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On Guaranteed Global Exponential Stability Of Polynomial Singularly
Perturbed Control Systems
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Abstract: The problem of global exponential stability for a class of nonlinear
singularly perturbed systems is examined in this paper. The stability analysis
is based on the use of basic results of integral manifold of nonlinear singularly
perturbed systems, the composite Lyapunov method and the notations and properties
of Tensoriel algebra. Some of the derived results are presented as linear matrix
inequalities (LMIs) feasibility tests. Moreover, we pointed out that if the global
exponential stability of the reduced order subsystem is established this is equivalent
to guarantee the global exponential stability of the original high order closed loop
system. An upper boune; of the small parametes, can also be determined up

to which established stability conditions via LMI's are maintained verified. A
numerical example is given to illustrate the proposed approach.

Keywords: Nonlinear singularly perturbed system, Integral manifold, Lyapunov sta-
bility, Kronecker product, Linear matrix inequalities (LMIS).

1 Introduction

Stability analysis and control of nonlinear singularly perturbed systems have been widely studied in
the literature [2], [6], [7], [12], [13]. In a two time scale framework, the stability study of the controlled
systems using the Lyapunov stability method [15] and the integral manifold approach as a means for the
control of nonlinear systems based on the singular perturbation method have been developed in recent
years [10], [11], [14], [16], [17]. The approaches proposed in this direction. differ by imposing different
conditions on the smoothness properties of the used functions, different assumptions and different classes
of Lyapunov functions.

In this paper, we are concerned with the global exponential stability of polynomial singularly per-
turbed systems when the chosen design manifold is an exact integral one. Further extension of some
previous results [11], [17] are suggested and leads to effective global exponential stability conditions via
LMIs [8] which can be easily verified when using LMI toolbox of Matlab.

The contribution of the present paper is based, on one hand, on the use of the Lyapunov method which
is a powerful tool for combined controller design and stability analysis, the definition of appropriate
Lyapunov functions for the reduced systems and the corrected system via the integral manifold approach
and on the other hand, on the notations and properties of the tensoriel product [9].

Our paper is organized as follows: in section 2 we present the considered description of the studied
systems which allows important algebraic manipulations and some results from the literature on integral
manifolds for nonlinear singularly perturbed systems. Some useful notations and needed assumptions are
introduced in section 3. Exploiting the stability statements about singularly perturbed systems possessing
integral manifolds and using the composite Lyapunov technique, we propose in section 4 an appropriate
control law that insures the existence of an attractive integral manifold and furthermore insures stability
of the studied systems when the dynamics are restrictive to the integral manifold. The stability results
proving the global exponential stability of polynomial singularly perturbed systems are also given and
presented as linear matrix inequalities feasibility tests. Finally an illustrative example is treated and some
conclusions are drawn.

Copyright(©) 2006 by CCC Publications



22 Hajer Bouzaouache, Naceur Benhadj Braiek

2 Studied systems and integral manifolds

The class of systems to be considered in this paper are described by the following state equations:

{ x= f(x,2) (a)

ez=9g(x,2)+1(x,2u (b) (1)

wherex € R™ is the state of the slow subsystem (1-a) R™ is the state of the fast subsystemg

RPis the input control.€ is a small positive parametef., g andl are analytic vector fields which are
sufficiently many times continuously differentiable functions of their arguments. Using the Kronecker
power of vectors, these functions can be written in the polynomial form as [7]:

roi+l . . .
f(xze)=y ¥ Rxit-ilgzi-1
i=1j=1
r Ii+1J . . .
gx2) =5 5 G ezl @
i=1j=1
Ir iJ+l . . .
l(x2)= 3 3 Lij(m@ (X" oz7t)
i=1j=1

In general the stability of the reduced order subsystems for a class of nonlinear singularly perturbed
systems cannot guarantee the stability of the original full order system even with the additional stability
of the boundary layer subsystem but when an attractive manifold is designed, the stability problem of
the original system reduces to a stability problem of a low dimensional system on the manifold. Subse-
guently, in the context of control system design, our goal is to find an appropriate control law that insures
the existence of an attractive integral manifold and furthermore insures stability of the studied systems
(1) when the dynamics are restrictive to the integral manifold.

The basic ideas of exploiting the integral manifold method are:

— If an integral manifold of systems described by (1) is established, so that if the initial states start
on Z, the trajectory of the system remains bithereatfter.

— When restricted to the integral manifald the dynamics of the system should insure stability of
the equilibrium.

