International Journal of Computers, Communications & Control
Vol. 1 (2006), No. 3, pp. 13-24

A Programming Perspective of the Membrane Systems

Gabriel Ciobanu

Abstract: We present an operational semantics of the membrane systems, using an
appropriate notion of configurations and sets of inference rules corresponding to the
three stages of an evolution step in membrane systems: maximal parallel rewriting
step, parallel communication of objects through membranes, and parallel membrane
dissolving.

We define various arithmetical operations over multisets in the framework of mem-
brane systems, indicating their complexity and presenting the membrane systems
which implement the arithmetic operations.

Finally we discuss and compare various sequential and parallel software simulators
of the membrane systems, emphasizing their specific features.

Keywords: membrane systems, operational semantics, arithmetical operations over
multisets.

1 Membrane Systems

Membrane systems represent a computational model inspired by cell compartments and molecular
membranes. Essentially, such a system is composed of various compartments, each compartment with a
different task, and all of them working simultaneously to accomplish a more general task of the whole
system. A detailed description of the membrane systems (also called P systems) can be found in [17].
A membrane systegonsists of a hierarchy of membranes that do not intersect, with a distinguishable
membrane, called thekin membranesurrounding them all. The membranes produce a delimitation
betweerregions For each membrane there is a unique associated region. Regions contain multisets of
objects evolution rulesand possibly other membranes. Only rules in a region delimited by a membrane
act on the objects in that region. The multiset of objects from a region corresponds to the “chemicals
swimming in the solution in the cell compartment”, while the rules correspond to the “chemical reactions
possible in the same compartment”. Graphically, a membrane structure is represented by a Venn diagram
in which two sets can be either disjoint, or one is a subset of the other. More details (concepts, results)
and several variants of membrane systems are presented in [17].

A P systentonsists of several membranes that do not intersect, akthanembranesurrounding
them all. The membranes delinmggions and contain multisets aibjects as well asevolution rules
Each membrane has a unique associated region. The space outside the skin membrane ismatiézd the
region (or the environment). Because of the one-to-one correspondence between the membranes and the
regions, we usually use the word membrane instead of region. Only rules in a region delimited by a mem-
brane act on the objects in that region. Moreover, the rules must contain target indications, specifying
the membrane where objects are sent after applying the rule. The objects can either remain in the same
region, or pass through membranes in two directions: they can bewsesitthe membrane which de-
limits a region from outside, or can be sémbne of the membranes which delimit a region from inside,
precisely identified by its label. The membranes can alsdigsnlved When such an action takes place,
all the objects of the dissolved membrane remain free in the membrane placed immediately outside, but
the evolution rules of the dissolved membranes are lost. The skin membrane is never dissolved. The
application of evolution rules is done in parallel, and it is eventually regulatgatibyity relationships
between rules. A systenof degreemis a structurd1 = (O, U, Wi, ..., Wm, (R1,01),- - -, (Rm, Pm), o),
where:

() Ois an alphabet of objects, apdis a membrane structure;

Copyright(© 2006 by CCC Publications
Selected from ICCCC 2006 (invited paper)

14 Gabriel Ciobanu

(i) w; are the initial multisets oveD associated with the regions defined by

(i) R are finite sets of evolution rules overassociated with the membranes, of typical farm-
v, with u a multiset overO andv a multiset containing paired symbols (messages) of the form
(c,here), (c,inj), (c,out) and the dissolving symbdi,

(iv) pis a partial order relation ové®;, specifying gpriority relation among the rulegry,rz) € pj iff
ri > rp (i.e.,r1 has a higher priority tharp);

(v) ig is either a number between 1 amdspecifying theoutputmembrane of1, or it is equal to0
indicating that the output is the outer region.

Since the skin is not allowed to be dissolved, we consider that the rules of the skin do not éwbdhese
are thegeneral P systemsr transition P systemsnany other variants and classes were introduced [17].

