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Formation Control of Mobile Robots

Dang Binh Nguyen, Khac Duc Do

Abstract: A constructive method is presented to design cooperative controllers that
force a group ofN mobile robots to achieve a particular formation in terms of shape
and orientation while avoiding collisions between themselves. The control devel-
opment is based on new local potential functions, which attain the minimum value
when the desired formation is achieved, and are equal to infinity when a collision
occurs. The proposed controller development is also extended to formation control
of nonholonomic mobile robots.

Keywords: Formation control, mobile robot, local potential function, nonholonomic
mobile robot.

1 Introduction

Over the last few years, formation control of multiple vehicles has received a lot of attention from
the control community. Applications of vehicle formation control include the coordination of multiple
robots, unmanned air/ocean vehicles, satellites, aircraft and spacecraft [1]-[28]. For example, a coopera-
tive mobile sensor network, where each mobile robot serves as a mobile sensor, is expected to outperform
a single large vehicle with multiple sensors or a collection of independent vehicles when the objective is
to climb the gradient of an environmental field. The single, heavily equipped vehicle may require con-
siderable power to operate its sensor payload, it lacks robustness to vehicle failure and it cannot adapt
the configuration or resolution of the sensor array. An independent vehicle with a single sensor may
need to perform costly maneuvers to effectively climb a gradient, for instance, wandering significantly
to collect rich enough data much like the "run and tumble" behavior of flagellated bacteria. In military
missions, a group of autonomous vehicles are required to keep in a specified formation for area coverage
and reconnaissance. In automated highway system, the throughput of the transportation network can be
greatly increased if vehicles can form to platoons at a desired velocity while keeping a specified distance
between vehicles. Research on formation control also helps people to better understand some biological
social behaviors, such as swarm of insects and flocking of birds.

In the literature, there have been roughly three methods to formation control of multiple vehicles:
leader-following, behavioral and virtual structure. Each method has its own advantages and disadvan-
tages. In the leader-following approach, some vehicles are considered as leaders, whist the rest of robots
in the group act as followers [1], [2], [3], [4]. The leaders track predefined reference trajectories, and the
followers track transformed versions of the states of their nearest neighbors according to given schemes.
An advantage of the leader-following approach is that it is easy to understand and implement. In addi-
tion, the formation can still be maintained even if the leader is perturbed by some disturbances. However,
a disadvantage is that there is no explicit feedback to the formation, that is, no explicit feedback from
the followers to the leader in this case. If the follower is perturbed, the formation cannot be maintained.
Furthermore, the leader is a single point of failure for the formation. In the behavioral approach [5],
[6], [71, [8], [9], [10], [11], [12], [13], [14], few desired behaviors such as collision/obstacle avoidance
and goal/target seeking are prescribed for each vehicle and the formation control is calculated from a
weighting of the relative importance of each behavior. The advantages of this approach are: it is natural
to derive control strategies when vehicles have multiple competing objectives, and an explicit feedback is
included through communication between neighbors. The disadvantages are: the group behavior cannot
be explicitly defined, and it is difficult to analyze the approach mathematically and guarantee the group
stability. In the virtual structure approach, the entire formation is treated as a single entity [15], [16],
[17], [18]. When the structure moves, it traces out desired trajectories for each robot in the group to

Copyright(© 2006 by CCC Publications



42 Dang Binh Nguyen, Khac Duc Do

track. Some similar ideas based on the perceptive reference frame, the virtual leader, and the formation
reference point are given in [14], [17], [19]. The advantages of the virtual structure approach are: it is
fairly easy to prescribe the coordinated behavior for the group, and the formation can be maintained very
well during the manoeuvres, i.e. the virtual structure can evolve as a whole in a given direction with
some given orientation and maintain a rigid geometric relationship among multiple vehicles. However
requiring the formation to act as a virtual structure limits the class of potential applications such as when
the formation shape is time-varying or needs to be frequently reconfigured, this approach may not be the
optimal choice. The virtual structure and leader-following approaches require that the full state of the
leader or virtual structure be communicated to each member of the formation. In contrast, behavior-based
approach is decentralized and may be implemented with significantly less communication. Formation
feedback has been recently introduced in the literature [18], [20], [21], [22]. In [18], a coordination
architecture for spacecraft formation control is introduced to incorporate the leader-following, behav-
ioral, and virtual structure approaches to the multi-robot coordination problem. This architecture can
be extended to include formation feedback. In [20], a Lyapunov formation function is used to define a
formation error for a class of robots (double integrator dynamics) so that a constrained motion control
problem of multiple systems is converted into a stabilization problem for one single system. The error
feedback is incorporated to the virtual leader through parameterized trajectories. In terms of information
from the robots in the group used for feedback in the control design for each robot, there are two main
approaches to solve the problem of motion planning/control of a group of mobile robots: centralization
and decentralization. In the centralized approach, see for example [18], a single controller and collision
free trajectories are constructed in a workspace. The centralized approach has a drawback of computa-
tion complexity but guarantees a complete solution. The decentralized approach, see for example [23],
requires less computational effort, and offers an easy way to scale the size of the robot group. This
approach usually involves a combination of robot based local potential fields [14], [24], [25].

