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Formation Control of Mobile Robots

Dang Binh Nguyen, Khac Duc Do

Abstract: A constructive method is presented to design cooperative controllers that
force a group ofN mobile robots to achieve a particular formation in terms of shape
and orientation while avoiding collisions between themselves. The control devel-
opment is based on new local potential functions, which attain the minimum value
when the desired formation is achieved, and are equal to infinity when a collision
occurs. The proposed controller development is also extended to formation control
of nonholonomic mobile robots.
Keywords: Formation control, mobile robot, local potential function, nonholonomic
mobile robot.

1 Introduction

Over the last few years, formation control of multiple vehicles has received a lot of attention from
the control community. Applications of vehicle formation control include the coordination of multiple
robots, unmanned air/ocean vehicles, satellites, aircraft and spacecraft [1]-[28]. For example, a coopera-
tive mobile sensor network, where each mobile robot serves as a mobile sensor, is expected to outperform
a single large vehicle with multiple sensors or a collection of independent vehicles when the objective is
to climb the gradient of an environmental field. The single, heavily equipped vehicle may require con-
siderable power to operate its sensor payload, it lacks robustness to vehicle failure and it cannot adapt
the configuration or resolution of the sensor array. An independent vehicle with a single sensor may
need to perform costly maneuvers to effectively climb a gradient, for instance, wandering significantly
to collect rich enough data much like the "run and tumble" behavior of flagellated bacteria. In military
missions, a group of autonomous vehicles are required to keep in a specified formation for area coverage
and reconnaissance. In automated highway system, the throughput of the transportation network can be
greatly increased if vehicles can form to platoons at a desired velocity while keeping a specified distance
between vehicles. Research on formation control also helps people to better understand some biological
social behaviors, such as swarm of insects and flocking of birds.

In the literature, there have been roughly three methods to formation control of multiple vehicles:
leader-following, behavioral and virtual structure. Each method has its own advantages and disadvan-
tages. In the leader-following approach, some vehicles are considered as leaders, whist the rest of robots
in the group act as followers [1], [2], [3], [4]. The leaders track predefined reference trajectories, and the
followers track transformed versions of the states of their nearest neighbors according to given schemes.
An advantage of the leader-following approach is that it is easy to understand and implement. In addi-
tion, the formation can still be maintained even if the leader is perturbed by some disturbances. However,
a disadvantage is that there is no explicit feedback to the formation, that is, no explicit feedback from
the followers to the leader in this case. If the follower is perturbed, the formation cannot be maintained.
Furthermore, the leader is a single point of failure for the formation. In the behavioral approach [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], few desired behaviors such as collision/obstacle avoidance
and goal/target seeking are prescribed for each vehicle and the formation control is calculated from a
weighting of the relative importance of each behavior. The advantages of this approach are: it is natural
to derive control strategies when vehicles have multiple competing objectives, and an explicit feedback is
included through communication between neighbors. The disadvantages are: the group behavior cannot
be explicitly defined, and it is difficult to analyze the approach mathematically and guarantee the group
stability. In the virtual structure approach, the entire formation is treated as a single entity [15], [16],
[17], [18]. When the structure moves, it traces out desired trajectories for each robot in the group to
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track. Some similar ideas based on the perceptive reference frame, the virtual leader, and the formation
reference point are given in [14], [17], [19]. The advantages of the virtual structure approach are: it is
fairly easy to prescribe the coordinated behavior for the group, and the formation can be maintained very
well during the manoeuvres, i.e. the virtual structure can evolve as a whole in a given direction with
some given orientation and maintain a rigid geometric relationship among multiple vehicles. However
requiring the formation to act as a virtual structure limits the class of potential applications such as when
the formation shape is time-varying or needs to be frequently reconfigured, this approach may not be the
optimal choice. The virtual structure and leader-following approaches require that the full state of the
leader or virtual structure be communicated to each member of the formation. In contrast, behavior-based
approach is decentralized and may be implemented with significantly less communication. Formation
feedback has been recently introduced in the literature [18], [20], [21], [22]. In [18], a coordination
architecture for spacecraft formation control is introduced to incorporate the leader-following, behav-
ioral, and virtual structure approaches to the multi-robot coordination problem. This architecture can
be extended to include formation feedback. In [20], a Lyapunov formation function is used to define a
formation error for a class of robots (double integrator dynamics) so that a constrained motion control
problem of multiple systems is converted into a stabilization problem for one single system. The error
feedback is incorporated to the virtual leader through parameterized trajectories. In terms of information
from the robots in the group used for feedback in the control design for each robot, there are two main
approaches to solve the problem of motion planning/control of a group of mobile robots: centralization
and decentralization. In the centralized approach, see for example [18], a single controller and collision
free trajectories are constructed in a workspace. The centralized approach has a drawback of computa-
tion complexity but guarantees a complete solution. The decentralized approach, see for example [23],
requires less computational effort, and offers an easy way to scale the size of the robot group. This
approach usually involves a combination of robot based local potential fields [14], [24], [25].

