
International Journal of Computers, Communications & Control
Vol. I (2006), No. 3, pp. 13-24

A Programming Perspective of the Membrane Systems

Gabriel Ciobanu

Abstract: We present an operational semantics of the membrane systems, using an
appropriate notion of configurations and sets of inference rules corresponding to the
three stages of an evolution step in membrane systems: maximal parallel rewriting
step, parallel communication of objects through membranes, and parallel membrane
dissolving.
We define various arithmetical operations over multisets in the framework of mem-
brane systems, indicating their complexity and presenting the membrane systems
which implement the arithmetic operations.
Finally we discuss and compare various sequential and parallel software simulators
of the membrane systems, emphasizing their specific features.
Keywords: membrane systems, operational semantics, arithmetical operations over
multisets.

1 Membrane Systems

Membrane systems represent a computational model inspired by cell compartments and molecular
membranes. Essentially, such a system is composed of various compartments, each compartment with a
different task, and all of them working simultaneously to accomplish a more general task of the whole
system. A detailed description of the membrane systems (also called P systems) can be found in [17].
A membrane systemconsists of a hierarchy of membranes that do not intersect, with a distinguishable
membrane, called theskin membrane, surrounding them all. The membranes produce a delimitation
betweenregions. For each membrane there is a unique associated region. Regions contain multisets of
objects, evolution rulesand possibly other membranes. Only rules in a region delimited by a membrane
act on the objects in that region. The multiset of objects from a region corresponds to the “chemicals
swimming in the solution in the cell compartment”, while the rules correspond to the “chemical reactions
possible in the same compartment”. Graphically, a membrane structure is represented by a Venn diagram
in which two sets can be either disjoint, or one is a subset of the other. More details (concepts, results)
and several variants of membrane systems are presented in [17].

A P systemconsists of several membranes that do not intersect, and askin membrane, surrounding
them all. The membranes delimitregions, and contain multisets ofobjects, as well asevolution rules.
Each membrane has a unique associated region. The space outside the skin membrane is called theouter
region(or the environment). Because of the one-to-one correspondence between the membranes and the
regions, we usually use the word membrane instead of region. Only rules in a region delimited by a mem-
brane act on the objects in that region. Moreover, the rules must contain target indications, specifying
the membrane where objects are sent after applying the rule. The objects can either remain in the same
region, or pass through membranes in two directions: they can be sentout of the membrane which de-
limits a region from outside, or can be sentin one of the membranes which delimit a region from inside,
precisely identified by its label. The membranes can also bedissolved. When such an action takes place,
all the objects of the dissolved membrane remain free in the membrane placed immediately outside, but
the evolution rules of the dissolved membranes are lost. The skin membrane is never dissolved. The
application of evolution rules is done in parallel, and it is eventually regulated bypriority relationships
between rules. AP systemof degreem is a structureΠ = (O,µ,w1, . . . ,wm,(R1,ρ1),. . . , (Rm,ρm), io),
where:

(i) O is an alphabet of objects, andµ is a membrane structure;

Copyright c© 2006 by CCC Publications
Selected from ICCCC 2006 (invited paper)

14 Gabriel Ciobanu

(ii) wi are the initial multisets overO associated with the regions defined byµ;

(iii) Ri are finite sets of evolution rules overO associated with the membranes, of typical formu→
v, with u a multiset overO andv a multiset containing paired symbols (messages) of the form
(c,here), (c, in j), (c,out) and the dissolving symbolδ ;

(iv) ρi is a partial order relation overRi , specifying apriority relation among the rules:(r1, r2) ∈ ρi iff
r1 > r2 (i.e., r1 has a higher priority thanr2);

(v) i0 is either a number between 1 andm specifying theoutputmembrane ofΠ, or it is equal to0
indicating that the output is the outer region.

Since the skin is not allowed to be dissolved, we consider that the rules of the skin do not involveδ . These
are thegeneral P systems, or transition P systems; many other variants and classes were introduced [17].

The existing results regarding the P systems refer mainly to their computation power and complexity,
namely to their characterization of Turing computability (universality is obtained even with a small
number of membranes, and with rather simple rules), and the polynomial solutions to NP-complete
problems by using an exponential workspace created in a “biological way" (e.g., membrane division,
string replication). Other types of formal results are given by normal forms, hierarchies, connections
with various formalisms.

In this paper we refer to some “programming” aspects of the membrane systems. We first present
an operational semantics of the P systems, together with some correctness results. Then we define
several arithmetical operations in membrane systems using a natural encoding of numbers. Finally some
software simulators of the membrane systems are presented.

2 Structural Operational Semantics

Membrane systems provide an abstract model for parallel systems, and a suitable framework for
distributed and parallel algorithms [7]. For each abstract model, theory of programming introduces
various paradigms and uses different notions of computations. Turing machines and register machines
are related to imperative programming, andλ -calculus is related to functional programming. It is natural
to look at the membrane systems from the point of view of programming theory. This means that we
define an abstract syntax, and an operational semantics of the membranes systems. The operational
semantics of the membrane systems is given in a big-step style, each step representing the collection
of parallel steps due to the maximal parallelism principle. A computation is regarded as a sequence of
parallel application of rules in various membranes, followed by a communication step and a dissolving
step.