The main problem with the decentralized approach is that it is unable or extremely difficult to pre-
dict and control the critical points. Basically, the closed loop system under a controller designed by the
decentralized approach has multiple equilibrium points. It is rather difficult to design a controller such
that all the equilibrium points except for the desired equilibrium one are unstable/saddle points for a
group of many robots. Moreover even the formation control system is designed in a centralized manner,
the tuning constants in several aforementioned papers (e.g. [26], [27], [28], [29]), which are crucial to
guarantee that the only desired equilibrium points are asymptotic stable and that the other critical points
are unstable, are extremely difficult to obtain for practical implementation. In most of the above papers,
point-robots with simple (single or double integrator) dynamics (e.g. [14], [24], [29]) or fully actuated
vehicles [19] (which can be converted to a double integrator dynamics via a feedback linearization) were
investigated. Vehicles with nonholonomic constraints were also considered (e.g. [5]). However, the non-
holonomic kinematics are transformed to a double integrator dynamics by controlling the hand position
instead of the inertial position of the vehicles. Consequently, the vehicle heading is not controlled. In
addition, in the tracking control of single nonholonomic mobile robots (e.g. [30], [31], [32]) the track-
ing errors are often converted into special forms to deal with nonholonomic constraints using several
non-trivial coordinate transformations. If these techniques are migrated to formation control of a group
of nonholonomic mobile robots, it is extremely difficult to incorporate collision avoidance between the
robots. The above problems motivate the contribution of this paper.

In this paper, we propose a constructive method to design a cooperative formation control system
for a group ofN mobile robots. The simple point-mass robots are first considered to clarify the de-
sign philosophy. The proposed technigue is extended to mobile robots with nonholonomic constraints
(nonholonomic mobile robots). New local potential functions are constructed to design gradient based
cooperative controllers to achieve almost global asymptotic convergence of a group of mobile robots
to a particular formation in term of both shape and orientation, and guarantee no collisions between
themselves. Formal proof of the results is given.
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2 Problem statement

We consider a group & simple point-mass mobile robots, of which each has the following dynam-

ics
qi:ui, iZl,...,N (l)

whereq; € R" andu; € R" are the state and control input of the rolbotWe assume that > 1 and
N > 1. The assumption that each robot is represented as a point is not as restrictive as it may seem since
various shapes can be mapped to single points through a series of transformations [26], [27], [28]. Our
task is to design the control input for each robot that forces the group dfl robots to stabilize with
respect to their group members in configurations that make a particular formation specified by a desired
vectorl (n) = [I1,(n),133(N),.-,1{_1n(n)]T, wheren € R™is the formation parameter vector to specify
the formation change, while avoiding collisions between themselves. The parameternyviectsed to
specify rotation, expansion and contraction of the formation such that vwremverges to its desired
valuen, the desired shape of the formation is achieved. In addition, it requires all the robots align their
velocity vectors to a desired bounded age= R", and move toward specified directions specified by the
desired formation velocity vector. The control objective is formally stated as follows:

Control objective: Assume that at the initial timg each robot initializes at a different location, and
that each robot has a different desired location, i.e. there exist strictly positive corgtagstand &;
such that

||ai(to) — qj(to) || = &1,
[[lij (M| = &2, N (2)
otij(n)/on|| <&, Vi, j€{1,2,..N}, Vn € R™

Design the control input; for each roboi , and an update law for the formation parameter vegtor

such that each robot (almost) globally asymptotically approaches its desired location to form a desired
formation, and that the robots’ velocity converges to the desired (bounded) velgaitlile avoiding
collisions with all other robots in the group, i.e.

limi e (GH(t) — 0 (t) ~ I (1)) =0,
lime e (n(t) —nt) =0,
lim¢_e(Ui(t) —ugq) =0,
[|ai(t) —qj ()| > &, Vi, j€{1,2,..N}, Vt >to >0

3)

whereg, is a strictly positive constant, angt is a vector of constants that determine the desired forma-
tion. The desired formation can be represented by a labeled directed graph ([29], [34]) in the following
definition.

