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Abstract: The problem of global exponential stability for a class of nonlinear
singularly perturbed systems is examined in this paper. The stability analysis
is based on the use of basic results of integral manifold of nonlinear singularly
perturbed systems, the composite Lyapunov method and the notations and properties
of Tensoriel algebra. Some of the derived results are presented as linear matrix
inequalities (LMIs) feasibility tests. Moreover, we pointed out that if the global
exponential stability of the reduced order subsystem is established this is equivalent
to guarantee the global exponential stability of the original high order closed loop
system. An upper boundε1 of the small parameterε, can also be determined up
to which established stability conditions via LMI’s are maintained verified. A
numerical example is given to illustrate the proposed approach.

Keywords: Nonlinear singularly perturbed system, Integral manifold, Lyapunov sta-
bility, Kronecker product, Linear matrix inequalities (LMIs).

1 Introduction

Stability analysis and control of nonlinear singularly perturbed systems have been widely studied in
the literature [2], [6], [7], [12], [13]. In a two time scale framework, the stability study of the controlled
systems using the Lyapunov stability method [15] and the integral manifold approach as a means for the
control of nonlinear systems based on the singular perturbation method have been developed in recent
years [10], [11], [14], [16], [17]. The approaches proposed in this direction. differ by imposing different
conditions on the smoothness properties of the used functions, different assumptions and different classes
of Lyapunov functions.

In this paper, we are concerned with the global exponential stability of polynomial singularly per-
turbed systems when the chosen design manifold is an exact integral one. Further extension of some
previous results [11], [17] are suggested and leads to effective global exponential stability conditions via
LMIs [8] which can be easily verified when using LMI toolbox of Matlab.

The contribution of the present paper is based, on one hand, on the use of the Lyapunov method which
is a powerful tool for combined controller design and stability analysis, the definition of appropriate
Lyapunov functions for the reduced systems and the corrected system via the integral manifold approach
and on the other hand, on the notations and properties of the tensoriel product [9].

Our paper is organized as follows: in section 2 we present the considered description of the studied
systems which allows important algebraic manipulations and some results from the literature on integral
manifolds for nonlinear singularly perturbed systems. Some useful notations and needed assumptions are
introduced in section 3. Exploiting the stability statements about singularly perturbed systems possessing
integral manifolds and using the composite Lyapunov technique, we propose in section 4 an appropriate
control law that insures the existence of an attractive integral manifold and furthermore insures stability
of the studied systems when the dynamics are restrictive to the integral manifold. The stability results
proving the global exponential stability of polynomial singularly perturbed systems are also given and
presented as linear matrix inequalities feasibility tests. Finally an illustrative example is treated and some
conclusions are drawn.

Copyright c© 2006 by CCC Publications
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2 Studied systems and integral manifolds

The class of systems to be considered in this paper are described by the following state equations:
{

ẋ = f (x,z) (a)
ε ż= g(x,z)+ l(x,z)u (b)

(1)

wherex ∈ Rn1 is the state of the slow subsystem (1-a),z∈ Rn2 is the state of the fast subsystem,u ∈
Rpis the input control.ε is a small positive parameter.f , g and l are analytic vector fields which are
sufficiently many times continuously differentiable functions of their arguments. Using the Kronecker
power of vectors, these functions can be written in the polynomial form as [7]:





f (x,z,ε) =
r
∑

i=1

i+1
∑
j=1

Fi j x[i+1− j]⊗z[ j−1]

g(x,z) =
r
∑

i=1

i+1
∑
j=1

Gi j x[i+1− j]⊗z[ j−1]

l(x,z) =
r
∑

i=1

i+1
∑
j=1

Li j (Im⊗ (x[i+1− j]⊗z[ j−1]))

(2)

In general the stability of the reduced order subsystems for a class of nonlinear singularly perturbed
systems cannot guarantee the stability of the original full order system even with the additional stability
of the boundary layer subsystem but when an attractive manifold is designed, the stability problem of
the original system reduces to a stability problem of a low dimensional system on the manifold. Subse-
quently, in the context of control system design, our goal is to find an appropriate control law that insures
the existence of an attractive integral manifold and furthermore insures stability of the studied systems
(1) when the dynamics are restrictive to the integral manifold.

The basic ideas of exploiting the integral manifold method are:

– If an integral manifoldΣ of systems described by (1) is established, so that if the initial states start
on Σ, the trajectory of the system remains onΣ thereafter.

