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Abstract: This paper presents, a design method for the template of the hole-filler
used to improve the performance of the character recognition using Numerical inte-
gration algorithms. This is done by analyzing the features of the hole-filler template
and the dynamic process of CNN and by using popular numerical algorithms to ob-
tain a set of inequalities satisfying its output characteristics as well as the parameter
range of the hole-filler template. Some simulation results and comparisons are also
presented.
Keywords: Cellular Neural Networks; Euler Algorithm; RK-Gill Algorithm; RK-
Butcher Algorithm; Ordinary differential equations, Hole-filler.

1 Introduction

Cellular Neural Networks (CNNs) are analog, time-continuous, nonlinear dynamical systems and
formally belong to the class of recurrent neural networks. Since their introduction in 1988 (by Chua and
Yang [1, 2], it has been the subject of intense research. Initial applications include image processing,
signal processing, pattern recognition and solving partial differential equations, etc.

Runge-Kutta (RK) methods have become very popular, both as a computational technique as well as
a subject of research, which are discussed by Butcher [3, 4]. This method was derived by Runge around
the year 1894 and extended by Kutta a few years later. They developed algorithms to solve differential
equations efficiently and these are the equivalent of approximating the exact solutions by matching ‘n’
terms of the Taylor series expansion.

Butcher [3] derived the best RK pair along with an error estimate and by all statistical measures it
appeared as the RK-Butcher algorithm. This RK-Butcher algorithm is nominally considered as sixth
order, since it requires six function evaluations, but in actual practice the “working order” is close to five
(fifth order).

Bader [4, 5] introduced the RK-Butcher algorithm for finding the truncation error estimates and
intrinsic accuracies and the early detection of stiffness in coupled differential equations that arise in
theoretical chemistry problems. Recently Devarajan et al [7] used the RK-Butcher algorithm for finding
the numerical solution of an industrial robot arm control problem. Oliveria [8] introduced the popular
RK-Gill algorithm for the evaluation of ’effectiveness factor’ of immobilized enzymes.

In this paper, we describe the dynamic behavior of CNN in section 2, Hole-filler template design ideas
in Section 3, Numerical integration algorithms and its description is shown in Section 4, and simulation
results in Section 5.

2 Dynamic Analysis of CNN

The dynamic equation of cell C(i, j) in an M x N cellular neural network is given by Chua and Yang
[1, 2].

C
dxi j(t)

dt
=− 1

Rx
xi j(t)+ ∑

C(k,l)∈Nr(i, j)
A(i, j;k, l)Ykl(t)+ ∑

C(k,l)∈Nr(i, j)
B(i, j;k, l)Ukl + I (1)

Yi j(t) =
[∣∣xi j(t)+1

∣∣− ∣∣xi j(t)
∣∣−1

]
,1≤ i≤M,1≤ j ≤ n (2)
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Figure 1: CNN–Cell

wherexi j, yi j and ui j are the state voltage, output voltage and input voltage respectively and they are
functions of time t. Rx is a linear resistance, C is a linear capacitor, and A(i, j;k, l) and B(i, j;k, l) are the
transconductances of the output and input voltages of C(k, l) with respect to C(i, j) called the cloning
templates of CNN. Nr(i, j) denotes the rth- neighbor of C(i, j) and I is an independent current source.
From equation (2) one can see that the output voltage is nonlinear. We can rewrite the cell equation (1)
as follows:

C
dxi j(t)

dt
=− f [xi j(t)]+g(t) (3)

Where

f [xi j(t)] =
1
Rx

xi j(t) (4)

g(t) = ∑
C(k,l)∈Nr(i, j)
C(k,l)6=C(i, j)

A(i, j;k, l)Ykl(t)+ ∑
C(k,l)

B(i, j;k, l)Ukl + I (5)

3 Hole-filler Template Design

The Hole-Filler is a cellular neural network discussed by Yin et al [9], which fills up all the holes and
remains unaltered outside the holes in a bipolar image. Let Rx = 1, C = 1 and let +1 stand for the black
pixel and -1 for the white one. We shall discuss the images having holes enclosed by the black pixels,
when the bipolar image is input with U = {ui j} into CNN. The initial state values are set as Xi j(0) = 1.
From the equation (2) the output values are Yi j(0) = 1, 1≤ i≤M, 1≤ j ≤ N.

Suppose that the template A and B and the independent current source I are given as

A =




0 a 0
a b a
0 a 0


 , a > 0, b > 0, B =




0 0 0
0 4 0
0 0 0


 , I =−1 (6)

Where the template parameters a and b are to be determined. In order to make the outer edge cells
become the inner ones, normally auxiliary cells are added along the outer boundary of the image, and
their state values are set to zeros by circuit realization, resulting in the zero output values. The state
equation (1) can be rewritten as

dxi j(t)
dt

=−xi j(t)+ ∑
C(k,l)∈Nr(i, j)

A(i, j;k, l)Yi j(t)+4ui j(t)− I (7)