Definition 1. The formation graphG = {V,E,L} is a directed labeled graph consisting of:

-a set of vertices (nodes),= {J1,---,In} indexed by the mobile robots in the group,

-a set of edgess = {(9;,3}) €V xV}, containing ordered pairs of vertices that represent inter-robot
position constraints, and

-a set of labelsL = {y;j|yj = || — aj — lij||? ¥(8,9)) € E}, lij = gt —qjr € R" indexed by the
edges irE.
Indeed, when the control objective is achieved, the edge labels befpme; —ij| |2 =0, V(3i,3)) €

E, i.e. the relative distance between the robatad | is l;j.

3 Control design

We consider the following local potential function

¢ = v+ 0f; (4)
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whered are positive tuning constants, the functignandf; are the goal and related collision avoidance
functions for the roboi specified as follows:

-The goal functiony, is essentially the sum of all distances from the robtu its adjacent group
membersN;. A simple choice of this function is

1
v=S ¥i,  ¥i=xlla—ag il (5)
1 J;I Ij I] 2 I ] I]

-The related collision functiof; should be chosen such that it is equal to infinity whenever any
robots come in contact with the rohigi.e. a collision occurs, and attains the minimum value when the
roboti is at its desired location with respect to other group members belddg which are adjacent to
the roboti. This function is chosen as follows:

Bf 1
g ,-Zwe i<Bﬁlk+Bi'?> ©

wherek is a positive constant to be chosen lat@y, and 3 are collision and desired collision
functions chosen as

1 1
Bi =§Hqi—qJ-H2, Bi =§H|ij|\2- (7)
It is noted from (7) thaBi; = Bji andSiji = Bjii -

Remark 1.

1. The above choice of the potential functign given in (4) with its components specified in
(5)-(6), has the following properties: 1) it attains the minimum value when the iiolsoat the de-
sired location with respect to other group member belonly;tavhich are adjacent to the robipti.e.

g —q;—lij =0, j €N;, and 2) it is equal to infinity whenever one or more robots come in contact with
the roboti, i.e. when a collision occurs.

2. The potential function (4) is different from the ones proposed in [14] and [33] in the sense that
the ones in [14] and [33] are centralized and do not put penalty on the relative distance between the
robots, i.e. do not include the goal functign Therefore, the controllers developed in [14] and [33] do
not guarantee the formation converge to a specified configuration but to any configurations that locally
minimize the potential functions (these potential functions in [14] and [33] are nonconvex).

3. Our potential function (4) is also different from the navigation functions proposed in [26] and [29]
in the sense that our potential function is of the form of sum of collision avoidance functions while those
navigation functions in [26] and [29] are of the form of product of collision avoidance functions . This
feature makes our potential function "more decentralized". Furthermore, our potential function is equal
to infinity while those in [14], [26] and [29] is equal to a finite constant when a collision occurs. However,
those in [26] and [29] also cover obstacle and work space boundary avoidance. Although these issues are
not included in this paper for clarity, considering these issues is possible and is the subject of future work.

4. Our potential function does not have problems like local minima and non-reachable goal as listed
in [24].

To design the control input;, we differentiate both sides of (4) along the solutions of (1) to obtain

¢ = jEZN_[Qﬁ(Ui—Uj)—LPﬁ'ﬂ
= jEZNi[Qﬁ(Ui—Ud—(Uj—Ud))—”’ﬁ'ﬂ ®)

= 3 Q) - 5 O —u) - 5 Wi
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where

Qij =0 —qj— ||] +6k<ﬁﬁk jk> Bil?_l(Qi _qj)
T 9
25|(B| T ‘9|ij] ( )

Wij = (qi_qj_lij"_ﬁzkullj an

From (8), we simply choose the contrglfor the roboti and the update law fay as follows:
U=-C%» Qjj+uy
j;‘i
n=-rn-ns) (10)

whereC € RT*" andl" € RT*™ are symmetric positive definite matrices. Substituting (10) into (8)

yields
;NQCZWQ., ZQQ.J wa (n—nt). (11)

Substituting (10) into (1) results in the closed loop system

g=-C) Qjj+ug, i=1..,N. (12)
JEN
Since the desired formation is specified in terms on relative distances between the robots, we write
the closed loop system of the inter-robot dynamics from the closed loop system (12) as

qu =-C ( Z‘.QiabZ‘.ij> ’ (Iv J) € {17"'5N}’ i 7é J (13)

whereq;j = g — ;. We now state the main result in the following theorem.

Theorem 1. Under the assumptions stated in the control objective, the control for eachirgban in
(10) with an appropriate choice of the tuning constadiandk, solves the control objective.

Proof. See Appendix.