– When restricted to the integral manifoldΣ, the dynamics of the system should insure stability of
the equilibrium.

– The integral manifold should be attractive so that if the initial conditions are offΣ, the solution
trajectory asymptotically converges toΣ.

According to these important issues of the integral manifold method, let’s present the definition, and the
properties of integral manifold of nonlinear systems.
Definition 1. [16] The setΣ ⊂ R×Rn is said to be an integral manifold (invariant manifold) for the
differential equation:Ẋ = N(t,X), X,N ∈Rn if for (t0,X0) ∈ Σ, the solution(t,X(t)),X(t0) = X0, is in Σ
for t ∈ R. If (t,X(t)) ∈ Σ for only a finite interval of time, thenΣ is said to be a local integral manifold.
Lemma 1. [11] Consider the following system:

{
ẋ = f (t,x,y,ε)
ε ẏ = g(t,x,y,ε)

(3)

x, f ∈ Rn,y,g∈ Rm, t ∈ R, ε a small parameter. And suppose the following hypotheses hold:

– The algebraic equationg(t,x,y,0) = 0 has an isolated solutiony = h0(t,x), ∀t ∈ R, ∀x∈ Bx

– The functionsf , g, andh0 are twice continuously differentiable (∈C2) ∀t ∈R,∀x∈Bx. ∀ε ∈ [0,ε0)
and for‖y−h0(t,x)‖ ≤ ϕ̄y whereε0 andϕ̄y are positive real constants.
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– The eigenvaluesλi = λi(t,x), i = 1,2, . . . ,m of the matrixZ(t,x) :=
(

∂g
∂y

)
(t,x,h0(t,x),0) satisfy

the inequality

Re[λi ]≤−2β < 0 ∀t ∈ R,∀x∈ Bx (4)

Then there existsε ≤ ε1 such that∀ε ∈ [0,ε1), the singularly perturbed system (3) has an m-dimensional
local integral manifold

Σε : y = h0(t,x)+H(t,x,ε) = h(t,x,ε) (5)

whereh(t,x,ε) is defined for allx∈ Bx andε ≤ ε1 and is continuously differentiable(∈C1)
The functionh(t,x,ε) ∈C1 satisfies the so-called manifold equation :

ε
∂h
∂ t

+ ε
∂h
∂x

f (t,x,h,ε)g(t,x,h,ε) (6)

which is obtained by substitutingy byh in equation (3).
On this manifold, the flow of systems (3) is governed by the n-dimensional reduced system

ẋ = f (t,x,h(t,x,ε),ε) (7)

Furthermore, if forx∈Bx andp integer we havef (t,x,y,ε)∈Cp+1,g(t,x,y,ε)∈Cp+2 andh0(t,x)∈
Cp+2 thenh∈Cp

3 Useful notations and assumptions

In our study we make use of the following lemma 2 and Assumptions 1-2. The lemma 2 is concerned
with a Kronecker transformation of vectors. More properties of the Kronecker product are given in the
Appendix.

Lemma 2. [6] GivenX =
(

x
z

)
∈ Rn; x ∈ Rn1, z∈ Rn2 and n = n1 + n2 there exists a matrix

(i)
M ∈

Rni×ni making possible a transformation which introduces the change of coordinates that forms the new
following Kronecker power of vector:

(̂
x
z

)[i]

=




x[i]

:
x[i− j]⊗z[ j]

:
z[i]



∈ Rni

such that

X[i] =
(

x
z

)[i]

=
(i)
M

(̂
x
z

)[i]

(8)

with 



(i)
M = (

(i−1)
M ⊗ In)

(i)
U

(i)
V

(1)
M = In

∣∣∣∣∣∣

1≤ j ≤ (i−1)

ni =
i

∑
j=0

ni− j
1 n j

2
(9)
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and

(i)
V =




Ini
1

a
b 0

...
0 a

b
...

Ini
2




︸ ︷︷ ︸∣∣∣∣
(i+1) blocs columns
2i blocs rows

(i)
U =




U
n(i−1)

1 ×n
... 0

U
n(i−k)

1 n(k−1)
2 ×n

0
...

U
n(i−1)

2 ×n




f or j ∈ {2, ...i}
{

a = U
n2×n(i− j+1)

1
⊗ I

n( j−2)
2

b = I
n(i− j+1)

1 ×n( j−1)
2

(10)

The permutation matrix denotedUn×m is defined in [9]

Un×m =
n

∑
i=1

m

∑
k=1

(ei
(n)

eT
k

(m)
)⊗ (eT

k
(m)

ei
(n)

) (11)

This matrix is square(nm×nm) and has precisely a single 1 in each row and in each column.