The main problem with the decentralized approach is that it is unable or extremely difficult to pre-
dict and control the critical points. Basically, the closed loop system under a controller designed by the
decentralized approach has multiple equilibrium points. It is rather difficult to design a controller such
that all the equilibrium points except for the desired equilibrium one are unstable/saddle points for a
group of many robots. Moreover even the formation control system is designed in a centralized manner,
the tuning constants in several aforementioned papers (e.g. [26], [27], [28], [29]), which are crucial to
guarantee that the only desired equilibrium points are asymptotic stable and that the other critical points
are unstable, are extremely difficult to obtain for practical implementation. In most of the above papers,
point-robots with simple (single or double integrator) dynamics (e.g. [14], [24], [29]) or fully actuated
vehicles [19] (which can be converted to a double integrator dynamics via a feedback linearization) were
investigated. Vehicles with nonholonomic constraints were also considered (e.g. [5]). However, the non-
holonomic kinematics are transformed to a double integrator dynamics by controlling the hand position
instead of the inertial position of the vehicles. Consequently, the vehicle heading is not controlled. In
addition, in the tracking control of single nonholonomic mobile robots (e.g. [30], [31], [32]) the track-
ing errors are often converted into special forms to deal with nonholonomic constraints using several
non-trivial coordinate transformations. If these techniques are migrated to formation control of a group
of nonholonomic mobile robots, it is extremely difficult to incorporate collision avoidance between the
robots. The above problems motivate the contribution of this paper.

In this paper, we propose a constructive method to design a cooperative formation control system
for a group ofN mobile robots. The simple point-mass robots are first considered to clarify the de-
sign philosophy. The proposed technique is extended to mobile robots with nonholonomic constraints
(nonholonomic mobile robots). New local potential functions are constructed to design gradient based
cooperative controllers to achieve almost global asymptotic convergence of a group of mobile robots
to a particular formation in term of both shape and orientation, and guarantee no collisions between
themselves. Formal proof of the results is given.
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2 Problem statement

We consider a group ofN simple point-mass mobile robots, of which each has the following dynam-
ics

q̇i = ui , i = 1, ...,N (1)

whereqi ∈ Rn andui ∈ Rn are the state and control input of the roboti. We assume thatn > 1 and
N > 1. The assumption that each robot is represented as a point is not as restrictive as it may seem since
various shapes can be mapped to single points through a series of transformations [26], [27], [28]. Our
task is to design the control inputui for each roboti that forces the group ofN robots to stabilize with
respect to their group members in configurations that make a particular formation specified by a desired
vectorl(η) = [lT

12(η), lT
23(η), ..., lT

N−1,N(η)]T , whereη ∈Rm is the formation parameter vector to specify
the formation change, while avoiding collisions between themselves. The parameter vectorη is used to
specify rotation, expansion and contraction of the formation such that whenη converges to its desired
valueη f , the desired shape of the formation is achieved. In addition, it requires all the robots align their
velocity vectors to a desired bounded oneud ∈Rn, and move toward specified directions specified by the
desired formation velocity vector. The control objective is formally stated as follows:

Control objective: Assume that at the initial timet0 each robot initializes at a different location, and
that each robot has a different desired location, i.e. there exist strictly positive constantsε1, ε2 andε3

such that

||qi(t0)−q j(t0)|| ≥ ε1,
||l i j (η)|| ≥ ε2,
||∂ l i j (η)/∂η || ≤ ε3, ∀ i, j ∈ {1,2, ...N}, ∀η ∈ Rm.

(2)

Design the control inputui for each roboti , and an update law for the formation parameter vectorη
such that each robot (almost) globally asymptotically approaches its desired location to form a desired
formation, and that the robots’ velocity converges to the desired (bounded) velocityud while avoiding
collisions with all other robots in the group, i.e.

limt→∞(qi(t)−q j(t)− l i j (η(t))) = 0,
limt→∞(η(t)−η f ) = 0,
limt→∞(ui(t)−ud) = 0,
||qi(t)−q j(t)||> ε4, ∀i, j ∈ {1,2, ...N}, ∀t ≥ t0 ≥ 0

(3)

whereε4 is a strictly positive constant, andη f is a vector of constants that determine the desired forma-
tion. The desired formation can be represented by a labeled directed graph ([29], [34]) in the following
definition.

Definition 1. The formation graph,G = {V,E,L} is a directed labeled graph consisting of:
-a set of vertices (nodes),V = {ϑ1, · · · ,ϑN} indexed by the mobile robots in the group,
-a set of edges,E = {(ϑi ,ϑ j)∈V×V}, containing ordered pairs of vertices that represent inter-robot

position constraints, and
-a set of labels,L = {γi j |γi j = ||qi −q j − l i j ||2, ∀(ϑi ,ϑ j) ∈ E}, l i j = qi f −q j f ∈ Rn indexed by the

edges inE.
Indeed, when the control objective is achieved, the edge labels become||qi−q j− l i j ||2 = 0, ∀(ϑi ,ϑ j)∈

E, i.e. the relative distance between the robotsi and j is l i j .

3 Control design

We consider the following local potential function

ϕi = γi +δβi (4)
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whereδ are positive tuning constants, the functionsγi andβi are the goal and related collision avoidance
functions for the roboti specified as follows:

-The goal functionγi is essentially the sum of all distances from the roboti to its adjacent group
members,Ni . A simple choice of this function is

γi = ∑
j∈Ni

γi j , γi j =
1
2
||qi−q j − l i j ||2. (5)

-The related collision functionβi should be chosen such that it is equal to infinity whenever any
robots come in contact with the roboti, i.e. a collision occurs, and attains the minimum value when the
robot i is at its desired location with respect to other group members belong toNi , which are adjacent to
the roboti. This function is chosen as follows:

βi = ∑
j∈Ni

(
β k

i j

β 2k
i jl

+
1

β k
i j

)
(6)

wherek is a positive constant to be chosen later,βi j and βi jl are collision and desired collision
functions chosen as

βi j =
1
2
||qi−q j ||2, βi jl =

1
2
||l i j ||2. (7)

It is noted from (7) thatβi j = β ji andβi jl = β jil .