— The integral manifold should be attractive so that if the initial conditions ar& affie solution
trajectory asymptotically convergesIo

According to these important issues of the integral manifold method, let's present the definition, and the
properties of integral manifold of nonlinear systems.

Definition 1. [16] The sez C R x R" is said to be an integral manifold (invariant manifold) for the
differential equation:X = N(t,X), X,N € R"if for (tg, Xo) € Z, the solution(t, X (t)), X (to) = Xo, is in =

fort € R. If (t,X(t)) € X for only a finite interval of time, theh is said to be a local integral manifold.
Lemma 1.[11] Consider the following system:

x=f(t,xy,€)

: 3

{ ey=9(t,xy,€) )
x,f e R"y,ge RMt € R, € a small parameter. And suppose the following hypotheses hold:
— The algebraic equatiog(t, x,y,0) = 0 has an isolated solutiop= ho(t,x), ¥t € R, VX € Bx

— The functiond, g, andhg are twice continuously differentiable C?) vt € R, Vx € By. Ve € [0, &)
and for|ly — ho(t,x)|| < ¢y wheregy and ¢y are positive real constants.
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— The eigenvalued; = Ai(t,x),i = 1,2,...,m of the matrixZ(t,x) := (%) (t,x, ho(t,x),0) satisfy
the inequality
Re[A] < —2B <0Vt € R,Vx € By 4)

Then there exists < &; such thatve € [0, &1), the singularly perturbed system (3) has an m-dimensional
local integral manifold

e 1 y=ho(t,x) +H(t,x, &) = h(t,x, &) (5)

whereh(t, x, €) is defined for alk € By ande < & and is continuously differentiables C1)
The functiorh(t,x, £) € C! satisfies the so-called manifold equation :

Jh  oJh
EE—F«E&f(t,X,h,E)g(t,X, h,E) (6)
which is obtained by substitutingby h in equation (3).

On this manifold, the flow of systems (3) is governed by the n-dimensional reduced system

Furthermore, if forx € By and p integer we havd (t,x,y, &) € CP1 g(t,x,y, ) € CP*2 andhg(t,x) €
CP*2 thenh € CP

3 Useful notations and assumptions

In our study we make use of the following lemma 2 and Assumptions 1-2. The lemma 2 is concerned
with a Kronecker transformation of vectors. More properties of the Kronecker product are given in the
Appendix.

(i)
Lemma 2. [6] GivenX = < )z( > € R" xe R, ze R™ andn = n; + n, there exists a matriM €
RN X making possible a transformation which introduces the change of coordinates that forms the new
following Kronecker power of vector:

i
—1il :
< X ) G-l | crn
Z .
A
such that
. i o 7o\
(1))
with

(i) (-1 Oha | 1<j<(i—-1
{M(M ®In)UV sis(i-1

L =i
n=3mnm
j=0

(9)
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and ~ -
Inil
5 0
o 3
L Ini2 J
(i+1) blocs columns
2i blocs rows
[ Ungfl)xn |
(i) 0
U= Ungi—k)n(zk—l)xn
0 10
L Ungfl)xn | ( )
forje{2..i}
a= Unzxn(li’jﬂ) ® In(2j72>
b=l o
The permutation matrix denotéd,..m, is defined in [9]
n m
Unxm:ZlZ(a Q1—>®(QI a) (11)
i=1k=1 () (m) (m) (n)

This matrix is squarénmx nm) and has precisely a single 1 in each row and in each column.

(i)
To clarify the meaning oM, consider the following example:

X [2] (2)/)'(\[2]
Forn:3(n1:2,n2:1),i:2;X[2]:< ) :M< z)

Z
"1 0000 0 O
0100000
0000100
2) 0010000 x2
xm:<x)20001000 X® 2z
z 000001 0|\ 22
0000100
0000010
' 000000O0 1,

Assumption 1. There exists a continuously differentiable functigft, x) : R x R™ — R* such that the
following inequalities hold:
VteR,xc R™

ay [[X||* < Va(t,x) < az x| (12)

15V X < asllx]® (13)
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DeVa(t, X) + (OxVa(t,x) T f(t,%,0,0) < —2y1Vy (14)

wherea, az, a3, andy; are positive constants.
Assumption 2. There exists a continuously differentiable functiéft, z) : R x R™ — R* such that the
following inequalities hold:

vVt eR,ze R™
Bil1ZI* < Va(t,2) < B2 |12f? (15)
dVZ(t,Z) 2
< =
G < oat?) (16)

(17)

wheref31, B> and y» are positive constants.