To clarify the meaning of
(i)
M, consider the following example:

Forn = 3 (n1 = 2,n2 = 1), i = 2; X[2] =
(

x
z

)[2]

=
(2)
M

(̂
x
z

)[2]

X[2] =
(

x
z

)[2]

=




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1







x[2]

x⊗z
z[2]




Assumption 1. There exists a continuously differentiable functionV1(t,x) :R×Rn1 →R+ such that the
following inequalities hold:

∀t ∈ R,x∈ Rn1

α1‖x‖2 ≤V1(t,x)≤ α2‖x‖2 (12)

‖∇xV1(t,x)‖ ≤ α3‖x‖2 (13)
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∇tV1(t,x)+(∇xV1(t,x))T f (t,x,0,0)≤−2γ1V1 (14)

whereα1,α2,α3, andγ1 are positive constants.
Assumption 2. There exists a continuously differentiable functionV2(t,z) :R×Rn2 →R+ such that the
following inequalities hold:

∀t ∈ R,z∈ Rn2

β1‖z‖2 ≤V2(t,z)≤ β2‖z‖2 (15)

dV2(t,z)
dt

≤−2
ε

γ2V2(t,z) (16)

(17)

whereβ1,β2 andγ2 are positive constants.

4 Main results

Given the system (1), (2), we have to determine an adequate feedback controlu that, starting from
any initial states, will attract exponentially the trajectories of the closed loop system along the chosen
design manifold to the equilibrium point at the origin.

In what follows, we assume that hypothesis of lemma 1 are satisfied, and hence the singularly per-
turbed system (1) has ann2 dimensional integral manifold:

z= h0(x) (18)

satisfying the equation (1-b). The flow of system (1), on this manifold, is governed by then1 dimensional
reduced system:

ẋ = f (t,x,h0(t,x,ε),ε) (19)

This result can be reached by the design of a desired controlu satisfying:

l(x,z)u =−g(x,z)+A(z−h0)+ ε
dh0(x)

dx
f (x,z) (20)

whereA is a Hurwitz matrix. Specifically, we choose the design manifold in this paper to be equal to
z= h0(x) = 0. Then, the control in equation (20) becomes:

l(x,z)u =−g(x,z)+Az (21)

and the nonlinear singularly perturbed system (1) can be written as:




ẋ =
r
∑

i=1

i+1
∑
j=1

Fi j x[i+1− j]⊗z[ j−1] (a)

ε ż= Az (b)
(22)

It is then clear, that the fast subsystem and the fast states of the system (22) are attracted toward the
manifold as quickly as desired by the choice of the Hurwitz matrixA.

The reduced order system of (22) is obtained by settingε = 0 as:

ẋ = f (x,0) =
r

∑
i=1

Fii x
[i] (23)

The boundary layer system is given, in the fast time scaleτ t
ε , by:

dz∗(τ)
dτ

= Az∗(τ) (24)
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Now to study the stability of the system (22), let’s consider that the reduced order system (23) and the
boundary layer system (24) have respectivelyV1(x) andV2(z) as quadratic Lyapunov candidate functions
verifying Assumptions 1-2 and defined as follows :

V1(x) = xTP1x (25)

V2(z) = zTP2z (26)

whereP1,P2 are symmetric positive definite matrices solutions of the following Lyapunov equations:

V̇1(x)≤−xTQ1x (27)

V̇2(z)≤−zTQ2z (28)

Q1,Q2 are also positive definite matrices.
Based on results of the stability theory [15] and others derived in previous work [1], [5], (27) and

(28) are formulated as follows:
τT

1 (MT
1 P1 +P1M1)τ1 ≤−Q1 (29)

(
A
ε

)T

P2 +P2

(
A
ε

)
≤−Q2 (30)

where

P1 =




P1 0
P1⊗ In1

...
0 P1⊗ Ins−1

1


 (31)

and

M1 =




λ11Π11 λ12Π12 · · · λ1sΠ1s
...

...
...

...
...