Remark 1.
1. The above choice of the potential functionϕi given in (4) with its components specified in

(5)-(6), has the following properties: 1) it attains the minimum value when the roboti is at the de-
sired location with respect to other group member belong toNi , which are adjacent to the roboti, i.e.
qi −q j − l i j = 0, j ∈ Ni , and 2) it is equal to infinity whenever one or more robots come in contact with
the roboti, i.e. when a collision occurs.

2. The potential function (4) is different from the ones proposed in [14] and [33] in the sense that
the ones in [14] and [33] are centralized and do not put penalty on the relative distance between the
robots, i.e. do not include the goal functionγi . Therefore, the controllers developed in [14] and [33] do
not guarantee the formation converge to a specified configuration but to any configurations that locally
minimize the potential functions (these potential functions in [14] and [33] are nonconvex).

3. Our potential function (4) is also different from the navigation functions proposed in [26] and [29]
in the sense that our potential function is of the form of sum of collision avoidance functions while those
navigation functions in [26] and [29] are of the form of product of collision avoidance functions . This
feature makes our potential function "more decentralized". Furthermore, our potential function is equal
to infinity while those in [14], [26] and [29] is equal to a finite constant when a collision occurs. However,
those in [26] and [29] also cover obstacle and work space boundary avoidance. Although these issues are
not included in this paper for clarity, considering these issues is possible and is the subject of future work.

4. Our potential function does not have problems like local minima and non-reachable goal as listed
in [24].

To design the control inputui , we differentiate both sides of (4) along the solutions of (1) to obtain

ϕ̇i = ∑
j∈Ni

[ΩT
i j (ui−u j)−ΨT

i j η̇ ]

= ∑
j∈Ni

[ΩT
i j (ui−ud− (u j −ud))−ΨT

i j η̇ ]

= ∑
j∈Ni

ΩT
i j (ui−ud)− ∑

j∈Ni

ΩT
i j (u j −ud)− ∑

j∈Ni

ΨT
i j η̇

(8)
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where

Ωi j = qi−q j − l i j +δk

(
1

β 2k
i jl
− 1

β 2k
i j

)
β k−1

i j (qi−q j)

Ψi j =

[(
qi−q j − l i j +

2δkβ k
i j

β 2k+1
i jl

l i j

)T
∂ l i j
∂η

]T

.

(9)

From (8), we simply choose the controlui for the roboti and the update law forη as follows:

ui =−C ∑
j∈Ni

Ωi j +ud

η̇ =−Γ(η−η f ) (10)

whereC ∈ Rn×n
+ andΓ ∈ Rm×m

+ are symmetric positive definite matrices. Substituting (10) into (8)
yields

ϕ̇i =− ∑
j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j − ∑
j∈Ni

ΩT
i j (u j −ud)+ ∑

j∈Ni

ΨT
i j Γ(η−η f ). (11)

Substituting (10) into (1) results in the closed loop system

q̇i =−C ∑
j∈Ni

Ωi j +ud, i = 1, ...,N. (12)

Since the desired formation is specified in terms on relative distances between the robots, we write
the closed loop system of the inter-robot dynamics from the closed loop system (12) as

q̇i j =−C

(
∑

a∈Ni

Ωia− ∑
b∈Nj

Ω jb

)
, (i, j) ∈ {1, ...,N}, i 6= j (13)

whereqi j = qi−q j . We now state the main result in the following theorem.

Theorem 1. Under the assumptions stated in the control objective, the control for each roboti given in
(10) with an appropriate choice of the tuning constantsδ andk, solves the control objective.

Proof. See Appendix.

4 Simulations

We carry out a simulation example in two-dimensional space to illustrate the results. The number
of robots isN = 4. The initial positions of robots are chosen randomly in the circle with a radius of 0.5
centered at the origin. The design constants are chosen asC = diag(0.4,0.4), k = 0.5, δ = 0.1. It is
noted that this choice satisfies the conditions in the proof of Theorem 1. We run two simulations with
ud = [1 0.2]T (linear formation motion meaning that each robot will move on a rectilinear line to form the
desired formation) andud = [sin(0.5t) cos(0.5t)] (circular formation motion meaning that each robot will
move on a circle to form the desired formation). For clarity, we take the formation parameterη as a scalar
to implement formation expansion. The desired formation is depicted in Figure 1. These simulations are
motivated by gradient climbing missions in which the mobile sensor network (each mobile robot serves
as a mobile sensor) seeks out local maxima or minima in the environmental field. The network can
adapt its configuration in response to the sensed environment in order to optimize its gradient climb. For
example, gradients in temperature fields (among others) can be estimated from the data collected by the
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mobile robots; these are of interest for enabling gradient climbing to locate and track features such as
fronts and eddies. These gradients can be used to compute the desired reference velocity vectorud in our
simulations in this section. In the first 4.5 seconds (for the linear formation motion case) and 15 seconds
(for the circular formation case),η is set to zero then is updated toη f = 3 for the rest of simulation time.
The update gain is chosen asΓ = 2 (scalar).

Robot 1

Robot 4

Robot 3

Robot 2

2(
1

)

2
(1

) 2(1

)

2(
1

)2(1

)

2 (1 )

Figure 1: Desired formation for simulation.

Figures 2 and 3 plot simulation results for the linear formation motion and circular formation cases,
respectively. For clarity, we only plot the controlu1 = [ux1 uy1]T and distances from the robot 1 to other
members in the group, i.e.‖q12‖,‖q13‖ and‖q14‖. It is seen from these figures that the desired formation
shapes are nicely achieved and there are no collisions between any robots, see the bottom right figures in
Figures 2 and 3, where the distances from the robot 1 to other members in the groups are plotted. Clearly,
these distances are always larger than zero. It is also seen from Figures 2 and 3 that at the beginning
all the robots rapidly move away from each other to avoid collisions since they start pretty close to each
other.