4 Main results

Given the system (1), (2), we have to determine an adequate feedback caihtagl starting from
any initial states, will attract exponentially the trajectories of the closed loop system along the chosen
design manifold to the equilibrium point at the origin.

In what follows, we assume that hypothesis of lemma 1 are satisfied, and hence the singularly per-
turbed system (1) has am dimensional integral manifold:

z=hp(x) (18)

satisfying the equation (1-b). The flow of system (1), on this manifold, is governed by thimensional
reduced system:

x= f(t,x, ho(t,X, €),€) (29)
This result can be reached by the design of a desired cansatisfying:
(X, 2)u= —9g(x,2) + A(z— hg) + Sdrg)((x) f(x,2) (20)

whereA is a Hurwitz matrix. Specifically, we choose the design manifold in this paper to be equal to
z=ho(x) = 0. Then, the control in equation (20) becomes:

(X, 2)u= —g(x,2) + Az (21)

and the nonlinear singularly perturbed system (1) can be written as:

i=1j=1 (22)

x= 3 'S Exiiledi-l (g
£2=Az (b)

It is then clear, that the fast subsystem and the fast states of the system (22) are attracted toward the
manifold as quickly as desired by the choice of the Hurwitz makrix
The reduced order system of (22) is obtained by setiag0 as:

x=f(x,0) = iﬁix“] (23)

The boundary layer system is given, in the fast time scéleby:

dz (1)
dr

= AZ(1) (24)
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Now to study the stability of the system (22), let’s consider that the reduced order system (23) and the
boundary layer system (24) have respectivglix) andV,(z) as quadratic Lyapunov candidate functions
verifying Assumptions 1-2 and defined as follows :

Vi(x) = X" Px (25)
Va(2) = 2" Pz (26)

wherePy, P, are symmetric positive definite matrices solutions of the following Lyapunov equations:
Vi(x) < —xTQ1x (27)

Vo(2) < —7' Quz (28)

Q1, Q- are also positive definite matrices.
Based on results of the stability theory [15] and others derived in previous work [1], [5], (27) and
(28) are formulated as follows:

1{ (M{P1+PIM1)T1 < —Qy (29)
A\T A
() PPy () < (30)
£ £
where
P 0
P]_ ® Inl
PL= . (31)
0 P® Ini_l
and
A1 Al - Aggllis
My = c (32)
/\slrlsl )\ssnss
with ) .o
mat (F1
(nk*J',nJ')( kk)
mat (FZ)
rlk—j-‘rl,j — (n J,nJ-) (33)

mat (F
| o)

For the corrected system (22), we define the following Lyapunov functions:

V(x,z€) = XTE.PX (34)

. X np_ P]_ 0 . |n1 0
X_[Z]GR,P_<O P2> and E£—< 0 £|n2> (35)

The derivative oV (X, z €) along the trajectories of (22) is given by:

where

V(x,z€) = XTEPX + XTE.PX (36)
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In the above equation, we need to explicit the derivative of the state EéctBo, we begin by writing
the state equations (22) in the following form:

X:(i):igAiQ (37)

with

and fori > 1:
Onzxori
Using the results given by the lemma 2, it follows from equation (37) that
X=S A l(\i/i+Xm (39)
= i
2
i)t

Ok . U .
where M is the Moore-Penrose pseudo invers@/flefined in (A.4).
The derivative of the composite Lyapunov function (34) is then written:

: ! (k)
V(%28 =23 XT(E:PAM+)XK (40)
K=1
Using the property of the vec-function (1), we have:
r
V(xze) =23 WXkt (41)
K=1
where “
Vi = vedEcPAKM +) (42)

Knowing that all polynomials with even degré¢2s) can be represented as a symmetric quadratic
form. Thus, we assume in the following development thiatodd:r = 2s— 1, and it comes out:

hy _ ,
VAN - z Ak7j+l7jX[k+17]]Nk7j+l7jx[ﬂ (43)
1=0k

whereA,_j1 ; are arbitrary reals verifying:

hg
Z Ak,jJrLj =1 (44)
=%
andfork=1,...,2s—1:
Ok = sup0,k+ 1 —s) andhy = inf(s,K) (45)
for j =g,...,h
Ni—jr1j= mat (V) (46)

(k=i

Applying the properties [1], one obtains:

(k)
Nkfj+1,j = mat (ve((EgP/\kM —i—)) = Unk—jxn(EEP® |nk7j).|\/|k,j+17j (47)