4 Simulations

We carry out a simulation example in two-dimensional space to illustrate the results. The number
of robots isN = 4. The initial positions of robots are chosen randomly in the circle with a radius of 0.5
centered at the origin. The design constants are chosén-adiag(0.4,0.4), k= 0.5, 6 =0.1. Itis
noted that this choice satisfies the conditions in the proof of Theorem 1. We run two simulations with
ug =[10.2]7 (linear formation motion meaning that each robot will move on a rectilinear line to form the
desired formation) andy = [sin(0.5t) cog0.5t)] (circular formation motion meaning that each robot will
move on a circle to form the desired formation). For clarity, we take the formation paragretex scalar
to implement formation expansion. The desired formation is depicted in Figure 1. These simulations are
motivated by gradient climbing missions in which the mobile sensor network (each mobile robot serves
as a mobile sensor) seeks out local maxima or minima in the environmental field. The network can
adapt its configuration in response to the sensed environment in order to optimize its gradient climb. For
example, gradients in temperature fields (among others) can be estimated from the data collected by the
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mobile robots; these are of interest for enabling gradient climbing to locate and track features such as
fronts and eddies. These gradients can be used to compute the desired reference velocity veatwor
simulations in this section. In the first 4.5 seconds (for the linear formation motion case) and 15 seconds
(for the circular formation casel), is set to zero then is updatednie = 3 for the rest of simulation time.

The update gain is chosenlas= 2 (scalar).

Robot 2

Robot 4

Figure 1: Desired formation for simulation.

Figures 2 and 3 plot simulation results for the linear formation motion and circular formation cases,
respectively. For clarity, we only plot the contral = [uy uyl]T and distances from the robot 1 to other
members in the group, i.8012|,||q13|| and||ai4/|- Itis seen from these figures that the desired formation
shapes are nicely achieved and there are no collisions between any robots, see the bottom right figures in
Figures 2 and 3, where the distances from the robot 1 to other members in the groups are plotted. Clearly,
these distances are always larger than zero. It is also seen from Figures 2 and 3 that at the beginning
all the robots rapidly move away from each other to avoid collisions since they start pretty close to each
other.

5 Extension to formation control of nonholonomic mobile robots

Control of single nonholonomic mobile robots receives considerable attention, and is complicated
due to the fact that they have less controls than the outputs to be controlled, see for example [30],
[31], [32] and references therein. Indeed, control of a group of nonholonomic mobile robots is more
complicated due to some nonholonomic (non-integral) constraint. However, in this section we show that
the control method developed in Section 3 can be readily extended to force a gidumoholonomic
mobile robots of unicycle type to move in such a way that a desired formation is achieved. For clarity, we
consider only the kinematic model of the nhonholonomic mobile robots. Designing the control system at
the dynamic level even without requiring robot velocities be measured can be carried out using one more
"backstepping" step [35] and our proposed exponential observer in [31]. Consider the kinematic model
of the unicycle mobile robat, whose only two wheels are actuated and the third wheel is not actuated
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Figure 2: Linear formation motion: simulation results.
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Figure 3: Circular formation motion: simulation results.
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(see Figure 4), given by

K = (cos( @) + o5 8)an)

51 = (sin(@) oy + sin(8) wn)

. _R

6 = (o — cn) (14

where(x;, y;) denote the coordinates of the middle poR, between the left and right driving wheels,
and 6 denotes the heading of the robatoordinated in the earth-fixed fran@XY, see Figure 4¢;

and wy; denote the angular velocities of the wheels of the rabdWloreoverR; andb; are defined in
Figure 4. The task now is to design the control inpus and wy; to achieve the control objective
stated in Section 3. We require an additional assumption on the desired formation velocityuyeletdr
lim¢_—||ug(t)|| # O, i.e. we do not consider the stabilization/regulation problem. For convenience, we
convert the angular velocities of the wheels to the linear and angular velowgjtasdr;) of the roboti

by the following relationship:

HECES IR

With (15), we can write (14) as

X = vicog &)
Yi =Visin(6) (16)
6 =ri
Y/ Robot i
S i 1S
way axis quree A
Ri
91'
Vi ) Pasgive wheel
AV
ctuated wheel
0 >

Figure 4: Geometric description of a nonholonomic mobile robot.

Indeed, the kinematic model (14) or (16) possesses the following nonholonomic constraint:
X sin(@) —yicog6) =0. 17)

Moreover, we will consider the the linear and angular velocitigsuidr;) of the roboti as the control
inputs. After these inputs are designed;, andwy; are calculated from (15).
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5.1 Control design

The control design consists of two steps. At the first step, we consider the corara the yaw
angle6 as a virtual control to steer the robot positioq Vi) to its desired location. At the second step,
the controlr; will be desired to force the virtual yaw angle to converge to its actual yaw angle.