The existing results regarding the P systems refer mainly to their computation power and complexity,
namely to their characterization of Turing computability (universality is obtained even with a small
number of membranes, and with rather simple rules), and the polynomial solutions to NP-complete
problems by using an exponential workspace created in a “biological way" (e.g., membrane division,
string replication). Other types of formal results are given by normal forms, hierarchies, connections
with various formalisms.

In this paper we refer to some “programming” aspects of the membrane systems. We first present
an operational semantics of the P systems, together with some correctness results. Then we define
several arithmetical operations in membrane systems using a natural encoding of numbers. Finally some
software simulators of the membrane systems are presented.

2 Structural Operational Semantics

Membrane systems provide an abstract model for parallel systems, and a suitable framework for
distributed and parallel algorithms [7]. For each abstract model, theory of programming introduces
various paradigms and uses different notions of computations. Turing machines and register machines
are related to imperative programming, andalculus is related to functional programming. It is natural
to look at the membrane systems from the point of view of programming theory. This means that we
define an abstract syntax, and an operational semantics of the membranes systems. The operational
semantics of the membrane systems is given in a big-step style, each step representing the collection
of parallel steps due to the maximal parallelism principle. A computation is regarded as a sequence of
parallel application of rules in various membranes, followed by a communication step and a dissolving
step.

The membrane structure and the multisetd idetermine a configuration of the system. We can pass
from a configuration to another one by using the evolution rules. This is done in parallel: all objects,
from all membranes, which can be the subject of local evolution rules, as prescribed by the priority
relation, should evolve concurrently. Since the right hand side of a rule consists only of messages, an
object introduced by a rule cannot evolve at the same step by means of another rule. The use of a rule
u— vin a region with a multisetv means to subtract the multiset identified dbojrom w, and then to
add the objects of according to the form of the rule. If an object appearg iimthe form(c, here), then
it remains in the same region. If we haigin;), thenc is introduced in the child membrane with the
label j; if a child membrane with the labgldoes not exist, then the rule cannot be applied. If we have
(c,out), thenc is introduced in the membrane placed immediately outside the region of the +ule
If the special symbob appears irv, then the membrane which delimits the region is dissolved; in this
way, all the objects in this region become elements of the region placed immediately outside, while the
rules of the dissolved membrane are removed.

A Programming Perspective of the Membrane Systems 15

Let O be a finite alphabet of objects organized as a free commutative mojprehose elements are
calledmultisets Formally, the set omembranes for a systeih, denoted byV((M), andthe membrane
structureare inductively defined as follows:

e if L is a label, andv is a multiset oveOU (Of x {here}) U (Of x {out})U{d}, then(L|w) €
M(M); (L |w) is calledsimple (or elementary) membrarand it has the structurg;

e if My,...,M, € M(IM) with n > 1, the structure oM; is y; for all i € [n], L is a labelw is a multiset
overOU (O¢ x {here}) U (O¢ x {out}) U(O¢ x {in i € [n]})U{d}, then(L|w; My,...,Mq) €
M(M); (L|w; My,...,Mp) is calleda composite membranand it has the structurgus, . .., tn).

A finite set of membranes is usually written s, ...,M,. We denote byM ™ (M) the set of non-
empty finite sets of membranes. The union of two multisets of membines My, ..., M, andN, =
Ni,...,Npiswritten asM,; ,N; =My, ...,Mm,Ny,...,Ny. An element froniM* (M) is either a membrane,
or a set of sibling membranes.

A committed configuratiofor a membrane systei is a skin membrane which has no messages
and no dissolving symbd, i.e., the multisets of all regions are element®jn We denote by(I1) the
set of committed configurations fét, and it is a proper subset d*(IM). We haveC € (M) iff Cis a
skin membrane ofl andw(M) is a multiset ove© for each membrank! in C.