(nk7j+l7n])
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with T -
mat (B}
et (BY)
mat (B2 (K)
Micjrgj= | (™) andB=AxM +
mat (B
(n"*i,ni)( <) i
whereB}, is the i-th row of the matriBy:
o
B
Bi=| .-
2

By (47) and from the relation (48), we obtain:

. T i
| X+ N g XU _
:X[k_H'l Unkfjxn(E£P®Ink’j)Mk_jJ'_l’jxm
ST j
= Xk EP @ 1 M1, X

]T

Consequently, we have:

hi T .
VkTX[kH] - Z AK*HLJ'X“(?JH] Nkfj+1,jxm = XT(PeMk)X

=0k
with
X
X2
X = .
NE
and
E:P 0
E.P®I,
Pg -
0 EcP® 151

Let's note thaf; is a symmetric positive matrix, ahk‘i(X, €) (41) can be written as:

2s-1
V(X,e)=2 5 VXK =XT (P-M; +M]P:)X
k=1

with
AuMi11 AoMip oo AgMis
251 : . :
Me=S M=
kZl : .. :
AaMg oo AsdMes
When considering the nun-redundant form, the vektoan be written as:

X = X

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)
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where ~
T 0 X
T — andX=| (57)
0 Ts X8

>From (54) and (56) we easily obtain:
V(X&) = XTtT (P:M+M] P:)TX (58)

Let us denote the largest eigenvalue of the maB&ixby Amax(P:), the smallest eigenvalue @ by
Amin(Q). Where the matrix verifies:V (X, £) < —XTQX. The positive definiteness 8f andQ implies
that these scalars are all strictly positive. Since matrix theory shows that:

P < /\max(Ps)|; )\min(Q)I <Q (59)
e have Amin(Q) Amin(Q)
XTOX > ZMIM) sT A max(Pe )X > ZMM) Ty - (EeP)ITX 60
Q - /\max(Pg) [ max( 8) ] )\max(Pg) [ max( € ) ] ( )
Otherwise
XTX > ||X||? andE:P < Amax(EeP)! (61)
Hence, (54) will satisfies the following condition:
. /\min(Q)
V(X &) < -2W (X, ¢e) wherey = = - 62
(X.8) < ~2W(X.) wherey = 5. 2 (62)
It comes out
V(X,€) <V(Xg)e 2¥t-) (63)

Considering the previous developments, we state now our main result:
Theorem 1. Assume the following assumptions hold:
(i) Lemma 1 satisfied
(ii) Assumptions 1 - 2 are satisfied
The system (1) is globally exponentially stable (GES), if there is, far<alk;, €1 > 0 a feasible solution
to the LMI :

>0

I =P >0

P =P, >0

PT=P>0 (64)

(8) RoPo (%) <~
rl {(MIP1+PM1)Ty < —Qy
" (MIP +P:M)T < —Q
M1, 11 andPy are given by (32), (57) and (31M¢, T andP; are given by (55), (57) and (53). Moreover,
the Lyapunov function that demonstrates the G.E.S is givex 0y:= XTE.P:X
Now, let's evaluate the convergence rate of the full order system (22). In view of (12), (15), and (27),
we have for alt € R, xe R™ andz € R":

Va(X) < (az|%0]|* + B2 || 20]|?) &2 (65)
>From (12) and (15) we have:

1/2

2 2
I < (ﬁm)+( gffzo) (\f ol + zo) -

(66)
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Identically, using (15) and (16), we obtain:
Bi||Z|| < Vo(2) < B || B e 20/E) ) (67)

then

2] < ﬁzuzouewfﬂ”@ (68)
1

>From (66) and (68), we can write in the cgs€ (y»/¢) that
X[ < 2ne- )

where
2

2
- az ep b
1 = max (\/;1 Pl + ) 2 zo) ( Blnzon) (69)

which implies that the norrjX|| of the state vector converges to zero exponentially, with ay:afghe
convergence rates of the reduced systems can be calculated:

)\min(Ql) Vo = Amin(QZ)

" e o YT

NI

>From above, we state the following second result:
Theorem 2. Assume the following assumptions hold:
() Lemma 1 satisfied
(i) Assumptions 1 - 2 are satisfied
(iii) There exists a Lyapunov functidfit, X, €) that satisfies equation ((34))
Then the original nonlinear singularly perturbed system ((1)) is globally exponentially stable under the
proposed control ((21)) and with the convergence na(é3)).

Moreover, note that when we proves that the limiyafse — 0, tends to the convergence rate of the
reduced order system. This implies that under the proposed control (21), the global exponential stability
of the initial studied system is equivalent to that of the reduced order system.