5 Extension to formation control of nonholonomic mobile robots

Control of single nonholonomic mobile robots receives considerable attention, and is complicated
due to the fact that they have less controls than the outputs to be controlled, see for example [30],
[31], [32] and references therein. Indeed, control of a group of nonholonomic mobile robots is more
complicated due to some nonholonomic (non-integral) constraint. However, in this section we show that
the control method developed in Section 3 can be readily extended to force a group ofN nonholonomic
mobile robots of unicycle type to move in such a way that a desired formation is achieved. For clarity, we
consider only the kinematic model of the nonholonomic mobile robots. Designing the control system at
the dynamic level even without requiring robot velocities be measured can be carried out using one more
"backstepping" step [35] and our proposed exponential observer in [31]. Consider the kinematic model
of the unicycle mobile roboti, whose only two wheels are actuated and the third wheel is not actuated
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Figure 2: Linear formation motion: simulation results.
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(see Figure 4), given by

ẋi =
Ri

2
(cos(θi)ω1i +cos(θi)ω2i)

ẏi =
Ri

2
(sin(θi)ω1i +sin(θi)ω2i)

θ̇i =
Ri

2bi
(ω1i−ω2i) (14)

where(xi , yi) denote the coordinates of the middle point,P0i , between the left and right driving wheels,
andθi denotes the heading of the roboti coordinated in the earth-fixed frameOXY, see Figure 4,ω1i

andω2i denote the angular velocities of the wheels of the roboti. MoreoverRi andbi are defined in
Figure 4. The task now is to design the control inputsω1i and ω2i to achieve the control objective
stated in Section 3. We require an additional assumption on the desired formation velocity vectorud that
limt→∞ ||ud(t)|| 6= 0, i.e. we do not consider the stabilization/regulation problem. For convenience, we
convert the angular velocities of the wheels to the linear and angular velocities (vi andr i) of the roboti
by the following relationship:

[
vi

r i

]
=

(
1
Ri

[
1 bi

1 −bi

])−1[
ω1i

ω2i

]
. (15)

With (15), we can write (14) as

ẋi = vi cos(θi)
ẏi = vi sin(θi)
θ̇i = r i

(16)

Y
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Robot i

Figure 4: Geometric description of a nonholonomic mobile robot.

Indeed, the kinematic model (14) or (16) possesses the following nonholonomic constraint:

ẋi sin(θi)− ẏi cos(θi) = 0. (17)

Moreover, we will consider the the linear and angular velocities (vi andr i) of the roboti as the control
inputs. After these inputs are designed,ω1i andω2i are calculated from (15).
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5.1 Control design

The control design consists of two steps. At the first step, we consider the controlvi and the yaw
angleθi as a virtual control to steer the robot position(xi , yi) to its desired location. At the second step,
the controlr i will be desired to force the virtual yaw angle to converge to its actual yaw angle.

Step 1.Define
θei = θi−αθi (18)

whereαθi is a virtual control ofθi . With (18), we can write (16) as

q̇i = ui +Λθei (19)

where

qi =
∣∣∣∣

xi

yi

∣∣∣∣ , ui =
∣∣∣∣

cos(αθi )
sin(αθi )

∣∣∣∣vi , Λθei =
∣∣∣∣

(cos(θei)−1)cos(αθi )−sin(θei)sin(αθi )
sin(θei)cos(αθi )+(cos(θei)−1)sin(αθi )

∣∣∣∣vi . (20)

It is seen that (19) is almost of the same form as (1). However, the problem is that the controlsvi andαθi

are not solvable directly from the controlui if ui is not designed properly. We therefore present briefly
how ui is designed to tackle that problem. Consider the following potential function (the same form as
(4))

ϕi = γi +δβi (21)

whereδ , γi andβi are defined in Section 3, see (6) and (7). Differentiating both sides of (21) along
the solutions of (19) gives

ϕ̇i = ∑
j∈Ni

[ΩT
i j (ui +Λθei−u∗d− (u j +Λθe j−u∗d))−ΨT

i j η̇ ] (22)

whereΩi j andΨi j are defined in (9), andu∗d =

√
1+

N
∑

i=1
|| ∑

j∈Ni

Ωi j ||2ud . It is noted that we useu∗d instead

of ud in (22) to overcome the nonholonomic problem of the mobile robot under investigation. Indeed,
limt→∞ ∑

j∈Ni

Ωi j (t) = 0 implies thatlimt→∞ u∗d(t) = ud. From (22), we choose the controlui and the update

law for η as

ui =−C||ud|| ∑
j∈Ni

Ωi j +u∗d

η̇ =−Γ(η−η f )
(23)

whereC andΓ are diagonal positive definite matrices. Again,||ud|| is included in the controlui to
overcome the nonholonomic problem. Definingθd = arctan(udy/udx), then from the first equations of
(23) and (20), we have

cos(αθi )vi =−c1||ud|| ∑
j∈Ni

Ωxi j +

√
1+

N
∑

i=1
|| ∑

j∈Ni

Ωi j ||2||ud||cos(θd)

sin(αθi )vi =−c2||ud|| ∑
j∈Ni

Ωyi j +

√
1+

N
∑

i=1
|| ∑

j∈Ni

Ωi j ||2||ud||sin(θd)
(24)

whereΩxi j andΩyi j are defined asΩi j = [Ωxi j Ωyi j ]T , c1 andc2 are defined asC = diag(c1,c2). We now
need to solve (24) forvi andαθi . To do this, multiplying both sides of the first and second equations of
(24) withcos(θd) andsin(θd), respectively, then adding them together result in

cos(αθi −θd)vi = −c1||ud|| ∑
j∈Ni

Ωxi j cos(θd)−

c2||ud|| ∑
j∈Ni

Ωyi j sin(θd)+

√√√√1+
N

∑
i=1

|| ∑
j∈Ni

Ωi j ||2||ud||. (25)
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On the other hand, multiplying both sides of the first and second equations of (24) withsin(θd) and
cos(θd), respectively, then subtracting from each other result in

sin(αθi −θd)vi = c1||ud|| ∑
j∈Ni

Ωxi j sin(θd)−c2||ud|| ∑
j∈Ni

Ωyi j cos(θd). (26)