An intermediate configuratioms a skin membrane in which we have messages or the dissolving
symbol . The set of intermediate configurations is denotec®tif1). We haveC € C*() iff Cis a
skin membrane offl such that there is a membrakkin C with w(M) = ww’, w € (Msg(O) U{d})¢,
andw”’ € Of. By Msg(O) we denote the séD* x {here}) U (O" x {out})U (O x {in_(M)}).

A configurationis either a committed configuration or an intermediate configuration. Each mem-
brane system has an initial committed configuration which is characterized by the initial multiset of
objects for each membrane and the initial membrane structure of the system.

Each P system has an initial configuration which is characterized by the initial multiset of objects for
each membrane and the initial membrane structure of the system. For two configuCatandC, of
I, we say that there istaansitionfrom C; to C,, and writeC, = C,, if the following stepsare executed
in the given order:

1. maximal parallel rewriting stepconsisting of non-deterministically assigning objects to evolution
rules in every membrane and executing the rules in a maximal parallel manner;

2. parallel communication of objects through membramemsisting in sending existing messages;
3. parallel membrane dissolvingonsisting in dissolving the membranes contairding

The last two steps take place only if there are messagéssymbols resulted from the first step, re-
spectively. If the first step is not possible, consequently neither the other two steps, then we say that the
system has reachedalting configuration An operational semantics of the P systems, considering each

of the three steps, is presented in [2]. We mention here the main results.

We can pass from a configuration to another one by using the evolution rules. This is done in parallel:
all objects from all membranes evolve simultaneously according to the evolution rules and their priority
relation. The rules of a membrane are using its current objects as much as this is possible in a parallel
and non-deterministic way. However, an object produced by a rule cannot evolve at the same step as
source of another rule. The use of a rule- vin a region with a multisetv has as effect the subtraction
of the multiset identified by from w, followed by the addition of the multiset identified ky

We denote thenaximal parallel rewritingon membranes b;”% and bygL the maximal parallel
rewriting over the multisets of objects of the membrane labellet bye omit the label whenever it is
clear from the context). The rules defining the maximal parallel rewriting use two predicates regarding
mpr-irreducibility and(L, w)-consistency.

16 Gabriel Ciobanu

Proposition 1. Let I be a membrane system.Gfe (M) andC’ € C#(M) such thaC == C/, thenC’
is mpr-irreducible.

We denote th@arallel communication relatioby 2% The rules defining the parallel communica-
tion relation use a predicate expressing tar-irreducibility.

Proposition 2. Let be a P system. [T € C#(IM) with messages ar@-2 ', thenC' is tar-irreducible.

We denote theparallel dissolving relationby 2., The rules defining the parallel dissolving re-
lation use a predicate expressidgrreducibility. We note thaC € ¢(M) iff C is tar-irreducible and
d-irreducible.

Proposition 3. Let be a P system. & € €#(MN) is tar-irreducible an@ =2, ¢/, thenC' is &-irreducible.

According to the standard description in membrane computitigraition stepbetween two con-
figurationsC,C’ € €(N) is given by:C = C' iff C andC’ are related by one of the following relations:

. mpr t mpr 9§ mpr t o
eitherC 2. 18 ¢/ or c 2R, % ¢/, or c 2B 1L 2 ¢,

The three alternatives in definig=- C' are given by the existence of messages and dissolving
symbols along the system evolution. Starting from a configuration without messages and dissolving
symbols, we apply the “mpr” rules and get an intermediate configuration which is mpr-irreducible; if
we have messages, then we apply the “tar” rules and get an intermediate configuration which is tar-
irreducible; if we have dissolving symbols, then we apply the dissolving rules and get a configuration
which is d-irreducible. If the final configuration has no messages or dissolving symbols, then we say
that the transition relatios> is well-defined as an evolution between the initial and final configurations.

Proposition 4. The relation=- is well-defined over the entire sé{I) of configurations.

Examples of inference trees, as well as the proofs of the results are presented in [2].