...
λs1Πs1 · · · · · · λssΠss




(32)

with

Πk− j+1, j =




mat
(nk− j ,n j )

(F1T

kk )

mat
(nk− j ,n j )

(F2T

kk )

...
mat

(nk− j ,n j )
(FnT

kk )




(33)

For the corrected system (22), we define the following Lyapunov functions:

V(x,z,ε) = XTEεPX (34)

where

X =
[

x
z

]
∈ Rn;P =

(
P1 0
0 P2

)
and Eε =

(
In1 0
0 εIn2

)
(35)

The derivative ofV(x,z,ε) along the trajectories of (22) is given by:

V̇(x,z,ε) = XTEεPẊ + ẊTEεPX (36)
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In the above equation, we need to explicit the derivative of the state vectorX. So, we begin by writing
the state equations (22) in the following form:

Ẋ =

.(
x
z

)
=

r

∑
i=1

Λi

(̂
x
z

)[i]

(37)

with

Λ1 =
(

F11 F12

0 A
ε

)

and fori > 1:

Λi =
(

Fi1 · · ·Fi j · · ·Fi(i+1)
On2×αi

)
(38)

Using the results given by the lemma 2, it follows from equation (37) that

Ẋ =
r

∑
i=1

Λi

(i)
M+X[i] (39)

where
(i)+

M is the Moore-Penrose pseudo inverse of
(i)
M defined in (A.4).

The derivative of the composite Lyapunov function (34) is then written:

V̇(x,z,ε) = 2
r

∑
k=1

XT(EεPΛk

(k)
M +)Xk (40)

Using the property of the vec-function (1), we have:

V̇(x,z,ε) = 2
r

∑
k=1

VT
k X[k+1] (41)

where

Vk = vec(EεPΛk

(k)
M +) (42)

Knowing that all polynomials with even degree(2s) can be represented as a symmetric quadratic
form. Thus, we assume in the following development thatr is odd:r = 2s−1, and it comes out:

VT
k X[k+1] =

hk

∑
j=gk

λk− j+1, jX
[k+1− j]Nk− j+1, jX

[ j] (43)

whereλk− j+1, j are arbitrary reals verifying:

hk

∑
j=gk

λk− j+1, j = 1 (44)

and fork = 1, . . . ,2s−1:
gk = sup(0,k+1−s) andhk = inf(s,k) (45)

for j = gk, . . . ,hk:
Nk− j+1, j = mat

(nk− j+1,n j )
(Vk) (46)

Applying the properties [1], one obtains:

Nk− j+1, j = mat
(nk− j+1,n j )

(
vec(EεPΛk

(k)
M +)

)
= Unk− j×n(EεP⊗ Ink− j ).Mk− j+1, j (47)
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with

Mk− j+1, j =




mat
(nk− j ,n j )

(B1T

k )

mat
(nk− j ,n j )

(B2T

k )

...
mat

(nk− j ,n j )
(BnT

k )




andBk=Λk

(k)
M + (48)

whereBi
k is the i-th row of the matrixBk:

Bk=




B1
k

B2
k
...

Bn
k


 (49)

By (47) and from the relation (48), we obtain:

X[k− j+1]T Nk− j+1, jX[ j]

= X[k− j+1]TUnk− j×n(EεP⊗ Ink− j )Mk− j+1, jX[ j]

= X[k− j+1]T (EεP⊗ Ink− j )Mk− j+1, jX[ j]

(50)

Consequently, we have:

VT
k X[k+1] =

hk

∑
j=gk

λk− j+1, jX
[k− j+1]T Nk− j+1, jX

[ j] = XT(PεMk)X (51)

with

X =




X
X[2]

...
X[s]


 (52)

and

Pε =




EεP 0
EεP⊗ In

...
0 EεP⊗ Ins−1


 (53)

Let’s note thatPε is a symmetric positive matrix, anḋV(X,ε) (41) can be written as:

V̇(X,ε) = 2
2s−1

∑
k=1

VT
k X[k+1] = XT(PεMε +MT

ε Pε)X (54)

with

Mε =
2s−1

∑
k=1

Mk =




λ11M11 λ12M12 · · · λ1sM1s
...

...
...

...
...

...
λs1Ms1 · · · · · · λssMss




(55)

When considering the nun-redundant form, the vectorX can be written as:

X = τX̃ (56)
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where

τ =




T1 0
...

0 Ts


 andX̃=




X̃
...