Step 1.Define

Bei =6 — ag (18)
whereag, is a virtual control of6. With (18), we can write (16) as
4 = Ui + /e, (19)
where
g = Xi U= cgs(agl) ‘ . _ (gos(eei) —1)codqag) —sin(eei)s?n(ael) . (20)
Vi sin(ag,) e Sin(6ei) cog ag ) + (cog Be) — 1) sin(ag, )

Itis seen that (19) is almost of the same form as (1). However, the problem is that the cqrenulsg
are not solvable directly from the contralif u; is not designed properly. We therefore present briefly
how u; is designed to tackle that problem. Consider the following potential function (the same form as
4)
¢i =y +0pB (21)
whered, y andf; are defined in Section 3, see (6) and (7). Differentiating both sides of (21) along

the solutions of (19) gives

¢i = ZV[QM + Ny — U — (Uj +Ag,; — Ug)) — Wiin] (22)

ieN;

N
whereQ;; andW¥;; are defined in (9), andj =, /1+ 5 || S Qij||?uq . Itis noted that we use instead
i=1 jeN

of ug in (22) to overcome the nonholonomic problem of the mobile robot under investigation. Indeed,
limi—o 5 Qij(t) =0implies thatim;_.. uj(t) = ug. From (22), we choose the contigland the update
JEN;

law for n as
U = —Cllugl| ¥ Qij + U}
X g T (23)
n=-r(n-ni

whereC andl" are diagonal positive definite matrices. Agdinig|| is included in the contral; to
overcome the nonholonomic problem. Definig= arctarfugy/uqx), then from the first equations of
(23) and (20), we have

N
cos(ag)Vi = —C1/|Ugl| 3 qu+\/1+_z |3 Qij|[?||ugl| cos(6y)
JeN i=1 jeN

(24)
- N .
sin(ag Vi = —Co|[ugl| 3 Qyij +\/1+_Z |3 Qijl[?]|ual|sin(6a)
JeN i=1 jeN
whereQy;; andQy;j are defined a8;; = [ Qyij Qyij]T, ¢1 andc; are defined a€ = diag(ci, c2). We now

need to solve (24) fov; andag. To do this, multiplying both sides of the first and second equations of
(24) with cog 6y) andsin(6y), respectively, then adding them together result in

cogag —B)vi=  —Caf|ugll Zw Qyij cog64) —
JEN;

N
coluall 3 QisinBe) + [ 145 1S QulPludll. @9
2 PR
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On the other hand, multiplying both sides of the first and second equations of (24in{th) and
coq 6y4), respectively, then subtracting from each other result in

sin(ag — 64)Vi = c1||ug]| Zw Quij sin(64) — ¢2|[ugl| % Qyij coq 6y). (26)
jeN; jeN;
From (25) and (26), we have

C1 2 Qxij sin(ed) —C2 2 Qyij COS(Gd)
JEN; jEN;

ag = B4 +arctan (27)
N
—C1 )y Qyij cog6q) —c » Qyij sin(By) + \/1—|—_Z Il » Qjj ||2
JEN; iEN; i=1 jEN
Itis seen that (27) is well-defined if the positive constamtandc, are chosen such that
Ci+eCr< 1l (28)
The controly; is found by solving (24) as
N
WZ“H%JMH<{y29m+¢LfZNZQm%w%0+
JEN; i=1 jeN
N (29)
S"Kaa)lwﬂ\<—02_z Qyu%-»/1+;z > Qulzsm(&ﬁ).
JEN; i=1 jeN
Substituting (23) into (22) results in
éi = —||ugll }N Qfic % Qij + ZW [ (Mg — (U + gy — Ug)) + T (0 —ne)]. (30)
JEN: JeN G

Step 2. To design the contrdl;, differentiating both sides of (18) along the solutions of the third
equation of (16) and choosing the contrphs

I = —diBej — da — Z‘ Q?}Aeei/eei (32)
jEN;
whered is a positive constant, and the terf Qi A\, /i is to cancel the cross terny Qi Ag, in
JEN; JEN
(30), resultin _
Bei = —diBej — Z‘ Qﬁ/\gei/eei. (32)
jEN;

1 1
Note that\g,,/ Bei is well defined sincein(Be)/Ge = | c0g BeA )dA and(coq Be) —1)/Be = [ Sin(BieA )dA
0 0

are smooth functions.