From (25) and (26), we have

αθi = θd +arctan




c1 ∑
j∈Ni

Ωxi j sin(θd)−c2 ∑
j∈Ni

Ωyi j cos(θd)

−c1 ∑
j∈Ni

Ωxi j cos(θd)−c2 ∑
j∈Ni

Ωyi j sin(θd)+

√
1+

N
∑

i=1
|| ∑

j∈Ni

Ωi j ||2




. (27)

It is seen that (27) is well-defined if the positive constantsc1 andc2 are chosen such that

c1 +c2 < 1. (28)

The controlvi is found by solving (24) as

vi = cos(αθi )||ud||
(
−c1 ∑

j∈Ni

Ωxi j +

√
1+

N
∑

i=1
|| ∑

j∈Ni

Ωi j ||2cos(θd)

)
+

sin(αθi )||ud||
(
−c2 ∑

j∈Ni

Ωyi j +

√
1+

N
∑

i=1
|| ∑

j∈Ni

Ωi j ||2sin(θd)

)
.

(29)

Substituting (23) into (22) results in

ϕ̇i =−||ud|| ∑
j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j + ∑
j∈Ni

[ΩT
i j (Λθei− (u j +Λθe j−u∗d))+ΨT

i j Γ(η−η f )]. (30)

Step 2. To design the controlr i , differentiating both sides of (18) along the solutions of the third
equation of (16) and choosing the controlr i as

r i =−diθei− α̇θi − ∑
j∈Ni

ΩT
i j Λθei/θei (31)

wheredi is a positive constant, and the term∑
j∈Ni

ΩT
i j Λθei/θei is to cancel the cross term∑

j∈Ni

ΩT
i j Λθei in

(30), result in
θ̇ei =−diθei− ∑

j∈Ni

ΩT
i j Λθei/θei. (32)

Note thatΛθei/θei is well defined sincesin(θie)/θie =
1∫
0

cos(θieλ )dλ and(cos(θie)−1)/θie =
1∫
0

sin(θieλ )dλ

are smooth functions.

4.2 Stability analysis
We consider the following function

ϕtot = log(1+
N

∑
i=1

(ϕi +θ 2
ei))+

1
2
(η−η f )TΓ(η−η f ) (33)

whose derivative along the solutions of (30), (32) and the second equation of (23) satisfies

ϕ̇tot =−2

||ud||
N
∑

i=1
∑

j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j +
N
∑

i=1
diθ 2

ei

1+
N
∑

i=1
(ϕi +θ 2

ei)
+

N
∑

i=1
∑

j∈Ni

ΨT
i j Γ(η−η f )

1+
N
∑

i=1
(ϕi +θ 2

ei)
− (η−η f )TΓ(η−η f ) (34)
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where we have used

−
N

∑
i=1

∑
j∈Ni

[ΩT
i j (u j +Λθe j−u∗d) =

N

∑
i=1

∑
j∈Ni

[ΩT
i j (ui−u∗d +Λθei)

=−||ud||
N

∑
i=1

∑
j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j +
N

∑
i=1

∑
j∈Ni

ΩT
i j Λθei. (35)

The rest of stability analysis can be carried out in the same lines as in Proof of Theorem 1 since (34)
is of the same form as (40) andlimt→∞ ||ud(t)|| 6= 0 by assumption. Finally, note thatlimt→∞ θei(t) = 0
andlimt→∞ ∑

j∈Ni

Ωi j (t) = 0 implies thatlimt→∞(θi(t)−θd) = 0 , i.e. the yaw angle of all robots converge

to the desired angleθd = arctan(udy/udx).

5.2 Simulation results

We now perform a simulation to illustrate the results in the previous subsection. The number of
robots, initial conditions of the robot positions, control gains, desired formation velocity and desired
formation shape are the same as in Section 4. The robot heading angles are initialized randomly in the
circle with a radius of 0.5 centered at the origin. For clarity, we only simulate the circular formation
motion, and we do not include simulation results on the formation expansion as in Section 4, i.e. the
formation parameterη is set to zero in all the simulation time. The other design constants are chosen as
di = 5. Simulation results are plotted in Figure 5. Again, it is seen that the robots are forced to move
to nicely achieve the desired formation and no collisions between the robots occur. Moreover, the yaw
angle of all robots converges to the desired valueθd, see the top-right figure in Figure 5, where the
yaw angle errors are plotted. A close look at Figure 5 shows that the main different between simulation
results in this subsection and those in Section 4 is that the robots take a longer time to approach the
desired formation. This is because we use the heading anglesθi as the virtual controls to steer the robots
to overcome the noholonomic constraint.

6 Summary and Conclusions

This paper has contributed the method to construct local potential functions, based on which gradient-
like cooperative controllers were designed for a group of mobile robots both with and without nonholo-
nomic constraints to perform certain formation missions. Formal analysis of the convergence and fea-
sibility of the control solutions have also been provided. In the near future, it is of interest to apply the
proposed control design method combined with the control design scheme for other single underactuated
robots with second order nonholonomic constraints such as underactuated ships [37] to achieve a desired
formation for a group of underactuated systems.