For the cell C(i, j), we call the cells C(i + 1, j), C(i−1, j), C(i, j + 1) and C(i, j−1) to be the non-
diagonal cells. Here, several cases are to be considered.
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Case 1: The input value ui j = +1 for cell C(i, j), signaling the black pixel. Because the initial state
value of the cell C(i, j) has been set to 1, xi j(0) = 1, and from equation (2) its initial output value is also
yi j(0) = 1 . According to the hole-filler demands, its eventual output should be yi j(∞) = 1. To obtain
this result we set

dxi j(t)
dt

≥ 0 (8)

Substituting this input ui j = 1 and equation (6) into equation (7), we obtain

dxi j(t)
dt

=−xi j(t)+a
[
y(i−1) j(t)+ y(i+1) j(t)+ yi( j−1)(t)+ yi( j+1)(t)

]
+byi j(t)+3 (9)

Combining equations (8) and (9) and considering the minimum value of xi j(t) = 1 this case yields

a
[
y(i−1) j(t)+ y(i+1) j(t)+ yi( j−1)(t)+ yi( j+1)(t)

]
+byi j(t)+2≥ 0 (10)

To facilitate our discussion, two sub cases are distinguished.

Sub Case 1: The cell C(i, j) is inside the holes. Since xi j(0) = 1 , from equation (2) its initial output
value yi j(0) = 1. Considering equations (8) and (2), yi j(t)≥ 1. According to the hole-filler demands, its
initial output of non-diagonal black pixels should not be changed inside the holes. The weights of a and
b are equal to +4 and +1, respectively.

Since A(i, j;k, l) > 1
Rx

the parameter b is found to be b > 1, or

4a+b+2≥ 0, b > 1 (11a)

Sub Case 2: The cell C(i, j) is outside the holes. To satisfy equation (10), we need to check only the
minimum value on the left-hand side of equation (10). This is true when there are four non-diagonal
white pixels around the cell C(i, j), where the weight of a in equation (10) is -4. Since yi j(t) ≥ 1, the
weight of b is equal to 1. Combining this with b > 1 gives

−4a+b+2≥ 0, b > 1 (11b)

Case 2: The input value of cell C(i, j) is ui j = 1, signaling the white pixel. Substituting this input value
in equation (7) gives

dxi j(t)
dt

=−xi j(t)+a
[
y(i−1) j(t)+ y(i+1) j(t)+ yi( j−1)(t)+ yi( j+1)(t)

]
+byi j(t)−5 (12)

Sub Case 1: The cell C(i, j) is inside the holes. Since xi j(0) = 1, from equation (2) its initial output
value is yi j(0) = 1. According to the hole-filler demands, the holes should be filled by the black pixels,
whereas its initial black pixels remain unaltered:

dxi j(t)
dt

≥ 0 (13)

Combining equations (12) and (13) and considering xi j(t)≥ 1 yields

aby(i−1) j(t)+ y(i+1) j(t)+ yi( j−1)(t)+ yi( j+1)(t)c+byi j(t)−6≥ 0 (14)

where we use the minimum value of xi j(t) in equation (12). Since the cell is inside the holes, its
initial output of non-diagonal black pixels remain unchanged. The weight of a and b are equal to +4 and
+1, respectively. Combining this with b > 1 gives

4a+b−6≥ 0, b > 1 (15)



370 V. Murugesh, Krishnan Batri

Sub Case 2: The cell C(i, j) is outside the holes. Since xi j(0) = 1, from equation (2) its initial output
value is yi j(0) = 1. According to the hole-filler demands, the final output of this cell should be white,
and in this case yi j(∞)≤−1.

dxi j(t)
dt

< 0 (16)

Combining equations (12) and (16) and considering xi j(t)≤ 1. we get

aby(i−1) j(t)+ y(i+1) j(t)+ yi( j−1)(t)+ yi( j+1)(t)c+byi j(t)−6 < 0 (17)

where we use the maximum value of xi j(t) in equation (12).
Initially yi j(0) = 1. How can the output of cell C(i, j) be changed to -1?. Where does this change

begin?. First we consider the situation where the change begins from the inside of the bipolar image. If
the maximum value on the left-hand side in equation (17) is less than zero, equation (17) holds. Inside the
image and outside the holes, the maximum weights of a and b are +4 and +1, respectively. This case was
described by equation (15). In fact, the change of the output of the cell C(i, j) is like a wave propagating
from the edges to the inside of the image and it is verified from the simulated result. Therefore, we
should first consider the edge cell C(i, j), i = 1 or M, j = 1 or N. For this the maximum weight of a in
equation (17) is +3, which is also the maximum weight of a outside the holes. The maximum weight of
b is +1, occurring at the initial time:

3a+b−6 < 0, b > 1 (18)

Combining Cases 1 and 2, we obtain

3a+b−6 < 0,

4a+b−6 ≥ 0, (19)

−4a+b+2 ≥ 0.

4 Numerical Integration Algorithms

The CNN dynamics on a digital architecture requires discretization in time and suitable numerical
integration algorithms. Three of the most widely used Numerical Integration Algorithms are used in
Raster CNN Simulation described here. They are the Euler’s Algorithm, RK-Gill Algorithm discussed
by Oliveria [8] and the RK-Butcher Algorithm discussed by Badder [5, 6] and Murugesh and Murugesan
[10, 11, 12].