Operational semantics provides us with a formal way to find out which transitions are possible for
the current configuration of a membrane system. Given an operational semantics, we can derive easily an
interpreter for membrane systems, as well as the basis for the definition of certain equivalences and con-
gruences between membrane systems. Moreover, given an operational semantics, we can reason about
the rules defining the semantics. A notion of bisimulation can be defined (see [2]), and the bisimulation
relation allows to compare the evolution behaviour of two membrane systems.

3 Arithmetical Operations in Membrane Systems

The problem of humber encoding using multisets is interesting and complex. The first paper on
the encodings and arithmetical operations in membrane systems is [5]. In [5] we present several com-
binatorial results and some encodings of numbers using multisets. Here we present some arithmetical
operations over numbers encoded by a simple and natural encoding (each object of a membrane rep-
resents a unit, and we useobjects to represent the numhb®r We indicate the complexity of some
arithmetical operations, and build the membrane systems which implement the arithmetic operations
over the encoded numbers.

A Programming Perspective of the Membrane Systems 17

Addition
Time complexity: O(1)

n = (V7H7W07<R0’0)’0)’

vV = {ab},
o= [oo
Wo = a”bm,

Ry = {b—a}.

Addition is trivial; we considen objectsa andm objectsh. The ruleb — a says that an objedtis
transformed in one objeet Such a rule is applied in parallel as many times as possible. Consequently,
all objectsb are erased. The remaining number of objeatspresents the additiam- m.

Subtraction
Time complexity: O(1)

N = (V,l,Wo,(Ro,0),0),

vV = {ab},
H = [oo,
wo = a'b™,
Ro = {ab—A}.

Subtraction is described in the following way: givenbjectsa andm objectsb, a ruleab— A says
that one objech and one objedb are deleted (this is represented by the empty symihoConsequently,
all the pairsab are erased. The remaining number of objects represents the difference betvesn

Multiplication without promoters
Time complexity: O(n-m)

The object is a promoter for a rule if the rule can be applied only in the presence of object. Figure 1
presents a P systefy without promoters for multiplication af (objectsa) by m (objectsb), the result
being the number of objects in membrane). In this P system we use the priority relation between
rules; for instancév — devhas a higher priority thaav — u, meaning the second rule is applied only
when the first one cannot be applied anymore. Initially only the aule- v can be applied, generating
an objectv which activates the rulbv — dev mtimes, and themv — u. Now eu— dbuis appliedm
times, followed byau — v. The procedure is repeated until no objadcs present within the membrane.
We note that each time when one objatc$ consumed, them objectsd are generated.

nl - (V,l.l,WO,(RO,pO),O),

V = {a’ b? e7v? u}?

H = [0]07
wop = a'bMu,

Ry = {ri:au—vrp:bv—devrz:av— u,rs:eu— dbu},

po = {ra>ray,ra>rs}.

18 Gabriel Ciobanu

a’ b™ u
bv— dev >av—u
eu— dbu >au—v

Figure 1: Multiplier without promoters

Multiplication with promoters
Time complexity: O(n)

Figure 2 presents a P systéia with promoters for multiplication of (objectsa) by m (objectsb),
the result being the number of objedtsh membrand. In this P system we use rules with priority and
with promoters. The objeetis a promoter in the rulb — bd|,, i.e., this rule can only be applied in the
presence of obje@. The availablen objectsb are used in order to appty times the ruleéb — bd|, in
parallel; based on the priority relation and the availabilityaafbjects (except ona as promoter), the
rule au — u is applied in the same time. The priority relation is motivated because the proanister
a resource for which the rulés— bd|;andau — u are competing. The procedure is repeated until no
objectais present within the membrane. We note that each time when one aligebnsumed, them
objectsd are generated.