7 Appendix: Proof of Theorem 1

We prove Theorem 1 in two steps. At the first step, we show that there are no collisions between any
robots and the solutions of the closed loop system exist. At the second step, we prove that the equilibrium
point of the inter-robot dynamics closed loop system (13), at whichqi −q j − l i j = 0, is asymptotically
stable. Finally, we show that all other equilibrium(s) of (13) are either unstable or saddle.

Step 1. Proof of no collision and existence of solutions:
We consider the following common potential functionϕ given by

ϕ =
N

∑
i=1

ϕi (36)
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whose derivative along the solutions of (11) is

ϕ̇ =−
N

∑
i=1

∑
j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j −
N

∑
i=1

∑
j∈Ni

ΩT
i j (u j −ud)+

N

∑
i=1

∑
j∈Ni

ΨT
i j Γ(η−η f ). (37)

Sincel i j =−l ji andΩi j =−Ω ji , we have

N

∑
i=1

∑
j∈Ni

ΩT
i j (u j −ud) =−

N

∑
i=1

∑
j∈Ni

ΩT
i j (ui−ud). (38)

Substituting (38) into (37) gives

ϕ̇ =−2
N

∑
i=1

∑
j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j +
N

∑
i=1

∑
j∈Ni

ΨT
i j Γ(η−η f ). (39)

We now consider the following total functionϕtot = log(1+ ϕ) + 0.5||η −η f ||2 whose derivative
along the solutions of (39) the second equation of (10) satisfies

ϕ̇tot =− 2
1+ϕ

N

∑
i=1

∑
j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j +
1

1+ϕ

N

∑
i=1

∑
j∈Ni

ΨT
i j Γ(η−η f )− (η−η f )TΓ(η−η f ) (40)

which implies that

ϕ̇tot ≤ − 2
1+ϕ

N

∑
i=1

∑
j∈Ni

ΩT
i jC ∑

j∈Ni

Ωi j +
λmax(Γ)

4ε(1+ϕ)2

∥∥∥∥∥
N

∑
i=1

∑
j∈Ni

ΨT
i j

∥∥∥∥∥
2

−

(λmin(Γ)− ελmax(Γ))||η−η f ||2 (41)

whereε is a positive constant,λmin(Γ) andλmax(Γ) denote the minimum and maximum eigenvalues of
Γ respectively. From (9), and definition of the functionϕ, it can be readily shown that there exists a
positive constantωmax such that

1
(1+ϕ)2

∥∥∥∥∥
N

∑
i=1

∑
j∈Ni

ΨT
i j

∥∥∥∥∥
2

≤ ωmax (42)

With (42) in mind, pickingε = λmin(Γ)/λmax(Γ) we can write (41) as

ϕ̇tot ≤ λ 2
max(Γ)

4λmin(Γ)
ωmax

∆= ϖmax. (43)

Integrating both sides of (43) results in

ϕtot(t)≤ ϕtot(t0)+ϖmax(t− t0). (44)

whereϕtot(t) andϕtot(t0) are (from the definition ofϕtot)

ϕtot(t) = log

[
1+

N
∑

i=1

(
γi(t)+δ ∑

j∈Ni

(
β k

i j (t)
β 2k

i jl
+ 1

β k
i j (t)

))]
+ 1

2||η(t)−η f ||2

ϕtot(t0) = log

[
1+

N
∑

i=1

(
γi(t0)+δ ∑

j∈Ni

(
β k

i j (t0)
β 2k

i jl
+ 1

β k
i j (t0)

))]
+ 1

2||η(t0)−η f ||2.
(45)

The right hand side of (44) cannot escape to infinity unless whent = ∞ sinceβi jl > 0 andβi j (t0) > 0 (see
definition ofβi jl andβi j given in (7)). Therefore the left hand side of (44) cannot escape to infinity for



54 Dang Binh Nguyen, Khac Duc Do

all t ∈ [t0,∞). This implies thatβi j (t) cannot be zero for allt ∈ [t0,∞), i.e. no collisions can occur for all
t ∈ [t0,∞). On the other hand, it is true from the second equation of (10) that

||η(t)−η f || ≤ ||η(t0)−η f ||e−λmin(Γ)(t−t0) (46)

which means that the desired formation shape is achieved exponentially. Using (42) and (46), we can
write (41) as

ϕ̇tot≤ λmax(Γ)
√

ωmax||η(t0)−η f ||e−λmin(Γ)(t−t0). (47)

Integrating both sides of (47) fromt0 to t results in

ϕtot(t)≤ ϕtot(t0)+λmax(Γ)
√

ωmax||η(t0)−η f ||/λmin(Γ). (48)

It is seen that the right hand side of (48) is bounded. Therefore the left hand side of (48) must also
be bounded. This implies thatβi j (t) must be larger than a strictly positive constant for allt ∈ [t0,∞),
which in turn means that there exists a strictly positive constantε4 such that the last inequality of (3)
holds. To prove that the solutions of the closed loop system (12) exist, we consider the functionW =

0.5
N
∑

i=1
||qi ||2 whose derivative along the solutions of (12), after some simple manipulation, satisfiesẆ≤

ρ1(1+1/min(βi j ))W+ρ2 , whereρ1 andρ2 are some positive constants, which implies that the solutions
of (12) exist sinceβi j (t) is larger than a strictly positive constant for allt ∈ [t0,∞). Furthermore, applying
Barbalat’s lemma found in [36] to (41) gives

lim
t→∞

1
1+ϕ(t)

N

∑
i=1

∑
j∈Ni

ΩT
i j (t)C ∑

j∈Ni

Ωi j (t) = 0 (49)

which implies that
{

limt→∞ ∑
j∈Ni

Ωi j (t) = 0

limt→∞ ϕ(t) = χ1

or

{
limt→∞ ∑

j∈Ni

Ωi j (t) = χ2

limt→∞ ϕ(t) = ∞
(50)

whereχ1 andχ2 are some constants. From definitions ofΩi j andϕ, the second limit set in (50) cannot
be true. Therefore, the first limit set in (50) implies thatlimt→∞ ∑

j∈Ni

Ωi j (t) = 0.