4.1 Euler Algorithm

Euler’s method is the simplest of all algorithms for solving ODEs. It is explicit formula which uses
the Taylor-series expansion to calculate the approximation.

xi j((n+1)τ) = xi j(πτ)+ τ f ′(x(πτ)) (20)

4.2 RK-Gill Algorithm

The RK-Gill algorithm discussed by Oliveria [8] is an explicit method requiring the computation of
four derivatives per time step. The increase of the state variable xi j is stored in the constant ki j

1 . This
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result is used in the next iteration for evaluating ki j
2 . The same must be done for ki j

3 and ki j
4 .

ki j
1 = f ′ (xi j (τπ))

ki j
2 = f ′

(
xi j (τπ)+

1
2

ki j
1

)
(21)

ki j
3 = f ′

(
xi j (τπ)+

(
1√
2
− 1

2

)
ki j

1 +
(

1− 1√
2

)
ki j

2

)

ki j
4 = f ′

(
xi j (τπ)− 1√

2
ki j

2 +
(

1+
1√
2

)
ki j

3

)

The final integration is a weighted sum of the four calculated derivatives:

xi j((n+1)τ) = xi j +
1
6

[
ki j1 +

(
2−

√
2
)

ki j
2 +

(
2+

√
2
)

ki j
3 + ki j

4

]
(22)

4.3 RK-Butcher Algorithm

The RK-Butcher algorithm discussed by Badder [5, 6] and Murugesh and Murugesan [10, 11, 12],
is an explicit method. It starts with a simple Euler step. The increase of the state variable xi j is stored in
the constant ki j

1 . This result is used in the next iteration for evaluating ki j
2 . The same must be done for

ki j
3 , ki j

4 , ki j
5 and ki j

6 .

ki j
1 = τ f ′ (xi j (πτ))

ki j
2 = τ f ′

(
xi j (πτ)+

1
4

ki j
1

)

ki j
3 = τ f ′

(
xi j (πτ)+

1
8

ki j
1 +

1
8

ki j
2

)

ki j
4 = τ f ′

(
xi j (πτ)− 1

2
ki j

2 + ki j
3

)
(23)

ki j
5 = τ f ′

(
xi j (πτ)+

3
16

ki j
1 +

9
16

ki j
4

)

ki j
6 = ∆t f

(
xi j (πτ)− 3

7
ki j

1 +
2
7

ki j
2 +

12
7

ki j
3 −

12
7

ki j
4 +

8
7

ki j
5

)

The final integration is a weighted sum of the five calculated derivatives:

xi j ((n+1)τ) =
1

90

(
7ki j

1 +32ki j
3 +12ki j

4 +32ki j
5 +7ki j

6

)
(24)

5 Simulated Results

This Hole-filler template has been simulated using Pentium IV Machine with 3.0 Ghz. speed using
different Numerical integration algorithms. The Settling time T and integration time Ts is obtained
with various step sizes is to be displayed below in the Table-1. The settling time Ts describes the time
from start of integration until the last cell leaves the interval [-1.0, 1.0] which is based on certain limit
(e.g.,

∣∣dx
dt < 0.01

∣∣). The simulation shows the desired output for every cell. We use +1 and -1 to indicate
the black and white pixels, respectively.
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(a) (b)

Figure 2: Image Before and After Hole Filling

Step Size
Euler Algorithm RK-Gill Algorithm RK-Butcher Algorithm

Settling
Time(T)

Integration
Time(Ts)

Settling
Time(T)

Integration
Time(Ts)

Settling
Time(T)

Integration
Time(Ts)

0.5 6.5 2.5 6.8 2.4 5.8 2.4
0.6 15.5 12.7 16.4 13.7 11.4 12.5
0.7 32.5 28.3 32.0 27.4 30.0 27.2
0.8 35.0 30.7 34.6 30.0 32.4 29.6
0.9 36.8 32.6 36.6 32.0 34.2 31.6
1.0 37.9 33.6 37.6 33.0 36.0 32.8
1.5 44.8 36.8 45.7 36.9 41.1 36.0
2.0 47.4 43.2 48.2 43.6 46.2 42.8
2.5 50.6 45.6 52.6 44.5 48.3 44.7
3.0 53.5 49.3 54.8 50.2 52.3 49.2

Table 1: Simulated Results of Hole-Filler Template Design

Example
The templates A, B and I are given as follows:

A =




0 1.0 0
1.0 3.0 1.0
0 1.0 0.0


 , B =




0 0 0
0 4 0
0 0 0


 , I =−1.0

Using the simulation program developed in C++, the input image is shown in Figure-2(a) and the
output image in Figure-2(b). The obtained result is represented in Table-1. From the table-1, we find
that RK-Butcher algorithm yields less settling time and integration time compared to Euler and RK-Gill
algorithms.

6 Conclusion

It is shown that the cellular neural network based hole-filler template could be designed from its
dynamic behavior using different numerical algorithms, and also the template for other cellular neural
network can similarly be designed. The hole is filled and the outside image remains the same. The
templates of the cellular neural network are not unique and this is important in its implementation.
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