4.2 Stability analysis
We consider the following function

N
1
¢tm:Iog(1+§l(¢i+9§))+§<n—nf)TF(n —1t) (33)
1=
whose derivative along the solutions of (30), (32) and the second equation of (23) satisfies

N N N
lugll 3 5 QC s Qj+3ydbd 3 v Wirn-n)
i=1jeN JEN; i=1 i=1jeN

—(n-n))"r(n—ns) (34)

Prot = —2 N N
1+ 3 (4i+65) 1+ 3 (#i+65)
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where we have used

N N
=3 YOl uitAg—w) =3 Y (Qf(u—ui+Ag,)
i;j;ﬁ I i;j;i ”l

N N
= —HudH QTC Q” + Q'T/\Gei~ (35)
i;je ] ! JGZA i;je 1 N

The rest of stability analysis can be carried out in the same lines as in Proof of Theorem 1 since (34)
is of the same form as (40) atich; .., ||ug(t)|| # O by assumption. Finally, note th&m; . Bei(t) =0

andlimi_. 5 Q;j(t) = 0implies thatim;_..(6i(t) — 64) =0, i.e. the yaw angle of all robots converge
JEN:

to the desired angléy = arctar{uqy,/Udx)-

5.2 Simulation results

We now perform a simulation to illustrate the results in the previous subsection. The number of
robots, initial conditions of the robot positions, control gains, desired formation velocity and desired
formation shape are the same as in Section 4. The robot heading angles are initialized randomly in the
circle with a radius of 0.5 centered at the origin. For clarity, we only simulate the circular formation
motion, and we do not include simulation results on the formation expansion as in Section 4, i.e. the
formation parameten is set to zero in all the simulation time. The other design constants are chosen as
di = 5. Simulation results are plotted in Figure 5. Again, it is seen that the robots are forced to move
to nicely achieve the desired formation and no collisions between the robots occur. Moreover, the yaw
angle of all robots converges to the desired valyesee the top-right figure in Figure 5, where the
yaw angle errors are plotted. A close look at Figure 5 shows that the main different between simulation
results in this subsection and those in Section 4 is that the robots take a longer time to approach the
desired formation. This is because we use the heading afigieghe virtual controls to steer the robots
to overcome the noholonomic constraint.

6 Summary and Conclusions

This paper has contributed the method to construct local potential functions, based on which gradient-
like cooperative controllers were designed for a group of mobile robots both with and without nonholo-
nomic constraints to perform certain formation missions. Formal analysis of the convergence and fea-
sibility of the control solutions have also been provided. In the near future, it is of interest to apply the
proposed control design method combined with the control design scheme for other single underactuated
robots with second order nonholonomic constraints such as underactuated ships [37] to achieve a desired
formation for a group of underactuated systems.

7 Appendix: Proof of Theorem 1

We prove Theorem 1 in two steps. At the first step, we show that there are no collisions between any
robots and the solutions of the closed loop system exist. At the second step, we prove that the equilibrium
point of the inter-robot dynamics closed loop system (13), at whichq; — lij = 0, is asymptotically
stable. Finally, we show that all other equilibrium(s) of (13) are either unstable or saddle.

Step 1. Proof of no collision and existence of solutions:

We consider the following common potential functig¢rgiven by

N
=30 (36)
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Figure 5: Mobile robot circular formation motion: simulation result.
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whose derivative along the solutions of (11) is

¢ = 21]6 . C Z‘QIJ lee | +Z“€ .qJ (n—ns). (37)

Sincelij = —Iji aninj = —jS , we have

N N

Ql (uj —ug) = — Q' (Ui —ug). (38)
i;je ] L i;je i L
Substituting (38) into (37) gives

¢ = _ziije | C Z‘ Qjj ‘|‘ZJ€ r(n—nt). (39)

We now consider the following total functiofrot = log(1+ ¢) + 0.5/|n — n¢||?> whose derivative
along the solutions of (39) the second equation of (10) satisfies

¢tot 1+¢ C Z‘QI] 1+ ¢ Zl '7 nf) (n_nf)Tr(n _nf) (40)
IE
which implies that
2 N )\
¢ < . QTC max
e 1+¢ i;je jE 1+¢ j€
(Amin(T) —sAmax(r»Hn —anZ (41)

wheree is a positive constanmin(IN) andAmax(l"N) denote the minimum and maximum eigenvalues of
I" respectively. From (9), and definition of the functign it can be readily shown that there exists a
positive constandu,ax such that

< Wmax (42)

(1+¢)?

i=1jeN
With (42) in mind, pickinge = Amin(I") /Amax(I") we can write (41) as
Miax(T) &
max 43
Prot < Imnin(T >mﬂax Wmax- (43)

Integrating both sides of (43) results in

¢tot(t) < Prot (tO) + wmax(t - tO)' (44)
wheregiot(t) and ot (to) are (from the definition oior)
B (®)
buatt) =091+ 5 (w0 +8 5 (% 2:) )] + 2w -nol? »
Pror(to) = log [l+ 5 < W) +3 5 <’3';3”f°) + ;zmto)))] +3[In(to) — eI

The right hand side of (44) cannot escape to infinity unless wkew sincef;; > 0andf;j(to) > 0 (see
definition of B;; andf;j given in (7)). Therefore the left hand side of (44) cannot escape to infinity for
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all't € [to, o). This implies tha;; (t) cannot be zero for atle [to, ), i.e. no collisions can occur for all
t € [tp,). On the other hand, it is true from the second equation of (10) that