5 lllustrative Example
To illustrate the previous derived results, we consider a third order nonlinear singularly perturbed

system defined by the following equations:

X1 = —X1+X2+0.1%1 2
Xo = —X1 — 0.09%, + 22+ 0.05%1 2
€2= 4% — 4% + 2+ 0.5 — x5+ 10u
This system can be described by the following model using the Kronecker product and the power of
vectors which allowed important algebraic manipulations.

X = FraX+ F1oz+ ForX” + FooX® 2+ FoaZ”
£2 = G11X+ G12Z+ GyiX” + GooX® 2+ Gz + Bu
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where
-1 1 0
Fii= [ 1 -009 ] JFi2= [ 5 ] ,Gu=[4 —4],Gp=1,
01 O
Fo1 = 02x4,F22 = [ 0 05 } P23 =021

Gou=[05 1 0],Gp2=[0 0],G3=0,B=10

When implemented using the LMI toolbox of Matlab, the proposed LMI’s conditions proves that the
numerical studied system which is initially instable can be globally exponentially stabilised by the given
controller with the considerefl = —1 for all € < & = 0.5in view of theorem 1:

u= —0.4x; 4 0.4xp — 0.1z— 0.05x2 + 0.1x2

states

Figure 1: State trajectories of the controlled studied system

Hence for alle < &1 = 0.5 and from any initial states, the trajectories of the system are steered to the
origin along the integral manifold with the convergence fatein view of (62). Indeed, it is shown in
Fig. 1 that the state trajectories of the controlled system ( ——-) are bounded by the function (—).

6 Conclusion

In this paper, the global exponential stabilisation for nonlinear singularly perturbed control systems
is investigated. In the stability study, the composite Lyapunov method was applied and the global expo-
nential stability of the equilibrium of the full control system was established far alle;. The upper
bounde; for which the stability properties are guaranteed can be reached after a number of iterations on
€ when resolving the proposed LMI’s conditions via the LMI Toolbox of Matlab. A numerical example
has been provided to illustrate the proposed results.
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7 Appendix

Notations: The dimensions of the matrices used here are the following:
A(pxq), B(r xs),C(sx h),D(sx h), E(nx p),
P(nxn),X(nx1) e RM Y(mx1) e RM Z(qx 1) € RY
Let's consider the following notations:
In: nx nidentity matrix;
Onxm: N X N zero matrix;
Ozero matrix of convenient dimensions ;
AT: transpose of matrix A;
A> 0 (A > 0): symetric positive definite (semi definite matrix A);
& g dimensional unit vector which has 1 in théh element and zero elsewhere.

C)
Thekthrow of a matrix such aé is denotedd, and thekth column is denoted . Theik element ofA
will be denotedh.
The Kronecker product dkandB is denoted\@B a (p.r x g.s) matrix, and the —th Kronecker’s power
of Adenoted Al =A@ A®---®As a (' x ) matrix.
The nun-redundarjtpowerX!l! of the state vectoX introduced in [9] is defined as:
X1 — xl1 — x
vi>2 Xll= [xl,le g, Xt
xl_ XoXg, - - x‘1 XoXn,

—2,n 13,3
X27 Xl 27 : 7Xn:|

where the repeated components of the redundant j-power are omitted. Then we have the following
relation:

X, X) 72
X (A1)

VjeN T eR"*%;q; = ( n+i-1 )

. J (A-2)
Xl = zj[l]
thus, one possible solution for the inversion can be written as:
XUl =T+ XU (A.3)
whereTj+ is the Moore-Penrose pseudo inversdjpfiven by:
-1
T = (TJTTJ-) T (A.4)
anda; stands for the binomial coefficients.
An important vector valued function of matrix denotegty.) was defined as [9]:
A1
Az
VeGax1(A) = | | (A.5)
Aqg

A matrix valued function is a vector denotedat, ,(.) was defined in [1] as follows: ¥/ is a
vector of dimensiorp = n x nthenMmat,, , (V) is then x mmatrix verifying:

V =vedqM) (A.6)
Among the main properties of this product presented in [9], [1], we recall the following useful ones:
(A®B)(C®D) = (AC)® (BD) (A.7)
(AB)T =AT @ BT (A.8)
BRA=U;«p(A®B)Uqgxs (A.9)
X®Y =Unm(Y @ X) (A.10)
vec(EAC) = (CT @ E) vec(A) (A.11)
vec(AT) = Upuqvec(A) (A.12)

Vi<k XM=uUg;, XX (A.13)
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