Step 2. Behavior near equilibrium points.
At the steady state, the equilibrium points are found by solving the following equations

∑
j∈Ni

Ωi j = ∑
j∈Ni

(
qi j − l i j +δk

(
1

β 2k
i jl

− 1

β 2k
i j

)
β k−1

i j qi j

)
= 0, i = 1, ...,N. (51)

It is directly verified thatq̄ = l̄ where q̄ and are stack vectors ofqi j and l i j , respectively, i.e. q̄ =
[qT

12,q
T
13...,q

T
N−1,N]T and l̄ = [lT

12, l
T
13..., l

T
N−1,N]T , is one root of (51). In addition there is (are) another

root(s) denoted bȳqc = [qT
12c,q

T
13c...,q

T
N−1,Nc]

T of (51) different froml̄ satisfying

∑
j∈Ni

Ωi j

∣∣∣∣∣
q̄=q̄c

= ∑
j∈Ni

(
qi jc− l i j +δk

(
1

β 2k
i jl

− 1

β 2k
i jc

)
β k−1

i jc qi jc

)
= 0, i = 1, ...,N (52)

whereβi jc = 0.5||qic−q jc||2. In the following, we will show that the equilibrium point̄q = l̄ is asymp-
totically stable, and the equilibrium point(s)̄q = q̄c is (are) unstable or saddle. We now write the closed
loop system of the inter-robot dynamics (13) as

˙̄q =−C̄F(q̄, l̄). (53)
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whereC̄ = diag(C, · · · ,C︸ ︷︷ ︸
E

) with E the number of edges of the formation graph, and

F(q̄, l̄) = [ ∑
a∈N1

ΩT
1a− ∑

b∈N2

ΩT
2b, ∑

a∈N1

ΩT
1a− ∑

b∈N3

ΩT
3b, ...., ∑

a∈Ni

ΩT
ia− ∑

b∈Nj

ΩT
jb, ....,

∑
a∈NN−1

ΩT
N−1,a− ∑

b∈NN

ΩT
Nb]

T . (54)

Since (52) holds for alli = 1, ...,N, at the steady state we have∑
a∈Ni

Ωia− ∑
b∈Nj

Ω jb = 0, ∀(i, j)∈{1, ...,N}, i 6=
j. Therefore the equilibrium points̄q = l̄ andq̄ = q̄c are also the equilibrium points of (53). The general
gradient ofF(q̄, l̄) with respect tōq is given by

∂F(q̄, l̄)
∂ q̄

=




∂Ξ12
∂q12

∂Ξ12
∂q13

· · · ∂ Ξ12
∂qN−1,N

...
...

...
...

∂Ξi j

∂q12
· · · ∂Ξi j

∂qi j

∂Ξi j

∂qN−1,N

...
...

...
...

∂ΞN−1,N

∂q12
· · · · · · ∂ΞN−1,N

∂qN−1,N




,

Ξi j = ∑
a∈Ni

Ωia− ∑
b∈Nj

Ω jb, (i, j) ∈ {1, ...,N}, i 6= j. (55)

It can be checked that

∂ Ξi j
∂qi j

= NIn×n +2δk

(
1

β 2k
i jl
− 1

β 2k
i j

)
β k−1

i j In×n +2δk

(
(k−1)

(
1

β 2k
i jl
− 1

β 2k
i j

)
β k−2

i j + 2k
β k+2

i j

)
qi j qT

i j
∆= Hi j

∂Ξi j
∂qcd

= sδk

(
1

β 2k
cdl
− 1

β 2k
cd

)
β k−1

cd In×n +sδk

(
(k−1)

(
1

β 2k
cdl
− 1

β 2k
cd

)
β k−2

cd + 2k
β k+2

cd

)
qcdqT

cd,
(56)

where(c,d) ∈ {1, ...,N}, (c,d) 6= (i, j), c 6= d , ands= 1 or s=−1 depending on value ofc, d, i and j.
However, we do not need to specify the sign ofs for our next task. We now investigate properties of the
equilibrium pointsq̄ = l̄ andq̄ = q̄c based on the general gradient∂F(q̄, l̄)/∂ q̄ evaluated at those points.