X̃[s]


 (57)

>From (54) and (56) we easily obtain:

V̇(X,ε) = X̃TτT(PεMε+MT
ε Pε)τX̃ (58)

Let us denote the largest eigenvalue of the matrixPε by λmax(Pε), the smallest eigenvalue ofQ by
λmin(Q). Where the matrixQ verifies:V̇(X,ε)≤−XTQX. The positive definiteness ofPε andQ implies
that these scalars are all strictly positive. Since matrix theory shows that:

Pε ≤ λmax(Pε)I ; λmin(Q)I ≤Q (59)

We have

XTQX≥ λmin(Q)
λmax(Pε)

XT [λmax(Pε)I ]X ≥ λmin(Q)
λmax(Pε)

XT [λmax(EεP)I ]X (60)

Otherwise
XTX ≥ ‖X‖2 andEεP≤ λmax(EεP)I (61)

Hence, (54) will satisfies the following condition:

V̇(X,ε)≤−2γV(X,ε) whereγ =
1
2
· λmin(Q)

λmax(Pε)
(62)

It comes out
V(X,ε)≤V(X0)e−2γ(t−t0) (63)

Considering the previous developments, we state now our main result:
Theorem 1. Assume the following assumptions hold:

(i) Lemma 1 satisfied
(ii) Assumptions 1 - 2 are satisfied

The system (1) is globally exponentially stable (GES), if there is, for allε < ε1, ε1 > 0 a feasible solution
to the LMI : 




ε > 0
∃PT

1 = P1 > 0
∃PT

2 = P2 > 0
∃PT = P > 0(

A
ε
)T

P2 +P2
(

A
ε
)≤−Q2

τT
1 (MT

1 P1 +P1M1)τ1 ≤−Q1

τT(MT
ε Pε +PεMε)τ ≤−Q

(64)

M1, τ1 andP1 are given by (32), (57) and (31).Mε , τ andPε are given by (55), (57) and (53). Moreover,
the Lyapunov function that demonstrates the G.E.S is given by:V(x) = XTEεPεX

Now, let’s evaluate the convergence rate of the full order system (22). In view of (12), (15), and (27),
we have for allt ∈ R, x∈ Rn1 andz∈ Rn2:

V1(x)≤ (α2‖x0‖2 + εβ2‖z0‖2)e−2γ(t−t0) (65)

>From (12) and (15) we have:

‖x‖ ≤




(√
α2

α1
‖x0‖

)2

+




√
εβ2

α1
‖z0‖




2



1/2

e−γ(t−t0) ≤



√
α2

α1
‖x0‖+

√
εβ2

α1
‖z0‖


e−γ(t−t0)

(66)
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Identically, using (15) and (16), we obtain:

β1
∥∥z2

∥∥≤V2(z)≤ β2
∥∥z2

0

∥∥e−2(γ2/ε)(t−t0) (67)

then

‖z‖ ≤
√

β2

β1
‖z0‖e−(γ2/ε)(t−t0) (68)

>From (66) and (68), we can write in the caseγ ≤ (γ2/ε) that

‖X‖2 ≤ 2ηe−2γ(t−t0)

where

η = max







√
α2

α1
‖x0‖+

√
εβ2

α1
‖z0‖




2

,

(√
β2

β1
‖z0‖

)2

 (69)

which implies that the norm‖X‖ of the state vector converges to zero exponentially, with a rateγ. The
convergence rates of the reduced systems can be calculated:

γ1 =
1
2
· λmin(Q1)

α2
, γ2 =

λmin(Q2)
2β2

>From above, we state the following second result:
Theorem 2. Assume the following assumptions hold:
(i) Lemma 1 satisfied
(ii) Assumptions 1 - 2 are satisfied
(iii) There exists a Lyapunov functionV(t,X,ε) that satisfies equation ((34))
Then the original nonlinear singularly perturbed system ((1)) is globally exponentially stable under the
proposed control ((21)) and with the convergence rateγ ((63)).

Moreover, note that when we proves that the limit ofγ asε → 0 , tends to the convergence rate of the
reduced order system. This implies that under the proposed control (21), the global exponential stability
of the initial studied system is equivalent to that of the reduced order system.

5 Illustrative Example

To illustrate the previous derived results, we consider a third order nonlinear singularly perturbed
system defined by the following equations:





ẋ1 =−x1 +x2 +0.1x1z
ẋ2 =−x1−0.09x2 +2z+0.05x1z
ε ż= 4x1−4x2 +z+0.5x2

1−x2
2 +10u

This system can be described by the following model using the Kronecker product and the power of
vectors which allowed important algebraic manipulations.