M = (V7“7W07 (R07p0)70)7
{aa b,U},

V
uo= oo,

w = a'bMu,

Ry = {ri:b—bdarz:au— u},
po = {ri>rz}.

a' bm u
b—bdas > au—u

Figure 2: Multiplier with promoters

The membrane systems for multiplication differ from others presented in the literature [17] because
they do not have exponential space complexity, and do not require active membranes. As a particular

case, it would be quite easy to compufeby just placing the same numbeof objectsa andb. Another

interesting feature is that the computation may continue after reaching a certain result, and so the system

acts as a P transducer [12]. Thus if initially there m{ebjectsa) andm (objectsb), the system evolves
and producen- mobjectsd. Afterwards, the user can inject more objeztnd the system continues the
computation obtaining the same result as if the objaetie present from the beginning. For example, if
the user wishes to compute+ k) - m, it is enough to injeck objectsa at any point of the computation.

Therefore this example emphasizes the asynchronous feature and a certain degree of reusability and

robustness.

A Programming Perspective of the Membrane Systems 19

Division

We implement division as repeated subtraction. We compute the quotient and the remamder of
(objectsain membrand) divided byn; (objectsain membrand) in the same P system evolution. The
evolution starts in the outer membrane by applying the aue b(v,in1). The(v,in1) notation means
that the object is injected into the child membrarie Therefore the rula — b(v,in;) is appliedn;times
converting the objecta into objectsh, and object is injected in the inner membrare The evolution
continues with a subtraction step in the inner membrane, with thew#e e appliedn; times whenever
possible.

n = (V7uaW07W17(R07p0)7(R17p1)70)7

V = {ab,b,csuv},
M= lol]do,
wyp = ams,
wp, = a™s,
Ro = {a—b(ving),b' —ary:bu—b|y,r2:u— d|-y,rs:csu— ul},
Po = {ri>rarz>rs},
Ri = {ri:av—ery:v— (vout),
rs:es— s(u,out)(c,out),rs: e — (u,out)},
pr = {ri>ra,ra>rsrz3>ru}.
0
aM t
a— b(v,ing)
bu— b/|-y > ctu—uly
b —a
\
as
av—e > v— (vout) > es— s(u,out)(c,out) >e— (u,out)

_

Figure 3: P system for division

Two cases are distinguished in the inner membrane:

e If there are more objecta than objectss, only the ruleses— s(u,out)(c,out) ande — (u,out)
are applicable. Rules— s(u,out)(c,out) sends out to membrar@ea singlec (restricted by the
existence of a singlse into this membrane) for each subtraction step. The number of olijects
represents the quotient. On the other hand, both rules send objectsu (equal to the number
of objectse). The evolution continues in the outer membrane by applping- b'|-, of n;times,
meaning the objectsare converted into objechs by consuming the objectsonly in the absence
of v (]-y denotes an inhibitor having an effect opposite to that of a promoter). Then the rula
produces the necessary objegt® repeat the entire procedure.

20 Gabriel Ciobanu

e When there are less obje@gshan objectss in the inner membrane we get a division remainder.
After applying the ruleav — e, the remaining objectg activate the rules — (v,out). Therefore
all these objects are sent out to the parent membr@hand the rulegs— s(u, out)(c,out) and
e — (u,out) are applied. Due to the fact that we have objedtsmembrand, the rulebu— b'|-,
cannot be applied. Singe is not divisible byn;, the number of the left objectsin membrane
represents the remainder of the division. A final cleanup is required in this case, because an object
c is sent out even if we have not a "complete” subtraction step; thectule- uly, removes that
extrac from membrand in the presence of. This rule is applied only once because we have a
uniguet in this membrane.

The natural encoding is easy to understand and work with. However it has the disadvantage that
the membranes can contain a very large number of objects when working with very large numbers. We
introduce and study the most compact encoding using two object types (binary case) in [5], where we
present other P systems implementing the arithmetical operations on numbers encoded using the binary
cases of the most compact encoding. We use a web-based simulator avaitetpg/psystems.
ieat.ro to implement the arithmetical operations, and test each P system.