Step 2.1 Proof ofq̄ = l̄ being the asymptotic stable equilibrium point:
At the equilibrium pointq̄ = l̄ , we have

∂Ξi j

∂qi j

∣∣∣∣
q̄=l̄

= NIn×n +
4δk2

β k+2
i jl

l i j l
T
i j ,

∂Ξi j

∂qcd

∣∣∣∣
q̄=l̄

= s
2δk2

β k+2
cdl

lcdlT
cd, (57)

whereβcdl = 0.5||lcd||2 . With (57), letξ ∈ RnE we have

ξ T ∂F(q̄, l̄)
∂ q̄

∣∣∣∣
q̄=l̄

ξ ≥
(

N− 4δk2nEmax(l2
i ja)

min(β k+2
i jl )

)
ξ Tξ , (i, j) ∈ {1, ...,N}, i 6= j (58)

where l i ja is the ath element ofl i j . Therefore, for any given constantk if we choose the tuning
constantδ such that

N− 4δk2nEmax(l2
i ja)

min(β k+2
i jl )

> 0→ δ <
Nmin(β k+2

i jl )

4k2nEmax(l2
i ja)

, (i, j) ∈ {1, ...,N}, i 6= j (59)

then the matrix∂F(q̄, l̄)/∂ q̄
∣∣
q̄=l̄ is positive definite, which in turn implies that the equilibrium point

q̄ = l̄ is asymptotically stable.
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Step 2.2. Proof ofq̄ = q̄c being the unstable/saddle equilibrium point(s):The idea is to consider
block matrices on the main diagonal of the matrix∂F(q̄, l̄)/∂ q̄

∣∣
q̄=q̄c

and show that there exists at least

one block matrix whose determinant is negative. DefineHi jc = ∂Ξi j /∂qi j
∣∣
q̄=q̄c

and letφa andφb be the

ath andbth elements ofqi jc , (a,b) ∈ {1, ...,n}, a 6= b. We form the matricesHab
i jc from the matrixHi jc as

follows

Hab
i jc =

[
h11 h12

h21 h22

]

h11 = N+2δkΠi jcβ k−1
i jc +2δk[(k−1)Πi jcβ k−2

i jc +2k/β k+2
i jc ]φ2

a

h12 = 2δk[(k−1)Πi jcβ k−2
i jc +2k/β k+2

i jc ]φaφb

h21 = 2δk[(k−1)Πi jcβ k−2
i jc +2k/β k+2

i jc ]φaφb

h22 = N+2δkΠi jcβ k−1
i jc +2δk[(k−1)Πi jcβ k−2

i jc +2k/β k+2
i jc ]φ2

b

(60)

whereΠi jc = 1/β 2k
i jl −1/β 2k

i jc . The determinant ofHab
i jc is given by

det(Hab
i jc) = (N+2δkΠi jcβ k−1

i jc )∆ab
i jc (61)

where
∆ab

i jc = N+2δkΠi jcβ k−1
i jc +2δk[(k−1)Πi jcβ k−2

i jc +2k/β k+2
i jc ](φ2

a +φ2
b ) (62)

Let us consider the sum:

n−1

∑
a=1

n

∑
b=a+1

∆ab
i jc = n(n−1)N+2δk(n−1)(2(k−1)+n)β k−1

i jc /β 2k
i jl +2δk(n−1)(2(k+1)−n)/β k+1

i jc . (63)

Sincen > 1, pickingk > n/2−1 ensures that
n−1
∑

a=1

n
∑

b=a+1
∆ab

i jc > 0. Therefore, there exists at least one

pair (a,b) ∈ {1, ...,n} denoted by(a∗,b∗) such that∆a∗b∗
i jc > 0. Now for all (i, j) ∈ {1, ...,N}, i 6= j let us

consider the sum:
N−1

∑
i=1

N

∑
j=i+1

det(Ha∗b∗
i jc )

∆a∗b∗
i jc

βi jc =
N−1

∑
i=1

N

∑
j=i+1

(Nβi jc +2δkΠi jcβ k
i jc). (64)

On the other hand, multiplying both sides ofF(q̄c, l̄) = 0 with q̄T
c results inq̄T

c F(q̄c, l̄) = 0, which is
expanded to

N−1

∑
i=1

N

∑
j=i+1

(NqT
i jc(qi jc− l i j )+2δkNΠi jcβ k

i jc) = 0. (65)

Substituting (65) into (64) results in

N−1

∑
i=1

N

∑
j=i+1

det(Ha∗b∗
i jc )

∆a∗b∗
i jc

βi jc =
N−1

∑
i=1

N

∑
j=i+1

(N−2)βi jc +
N−1

∑
i=1

N

∑
j=i+1

qT
i jc l i j . (66)

The term
N−1
∑

i=1

N
∑

j=i+1

(
qT

i jc l i j
)

is strictly negative since at the point whereqi j = l i j (the pointF in Figure

6) all attractive and repulsive forces are equal to zero while at the point whereqi j = qi jc (the pointC in
Figure 6) the sum of attractive and repulsive forces is equal to zero (see Section 2 for discussion of a
simple case). Therefore the pointqi j = 0 (the pointO in Figure 6) must locate between the pointsqi j = l i j
andqi j = qi jc , see Figure 6. Furthermore if we write (65) as

2
N−1

∑
i=1

N

∑
j=i+1

βi jc +δk(β k
i jc/β 2k

i jl −1/β k
i jc) =

N−1

∑
i=1

N

∑
j=i+1

qT
i jc l i j (67)
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Figure 6: Illustration of location of critical points.

we can see that deceasingδ results in decrease inβi jc sinceβi jl is a bounded constant and the right
hand side of (67) is negative. Therefore, choosing a sufficiently smallδ ensures that the right hand of
(64) is strictly negative sinceβi jc = 0.5||qi jc ||2 . That is

N−1

∑
i=1

N

∑
j=i+1

det(Ha∗b∗
i jc )

∆a∗b∗
i jc

βi jc < 0 (68)

which implies that there exists at least one pair(i, j) ∈ {1, ...,N} denoted by(i∗, j∗) such that

det(Ha∗b∗
i∗ j∗c) < 0. (69)

The inequality implies that at least one eigenvalue of the matrix∂F(q̄, l̄)/∂ q̄
∣∣
q̄=q̄c

is negative. This in
turn guarantees that̄qc is an unstable/saddle equilibrium point of (53). Proof of Theorem 1 is completed.
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