{
ẋ = F11x+F12z+F21x

[2]
+F22x⊗z+F23z

[2]

ε ż= G11x+G12z+G21x
[2]

+G22x⊗z+G23z
[2]

+Bu
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where

F11 =
[ −1 1
−1 −0.09

]
,F12 =

[
0
2

]
,G11 =

[
4 −4

]
,G12 = 1,

F21 = 02×4,F22 =
[

0.1 0
0 0.5

]
,F23 = 02×1

G21 =
[

0.5 1 0
]
,G22 =

[
0 0

]
,G23 = 0,B = 10.

When implemented using the LMI toolbox of Matlab, the proposed LMI’s conditions proves that the
numerical studied system which is initially instable can be globally exponentially stabilised by the given
controller with the consideredA =−1 for all ε < ε1 = 0.5 in view of theorem 1:

u =−0.4x1 +0.4x2−0.1z−0.05x2
1 +0.1x2

2

Figure 1: State trajectories of the controlled studied system

Hence for allε < ε1 = 0.5 and from any initial states, the trajectories of the system are steered to the
origin along the integral manifold with the convergence rate0.1 in view of (62). Indeed, it is shown in
Fig. 1 that the state trajectories of the controlled system ( – – –) are bounded by the function (—).

6 Conclusion

In this paper, the global exponential stabilisation for nonlinear singularly perturbed control systems
is investigated. In the stability study, the composite Lyapunov method was applied and the global expo-
nential stability of the equilibrium of the full control system was established for allε < ε1. The upper
boundε1 for which the stability properties are guaranteed can be reached after a number of iterations on
ε when resolving the proposed LMI’s conditions via the LMI Toolbox of Matlab. A numerical example
has been provided to illustrate the proposed results.
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7 Appendix

Notations: The dimensions of the matrices used here are the following:
A(p×q), B(r×s), C(s×h), D(s×h), E(n× p),
P(n×n), X(n×1) ∈ Rm, Y(m×1) ∈ Rm, Z(q×1) ∈ Rq

Let’s consider the following notations:
In: n×n identity matrix;
0n×m: n×n zero matrix;
0zero matrix of convenient dimensions ;
AT : transpose of matrix A;
A > 0 (A≥ 0): symetric positive definite (semi definite matrix A);
ek
(q)

: q dimensional unit vector which has 1 in thekthelement and zero elsewhere.

Thekth row of a matrix such asA is denotedAk. and thekth column is denotedA.k. Theik element ofA
will be denotedaik.
The Kronecker product ofA andB is denotedA⊗B a (p.r×q.s) matrix, and thei−th Kronecker’s power
of A denoted iA[i] = A⊗A⊗·· ·⊗A s a (pi×qi) matrix.

The nun-redundantj-powerX̃[ j] of the state vectorX introduced in [9] is defined as:
X̃[1] = X[1] = X



∀ j ≥ 2 X̃[ j] =
[
x j

1,x
j−1
1 x2, · · · ,x j−1

1 xn,x
j−2
1 x2

2

x j−2
1 x2x3, · · · ,x j−2

1 x2xn,

· · ·x j−2
1 xn

2
, · · · ,x j−3

1 x3
2
, · · · ,x j

n

]
(A.1)

where the repeated components of the redundant j-power are omitted. Then we have the following
relation: 



∀ j ∈ N ∃!Tj ∈ Rn j×α j ;α j =

(
n+ j−1
j

)

X[ j] = Tj X̃[ j]
(A.2)

thus, one possible solution for the inversion can be written as:
X̃[ j] = T+

j X[ j] (A.3)
whereT+

j is the Moore-Penrose pseudo inverse ofTj given by:

T+
j =

(
TT

j Tj

)−1
TT

j (A.4)

andα j stands for the binomial coefficients.
An important vector valued function of matrix denotedvec(.) was defined as [9]:

vecpq×1(A) =




A.1

A.2
...
A.q


 (A.5)

A matrix valued function is a vector denotedmat(n,m)(.) was defined in [1] as follows: IfV is a
vector of dimensionp = n×n thenMmat(n,m)(V) is then×mmatrix verifying:

V = vec(M) (A.6)
Among the main properties of this product presented in [9], [1], we recall the following useful ones:

(A⊗B)(C⊗D) = (AC)⊗ (BD) (A.7)
(A⊗B)T = AT ⊗BT (A.8)

B⊗A = Ur×p(A⊗B)Uq×s (A.9)
X⊗Y = Un×m(Y⊗X) (A.10)

vec(EAC) =
(
CT ⊗E

)
vec(A) (A.11)

vec
(
AT

)
= Up×qvec(A) (A.12)

∀i ≤ k X[k] = Uni×nk−i X[k] (A.13)
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