[n(t) = nell < |In (to) — ne||e AmnTE) (46)

which means that the desired formation shape is achieved exponentially. Using (42) and (46), we can
write (41) as

Prot< Amax(I")v/@maxl |1 (to) — Nt ’e_)\mi"(r)(t_tO)~ (47)
Integrating both sides of (47) frotgtot results in
Prot(t) < Prot(to) + Amax(T) v/ @Wmax|| N (to) — N¢||/Amin(T). (48)

It is seen that the right hand side of (48) is bounded. Therefore the left hand side of (48) must also
be bounded. This implies th@;(t) must be larger than a strictly positive constant forta! [to, o),

which in turn means that there exists a strictly positive constastich that the last inequality of (3)
holds To prove that the solutions of the closed loop system (12) exist, we consider the fiction

05 z ||gi| |2 whose derivative along the solutions of (12), after some simple manipulation, satisfies

p1(1+ 1/min(f;;))W+ p2 , wherep; andp, are some positive constants, which implies that the solutions
of (12) exist sincgs;; (t) is larger than a strictly positive constant fortadf [to, «0). Furthermore, applying
Barbalat’s lemma found in [36] to (41) gives

: 1 X
mméje iQﬁ(t)Cj6 iQij(t):O (49)

which implies that
{ lime e 3 Qjj(t) =0 { lime e 5 Qij(t) = X2
or

ieN JeN; (50)
lime e @ (t) = X1 lim e @ (t) = o

wherex; and x> are some constants. From definition<xf and¢, the second limit set in (50) cannot

be true. Therefore, the first limit set in (50) implies that; . Z Q;j(t) =0.
JEN;
Step 2. Behavior near equilibrium points.

At the steady state, the equilibrium points are found by solving the following equations

1 1
Qij= S (aj—lij+0k| 2z — = | B Gy | =0,i=1,....N. (51)
j;i i j;i< i j ij ( ﬁlk i?k) i i}

It is directly verified thatq = | whereq and are stack vectors of; andl;j, respectively, i.e.q=
[0, 013-, AN _1n]" @ndl =I5, 115...,1§ 1 \]T, is one root of (51). In addition there is (are) another
root(s) denoted byg. = [qIZC,qm...,qulch]T of (51) different froml satisfying

1 .
je%Qij = Zw <q|1c—lu+5k< ﬁlk B. )B,JC q.,c> =0,i=1,..,N (52)

wherefijc = 0.5/|gic — qjCHZ. In the following, we will show that the equilibrium poigt= lis asymp-
totically stable, and the equilibrium point(g)= qc is (are) unstable or saddle. We now write the closed
loop system of the inter-robot dynamics (13) as

0=0c

§=—CF(a). (53)



Formation Control of Mobile Robots 55

whereC = diag(C,--- ,C) with E the number of edges of the formation graph, and
N——

E
F(a,1) = [ QT S QY Qa— Y Q- Zw ol Q-
beN, acNy b6N3
g Ol 12— Q-Il\-lb}T' (54)
ac beNN

Since (52) holds for all=1,....,N, at the steady state we havg Qia— 5 Qjp,=0, V(i,j) €{1,...,N}, i#

. aeN beN;
j. Therefore the equilibrium points= | andq = qc are also the equilibrium points of (53). The general
gradient ofF (g, ) with respect tay is given by

0=12 0=12 L. 0=12

Q12 0013 JON-1N
oF(q,l) | oz 0z 0%

aCT - Jd12 Jgij  JON-1N )
aENfl‘N .o .o aENil'N
| doaw OON-1N |
Sij = ZN Qia— 3 Qjp, (i,]) €{L,...N} i # . (55)
aeN beN;

It can be checked that

05ij
dqu Nlnxn+26k( =K ﬁlzk)Bll; 1|n><n+26k< k 1 <:%k sz) ﬁk+2>q”q” |J

I]|
0=jj
aqc:ﬂ = sok (B - (;21!;) BCd |n><n+56k (( - ) (Bcdl - iél() B ﬁk+2) quch7

where(c,d) € {1,...,N}, (c,d) # (i, j),c#d,ands= 1 ors= —1 depending on value af, d, i and]j.
However, we do not need to specify the sigrsddr our next task. We now investigate properties of the
equilibrium pointsq = | andq = g based on the general gradiétt(q,|)/dq evaluated at those points.