4 Software Implementations

Several programming paradigms and programming languages have been selected for implement-
ing membrane systems simulators: Lisp, Haskell, MzScheme (as functional programming languages)
Prolog, CLIPS (as declarative languages), C, C++, Java (as imperative and object-oriented languages).
The user interface can be designed separately from the engine performing the evolution, and it is possi-
ble to use different programming languages able to communicate with each other. Each programming
paradigm, each programming language has advantages and disadvantages.

Transition membrane systems and deterministic membrane systems with active membranes are sim-
ulated in Prolog [14]; they are used to solve NP-complete problems as SAT, VALIDITY, Subset Sum,
Knapsack, and partition problems. Sevilla carpets describing the complexity of a membrane system
computation [11] are used as a graphical representation for a partition problem in [20].

Membrane systems with active membranes, input membrane and external output are simulated in
CLIPS and used to solve NP-complete problems in [18]. The simulator presented in [18] allows to
observe the evolution of the systems with active membranes based on production system techniques.
The set of rules and the configurations in each step of the evolution are expressed as facts in a knowledge
base.

Rewriting membrane systems and membrane systems with symport/antiport rules are described as
executable specifications in MAUDE in [1]. The advantage of this approach is that it uses the existing
tools of Maude, and it is used to verify the temporal properties of the membrane systems expressed in
linear temporal logic.

A more complex simulator (written in Visual C++) for membrane systems with active membranes and
catalytic membrane systems is presented in [10]. It provides a graphical simulator, interactive definition,
visualization of a defined membrane system, a scalable graphical representation of the computation,
and step-by-step observations of the membrane system behaviour. The simulation of these membrane
systems has to deal with the potential growth of the membrane structure and adapt dynamically the
topology of the configurations depending if some membranes are added or deleted. Polynomial-time
solutions toNP-complete problems via membrane systems can be reached trading time by space. This
is done by producing (via membrane division) an exponential amount of membranes that can work in
parallel.

In [10] it is presented a software implementation which provides a graphical simulation for two vari-
ants of membrane systems: for the initial version of catalytic hierarchical cell systems, and for membrane

A Programming Perspective of the Membrane Systems 21

systems with active membranes. Its main functions are given by an interactive definition of a membrane
system, a visualization of a defined membrane system, a graphical representation of the computation and
final result, and saving and (re)loading a defined membrane system. The application is implemented in
Microsoft Visual C++ using MFC classes. For a scalable graphical representation, the Microsoft DirectX
technology is used. One of the main features of this technology is that the size of each component of the
graphical representation is adjusted according to the number of membranes of the system. The system
is presented to the user with a graphical interface where the main screen is divided into two windows:
The left window gives a tree representation of the membrane system including objects and membranes.
The right window provides a graphical representation of the membrane system given by Venn-like dia-
grams. A menu allows the specification of a membrane system for adding new objects, membranes, rules
and priorities. By using the functiortart Nextand Stop the users can observe the system evolution
step-by-step.

By simulating parallelism and nondeterminism on a sequential machine one can lose the power and
attractiveness of membrane system computing. Parallel and cluster implementation for transition mem-
brane systems in C++ and MPI are reported in [8] and [9]. The rules are implemented as threads. At
the initialization phase, one thread is created for each rule. Rule applications are performed in terms of
rounds. To synchronize each thread (rule) within the system, two barriers implemented as mutexes are
associated with the thread. At the beginning of each round, the barrier that the rule thread is waiting on
is released by the primary controlling thread. After the rule application is done, the thread waits for the
second barrier, and the primary thread locks the first barrier. Since each rule is modelled as a separate
thread, it should have the ability to decide its own applicability in a particular round. Generally speaking,

a rule can run when no other rule with higher priority is running, and the resources required are avail-
able. When more than one rule can be applied in the same conditions, the simulator picks randomly one
among the candidates. With respect to the synchronization and communication, for every membrane, the
main communication is done by sending and receiving messages to and from its father and children at
the end of every round. With respect to the termination, when the system is no longer active, there is no
rule in any membrane that is applicable. When this happens, the designated output membrane prints out
the result and the whole system halts. In order to detect if the membrane system halts, each membrane
must inform the other membranes about its inactivity. It can do so by sending messages to others, and by
using a termination detection algorithm [4].

