = new CallStatement ("call EcGrl", ecGrl, pIn, pInOut,
body.add(s) ;

// print results

Statement sll = new OutputStatement ("unique solution", null);

Statement sl12 = new OutputStatement ("print solution",
prog.getState () .get ("sol"));

CompoundStatement sl = new CompoundStatement ("Print unique solution");

sl.add(sll);
sl.add(sl2);
Expression el = prog.getState().get ("rez");

Expression e2 = new Value (Value.tInt, "1");
Expression e = new BinaryExpression(el, e2, new Operator (Operator.EQ));
sll = new OutputStatement ("empty solution set", null);

// cod = 1 (a=0, b<>0)
sl2 = new OutputStatement ("infinite solution set", null);

// cod = 2 (a=0, b=0)
BranchStatement s2 = new BranchStatement ("rez == 1", e, sll, sl12);

e2 = new Value (Value.tInt, "O0O");
e = new BinaryExpression(el, e2, new Operator (Operator.EQ));
BranchStatement st new BranchStatement ("rez == 0", e, sl, s2);
body.add(st) ;
body.add (new OutputStatement ("xx*x Program " + prog.getName () +

" terminated **xx", null));

return prog;

This time, the body of the constructed Program object is a sequence of statements which: (1) read
the coefficients (using a sequence of Input Statement objects), (2) call the EcGr1 component (using
a CallStatement object), and (3) print the result (using BranchStatement objects in which the
condition tests the value of the out parameter re z while the branches are Output Statement objects).

The above code also contains statements which create and build the state of the Program object,
and prepare the call process, i.e. create and populate the actual in, out, and in-out parameter lists and
then create the callee Procedure object EcGr1 (by invoking buildEcGr1l () method).

The main () method of the demo class first creates the driver Program object and then calls its
run () method:

public static void main(String[] args) {
TextIO.putln ("Demo Program Units");
Program pEcGrl = buildProgEcGrl();
pEcGrl.run () ;

The program object runs its body by executing sequentially the statements in it: (1) asks the user to
enter the values of coefficients, (2) calls the EcGr1 procedure and (3) prints an explanatory message and
the unique solution (if this is the case).

Above-described component definition approach is tedious and error-prone. For example, in order
to build a BranchStatement object, the process is bottom-up: (1) create the Statement objects
corresponding to the branches and (2) create the BranchStatement object containing them.

In a real-world situation, the building process is assisted by graphical tools, as we discuss below.
These tools will perform at least the following: (1) graphical or textual building of components, (2)

pout) ;

192 Bazil Parv, Ioan Lazir, Simona Motogna

saving and restoring component definitions to/from a component repository, (3) component testing and
debugging.

4.2 The toolset

The COMDEVALCO toolset proposal includes graphical tools for component definition, validation,
and composition. This subsection describes current status of these tools.

As part of the COMDEVALCO framework, a procedural action language (PAL) was defined and it
is described in [10]. PAL contains all statements included in Figure 3, has a concrete textual syntax
for UML structured activities, and graphical notations for some UML structured activity actions. The
main idea for simplifying the construction of UML structured activities is to use the pull data flow for
expression trees. Also, we propose new graphical notations for conditionals and loops, following the
classical flowchart style.

In order to allow the exchange of executable models with other tools, a UML profile is also defined,
specifying the mapping between PAL and UML constructs.

A component definition and validation tool is under development, using both graphical and textual
PAL notations for building Program, Procedure, and Function program units. This tool is used within
an Agile MDA process which includes test-first component design steps: (1) add a test (in the form
of a Program component calling a non-existing Procedure or Function), (2) run the tests (in order to
report the missing components), (3) add the production code (i.e. design the missing components),
and (4) goto step (2). The process ends during the step (2), when all the tests pass. In the steps (1)
and (3), developers are allowed to use either the graphical notation or the concrete syntax of PAL; the
tool maintains automatically the consistency of the two views. The debugging and testing techniques
employed in step (2) are defined according to Model-level Testing and Debugging Specification [14, 13].

A detailed description of this tool will be given in a separate paper.

4.3 Original elements of the proposed solution

The proposed solution brings original elements in at least the following directions:

* the object model is precise and fine-grained, because all objects are rigorously defined, and the
component behavior is described at statement level. The UML metamodel has no correspondent
for modeling constructs more fine-grained than Program and Procedure;

* the models are executable and verifiable because each component can be executed; moreover, one
can use tools for validation and evaluation of complexity;

* the models are independent of any specific object-oriented language;

* the modeling language is flexible and extensible in the following dimensions: the statement set,
the component (program units) family, the component definition, the data type definition, and the
set of components;

* the modeling language allows the use of graphical tools in all the phases: building, validating, and
using software component models;

* the modeling language allows automatic code generation for components in a concrete program-
ming language, according to Model Driven Architecture (MDA) specifications. One can define
mappings from the modeling elements to specific constructs in a concrete programming language
in a declarative way.

CoMDEVALCO framework - the modeling language for procedural paradigm 193

5 Conclusions and further work

This paper describes the current status of the modeling language, part of the COMDEVALCO frame-
work. As we discussed above, this version implements a minimal set of elements, corresponding to the
procedural programming paradigm.