(56)

Step 2.1 Proof ofg = I_being_the asymptotic stable equilibrium point:

At the equilibrium poinig =1, we have
0=jj 40k? T 0=jj 25k2
= Nlpun+ ——liili, —- = leal 14, 57
ﬁq” bl B|IJ<|+2 i 90cd G-I Bé(éﬁz eded &7)

where Beq) = 0.5|l¢q||? . With (57), leté € R"E we have

T OF (1) A 45k2nEmax(I
0q |5—< min(B5 )

wherelij, is thea™ element ofli;. Therefore, for any given constaktif we choose the tuning
constan® such that

_ 43k’nEmax(1F,) Nmin(B§"2)
k+2 >0—06< Ak2nEmax(12.)’
mll’l( ijl ) 4k nEmaX(II]a)

3

'J"”) ETE, (i]) € (LN}, i # ] (58)

(i,))e{L,..,N},i#] (59)

then the matrixdF (q, | /mﬂ _is positive definite, which in turn implies that the equilibrium point
g =1 is asymptotically stable.
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Step 2.2. Proof ofgq = qc being the unstable/saddle equilibrium point(3)he idea is to consider
block matrices on the main diagonal of the mat#ik (q, | /d(ﬂf — and show that there exists at least
one block matrix whose determinant is negative. Deffie = d_.J /00j \ and letg, and @, be the
ah andb'™ elements ofyjc, (a,b) € {1,...,n}, a# b. We form the matrlce!ai,JC from the matrixHijc as

follows
Hab _ hi1 hio
e ™ | hpy hyp

hy1 = N+ 25KM;je Bfc 1+26k[(k DMijeBi2 + 2k/ BT 2 (60)
hyo = 20k][(k — 1)n.,cB, +2k/ﬁ,k+2]

h21_25k[(k 1) IJCB| +2k/B|k+2]

haz = N+ 20kTijc B 1+26k[(k 1)r1.,cﬁ, 24 26/ B2

wherefijc = 1/B3— 1/B% . The determinant afiZ® is given by
det(H3) = (N + 20kM;jc B 1A% (61)

where
ARY = N+ 20kTije B 1 + 28K (K — D)Mije B 2 + 2K/ B2 (@ + &) (62)
Let us consider the sum:
n-1 n
Y AR =n(n—1)N+28k(n—1)(2(k—1)+n)BIH/ GG +20k(n— 1) (2(k+1) —n) /B (63)
a=1b=a+1
n-1 n
Sincen > 1, pickingk > n/2—1ensures thaty 5 A2 > 0. Therefore, there exists at least one

ijc
a=lb=a+1

pair (a,b) € {1,...,n} denoted bya*,b*) such thaﬂ;”}cb > 0. Now for all (i, j) € {1,...,N}, i # j letus
consider the sum:

N-1 N I?Cb* N-1 N
*b BI]C NBIJC + 25k|—|I]CB ) (64)
ZZ 2,2

On the other hand, multiplying both sides efqc, | ) = 0 with gl results incTZF(@:,I_) = 0, which is
expanded to

N-1 N
2 3 (NG (Gije — lij) + 25kNMije Bl ) = O. (65)
i j=1+1
Substituting (65) into (64) results in
N-1 N léjtcb* N-1 N N-1 N
——— i (N —2)Bijc + U (66)
i=1 j=1+1 Aﬁcb e lelz+l e 21] 1+1 ”C !

The term Z z (qﬁclij) is strictly negative since at the point whejg= ljj (the pointF in Figure
i=1 j=1+
6) all attractive and repulsive forces are equal to zero while at the point wheteqjc (the pointC in
Figure 6) the sum of attractive and repulsive forces is equal to zero (see Section 2 for discussion of a
simple case). Therefore the pomit = 0 (the pointO in Figure 6) must locate between the poigts= l;;

andg;; = qjc , see Figure 6. Furthermore if we write (65) as

2N71 N 6k 1 K N-1 N ) o7
izl J |Z+1B”C + BI]C/BI /Bijc) = i; j:|z+1quc i (67)
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qN—],N

4

The point where all attractive
and repulsive forces are zero

F

Y

qN—l.l
iy

oy

The point where sum of attractive and repulsive forces are zero.

Figure 6: lllustration of location of critical points.

we can see that deceasidgesults in decrease ijc sincef;j is a bounded constant and the right
hand side of (67) is negative. Therefore, choosing a sufficiently sbnatisures that the right hand of

(64) is strictly negative sincfijc = 0.5/|qjjc||? . Thatis
N1 N de(HEY)

oAy

ijc

Bijc <0 (68)
i=1 j=1+1

which implies that there exists at least one gaif) € {1,...,N} denoted by(i*, j*) such that
detHZ %) < 0. (69)
The inequality implies that at least one eigenvalue of the maiFixq, I_)/acﬂ_ — is negative. This in

turn guarantees that is an unstable/saddle equilibrium point of (53). Proo?:o(}cTheorem 1is completed.
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