The implementation was designed for a cluster of computers. Itis written in C++ and it makes use of
Message Passing Interface (MRI3 its communication mechanism. MPI is a standard library developed
for writing portable message passing applications, and it is implemented both on shared-memory and on
distributed-memory parallel computers. The program was implemented and tested on a Linux cluster at
the National University of Singapore; the cluster consisted of 64 dual processor nodes.

The above implementations represent the first generation of membrane systems simulators. The
recent developments are related to biological applications, and to a new generation of Web-based sim-
ulators. WebPS is an open-source web-enabled simulator for membrane systems [6]. The simulator is
based on CLIPS, and it is already available as a Web application. As any Web application, WebPS does
not require an installation. It can be used from any machine anywhere in the world, without any previous
preparation. A simple and easy to use interface allows the user to supply an XML input both as text and
as a file. A friendly way of describing membrane systems is given by an interactive JavaScript-based
membrane system designer. The interface provides a high degree of (re)usability during the development
and simulation of the membrane systems. The initial screen offers an example, and the user may find
useful documentation about the XML schema, the rules, and the query language. The query language
helps the user to select the output of the simulation. The simulator is free software, and it offered at
http://psystems.ieat.ro under theGNU General Public LicenseThis allows anyone to con-
tribute with enhancements and error corrections to the code, and possibly develop new interfaces for
the C and CLIPS level APIs. These interfaces can be local (graphical or command-line), or yet other

22 Gabriel Ciobanu

Web-based ones.

In the same paper [6], the authors present an accelerator for parallelization of the existing sequential
simulators. This accelerator is used to parallelize an existing CLIPS simulator [18]. The speedup and the
efficiency of the resulting parallel implementation are surprisingly close to the ideal ones.

5 Conclusion and Related Work

Structural operational semantics is an approach originally introduced by Plotkin [19] in which the
operational semantics of a programming language or a computational model is specified in a logical
way, independent of a machine architecture or implementation details, by means of rules that provide an
inductive definition based on the elementary structures of the language or model. Structural operational
semantics is intuitive and flexible, and it becomes more attractive during the years by the developments
presented by Kahn [15] and Milner [16]. Configurations are states of transition systems, and computa-
tions consists of sequences of transitions between configurations, and terminating (if it terminates) in a
final configuration. We present a structural operational semantics of the membrane systems; the infer-
ence rules provide a big-step operational semantics due to the parallel nature of the model. A structural
operational semantics of the systems emphasizes also the deductive nature of the membrane computing
by describing the transition steps by using a set of inference rules. ConsideringRatatference
rules, we can describe the computation of a membrane system as a deduction tree. In [3] we translate
the big-step operational semantics of membrane systems into rewriting logic. By using the rewriting en-
gine Maude [13], we obtain an interpreter for membrane systems, and verify various properties of these
systems.

Looking at the membrane systems from the point of view of programming theory, we define an
appropriate data representation for P systems, and make the first steps to define an arithmetic unit for
these abstract machine inspired by cells. The natural encoding over multisets is very close to biology,
and can help to understand some biological mechanisms, improving also some computational models
inspired by biology.

We have designed and implemented sequential and parallel software simulators; we present some
of them, and compare with other software simulators of the P systems. A web-based implementation is
presented in [6].

Acknowledgements

The contributions of this paper were obtained together with my colleagues. Many thanks to Oana
Andrei and Dorel Lucanu for the joint work on the operational semantics of the membrane systems.
Many thanks to Cosmin Bonchis and Cornel Izbasa for their contributions to the arithmetical operations
over multisets in the framework of membrane systems, and to the software implementation WebPS.

References

[1] O. Andrei, G. Ciobanu, D. Lucanu. Executable Specifications of the P Systerikenhirane
Computing WMCBHLNCS vol.3365, Springer, 127-146, 2005.