The approach considered was aimed to control the complexity of the problem and of the development
process. We started with the simplest programming paradigm, using simple data types and expressions
and a small but complete set of statement objects. The development process consisted of small steps,
meaning either the implementation of a new concept (transforming the concept into an object), or the
extension of a model element. As the experiments were successful, we believe that our approach is
feasible.

Future developments of the modeling language will include: extending Type, Expression, and Oper-
ator classes in order to define and manage structured and object types, extending the program units with
constructs specific to modular, object-oriented, and component-based paradigms. These steps are consid-
ered within the planned evolution of the COMDEVALCO framework, which include steps for defining the
structure of component repository and developing the tools aimed to operate in the component definition,
validation, evaluation, simulation, and composition.

Acknowledgements

This work was supported by the grant ID_546, sponsored by NURC - Romanian National University
Research Council (CNCSIS).

Bibliography

[1] S.W. Ambler, Agile Model Driven Development (AMDD): The Key to Scaling Agile Software Devel-
opment, http://www.agilemodeling.com/essays/amdd.htm.

[2] EP. Brooks, No silver bullet: essence and accidents in software engineering, IEEE Computer, April
1987, pp. 10-19.

[3] K. Carter, The Action Specification Language Reference Manual, 2002. http://www.kc.com/

[4] 1. Crnkovic, M. Larsson, Building Reliable Component-Based Software Systems, Prentice
Hall International, Artech House Publishers, ISBN 1-58053-327-2, Available July 2002.
http://www.idt.mdh.se/cbse-book/

[5] M. Fowler, UmiMode, May 2003, http://martinfowler.com/bliki/UmlMode.html

[6] J. Grenfield, K. Short, Software factories: assembling applications with patterns, models, frame-
works, and tools, Wiley, 2004.

[7] P. Henderson, R.J. Walters, Behavioural Analysis of Component-Based Systems, Declarative Sys-
tems and Software Engineering Research Group, Department of Electronics and Computer Science,
University of Southampton, Southampton, UK, 06 June 2000.

[8] S.J. Mellor, Agile MDA, 2005. http://www.omg.org/mda/mda_files/AgileMDA.pdf

[9] S.J. Mellor, M.J. Balcer, Executable UML: A Foundation for Model-Driven Architecture, Addison-
Wesley, 2002.

194 Bazil Parv, Ioan Lazir, Simona Motogna

[10] I. Lazar, B. Parv, S. Motogna, I.G. Czibula, C.L. Lazar, An Agile MDA Approach for Executable
UML Activities, Studia UBB, Informatica, L1, No. 2, 2007, pp. 101-114.

[11] P.A. Muller et al, On executable meta-languages applied to model transformations, Model Trans-
formations In Practice Workshop, Montego Bay, Jamaica, 2005.

[12] Object Management Group, MDA Guide Version 1.0.1, 2003. http://www.omg.org/docs/omg/03-
06-01.pdf

[13] Object Management Group. UML 2.0 Testing Profile Specification, 2005, http://www.omg.org/cgi-
bin/apps/doc?formal/05-07-07.pdf.

[14] Object Management Group, Model-level Testing and Debugging, 2007, http://www.omg.org/cgi-
bin/doc?ptc/2007-05-14/

[15] Object Management Group, UML 2.1.1 Superstructure Specification, 2007,
http://www.omg.org/cgi-bin/doc?ptc/07-02-03/

[16] B. Parv, S. Motogna, 1. Lazdr, I.G. Czibula, C.L. Lazir, COMDEVALCO - a framework for software
component definition, validation, and composition, Studia UBB, Informatica, L11, No. 2, 2007, pp.
59-68.

[17] ProjTech AL: Project Technology, Inc, Object Action Language, 2002.

[18] Telelogic AB, UML 2.0 Action Semantics and Telelogic TAU/Architect and TAU/Developer Action
Language, Version 1.0, 2004.

Bazil Parv, loan Lazdr, and Simona Motogna
Babegs-Bolyai University

Faculty of Mathematics and Computer Science
Department of Computer Science

1, M. Kogalniceanu, Cluj-Napoca 400084, Romania
E-mail: {bparv,ilazar,motogna} @cs.ubbcluj.ro

Received: November 20, 2007

CoMDEVALCO framework - the modeling language for procedural paradigm 195

Bazil Parv is Professor at the Department of Computer Science,
Faculty of Mathematics and Computer Science, Babes-Bolyai
University, Cluj-Napoca. 7 books and university courses, and
more than 75 papers. His research topics cover: programming
paradigms, component-based sofware development, mathemati-
cal modeling in experimental sciences, and computer algebra.

Dr. loan Lazidr is Lecturer at the Department of Computer Sci-
ence, Faculty of Mathematics and Computer Science, Babes-
Bolyai University, Cluj-Napoca. He published 7 books and uni-
versity courses, and more than 15 papers. His current research
topics include: object-oriented analysis and design, modeling lan-
guages, and programming methodologies.

Simona Motogna is Associate Professor at the Department of
Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babes-Bolyai University, Cluj-Napoca. She obtained her
Ph.D. in 2001, with the thesis Formal specification of object-
oriented languages. Her topics of interest are: compilers, seman-
tics, formal specification related to object oriented languages and
component based programming.