[2] O. Andrei, G. Ciobanu, D. Lucanu. Structural Operational Semantics of P Syfereedings
WMCE LNCS vol.3850, Springer, 32-49, 2006.

[3] O. Andrei, G. Ciobanu, D. Lucanu. Operational Semantics and Rewriting Logic in Membrane
Computing.Proceedings SOS Worksh2f05, to appear iENTCS

A Programming Perspective of the Membrane Systems 23

[4] H. Attiya, J. WelchDistributed Computing: Fundamentals, Simulations and Advanced Topics
McGraw-Hill, 2000.

[5] C. Bonchis, G. Ciobanu, C. Izbasa. Encodings and Arithmetic Operations in Membrane Com-
puting. In Jin-Yi Cai, S. Barry Cooper, Angsheng Li (Edg.lieory and Applications of Models
of ComputationLNCS 3959, Springer, 618-627, 2006.

[6] C. Bonchis, G.Ciobanu, C. Izbasa, D. Petcu. A Web-based P systems simulator and its par-
allelization. In C.Calude et al. (Eds.)nconventional Computind.NCS vol.3699, Springer,
58-69, 2005.

[7] G. Ciobanu. Distributed Algorithms over Communicating Membrane SystdBigsystems
vol.70, Elsevier, 123-133, 2003.

[8] G. Ciobanu, R. Desai, A. Kumar. Membrane Systems and Distributed ComputiRgpdeed-
ings WMC3LNCS vol.2597, Springer, 187-202, 2003.

[9] G. Ciobanu, W. Guo. P Systems Running on a Cluster of ComputePsotredings 4th WM(C
Taragona, LNCS vol.2933, Springer, 123-139, 2004.

[10] G. Ciobanu, D. Paraschiv. P System Software Simul&andamenta Informatica49, 61-66,
2002.

[11] G. Ciobanu, Gh. Bun, Gh.Stefnescu. Sevilla Carpets Associated with P Systé&taport 26/03
Rovira i Virgili University, Tarragona, 135-140, 2003.

[12] G. Ciobanu, Gh. 8un, Gh. Stefnescu. P Transduceifdew Generation Computingg, 1-28,
2006.

[13] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, J.F. Quesada. Maude:
Specification and Programming in Rewriting Logi€heoretical Computer Scienceol.285,
187-243, 2002.

[14] A. Cordon-Franco, M.A. Gutierrez-Naranjo, M.J. Perez-Jimenez, A. Riscos-Nunez, F. Sancho-
Caparrini. Implementing in Prolog an Effective Cellular Solution for the Knapsack Problem. In
Proceedings 4th WMCTaragona, LNCS vol.2933, Springer, 140-152, 2004.

[15] G. Kahn.Natural semanticsTechnical Report 601, INRIA Sophia Antipolis, 1987.

[16] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leeuwen
(Ed.),Handbook of Theoretical Computer SciemokB, 1201-1242, Elsevier Science, 1990.

[17] Gh. Faun.Membrane Computing. An Introductio8pringer, 2002.

[18] M.J. Perez-Jimenez, F.J. Romero-Campero. A CLIPS Simulator for Recognizer P Systems with
Active Membranes. InProceedings 2nd Brainstorming Week on Membrane Computing
versity of Sevilla Tech. Rep 01/2004, 387-413, 2004.

[19] G. Plotkin. Structural operational semantidsurnal of Logic and Algebraic Programming
vol.60, 17-139, 2004.

[20] A. Riscos-Nufiez Cellular Programming: Efficient Resolution of Numerical NP-Complete
Problems PhD Thesis, University of Seville, 2004.

24

Gabriel Ciobanu

Gabriel Ciobanu
Romanian Academy
Institute of Computer Science
Address: Blvd. Carol | nr.8, lasi
E-mail: gabriel@iit.tuiasi.ro