The membrane structure and the multisets inΠ determine a configuration of the system. We can pass
from a configuration to another one by using the evolution rules. This is done in parallel: all objects,
from all membranes, which can be the subject of local evolution rules, as prescribed by the priority
relation, should evolve concurrently. Since the right hand side of a rule consists only of messages, an
object introduced by a rule cannot evolve at the same step by means of another rule. The use of a rule
u→ v in a region with a multisetw means to subtract the multiset identified byu from w, and then to
add the objects ofv according to the form of the rule. If an object appears inv in the form(c,here), then
it remains in the same region. If we have(c, in j), thenc is introduced in the child membrane with the
label j; if a child membrane with the labelj does not exist, then the rule cannot be applied. If we have
(c,out), thenc is introduced in the membrane placed immediately outside the region of the ruleu→ v.
If the special symbolδ appears inv, then the membrane which delimits the region is dissolved; in this
way, all the objects in this region become elements of the region placed immediately outside, while the
rules of the dissolved membrane are removed.

A Programming Perspective of the Membrane Systems 15

Let O be a finite alphabet of objects organized as a free commutative monoidO∗
c, whose elements are

calledmultisets. Formally, the set ofmembranes for a systemΠ, denoted byM(Π), andthe membrane
structureare inductively defined as follows:

• if L is a label, andw is a multiset overO∪ (O∗
c×{here})∪ (O+

c ×{out})∪{δ}, then〈L |w〉 ∈
M(Π); 〈L |w〉 is calledsimple (or elementary) membrane, and it has the structure〈〉;

• if M1, . . . ,Mn ∈M(Π) with n≥ 1, the structure ofMi is µi for all i ∈ [n], L is a label,w is a multiset
overO∪(O∗

c×{here})∪(O+
c ×{out})∪(O+

c ×{inL(M j)| j ∈ [n]})∪{δ}, then〈L |w; M1, . . . ,Mn〉 ∈
M(Π); 〈L |w ; M1, . . . ,Mn 〉 is calleda composite membrane, and it has the structure〈µ1, . . . ,µn〉.

A finite set of membranes is usually written asM1, . . . ,Mn. We denote byM+(Π) the set of non-
empty finite sets of membranes. The union of two multisets of membranesM+ = M1, . . . ,Mm andN+ =
N1, . . . ,Nn is written asM+,N+ = M1, . . . ,Mm,N1, . . . ,Nn. An element fromM+(Π) is either a membrane,
or a set of sibling membranes.

A committed configurationfor a membrane systemΠ is a skin membrane which has no messages
and no dissolving symbolδ , i.e., the multisets of all regions are elements inO∗

c. We denote byC(Π) the
set of committed configurations forΠ, and it is a proper subset ofM+(Π). We haveC∈ C(Π) iff C is a
skin membrane ofΠ andw(M) is a multiset overO for each membraneM in C.

An intermediate configurationis a skin membrane in which we have messages or the dissolving
symbolδ . The set of intermediate configurations is denoted byC#(Π). We haveC ∈ C#(Π) iff C is a
skin membrane ofΠ such that there is a membraneM in C with w(M) = w′w′′, w′ ∈ (Msg(O)∪{δ})+

c ,
andw′′ ∈O∗

c. By Msg(O) we denote the set(O∗×{here})∪ (O+×{out})∪ (O+×{inL(M)}).
A configurationis either a committed configuration or an intermediate configuration. Each mem-

brane system has an initial committed configuration which is characterized by the initial multiset of
objects for each membrane and the initial membrane structure of the system.

Each P system has an initial configuration which is characterized by the initial multiset of objects for
each membrane and the initial membrane structure of the system. For two configurationsC1 andC2 of
Π, we say that there is atransitionfrom C1 to C2, and writeC1⇒C2, if the following stepsare executed
in the given order:

1. maximal parallel rewriting step, consisting of non-deterministically assigning objects to evolution
rules in every membrane and executing the rules in a maximal parallel manner;

2. parallel communication of objects through membranes, consisting in sending existing messages;

3. parallel membrane dissolving, consisting in dissolving the membranes containingδ .

The last two steps take place only if there are messages orδ symbols resulted from the first step, re-
spectively. If the first step is not possible, consequently neither the other two steps, then we say that the
system has reached ahalting configuration. An operational semantics of the P systems, considering each
of the three steps, is presented in [2]. We mention here the main results.

We can pass from a configuration to another one by using the evolution rules. This is done in parallel:
all objects from all membranes evolve simultaneously according to the evolution rules and their priority
relation. The rules of a membrane are using its current objects as much as this is possible in a parallel
and non-deterministic way. However, an object produced by a rule cannot evolve at the same step as
source of another rule. The use of a ruleu→ v in a region with a multisetw has as effect the subtraction
of the multiset identified byu from w, followed by the addition of the multiset identified byv.

We denote themaximal parallel rewritingon membranes by
mpr
=⇒ and by

mpr
=⇒L the maximal parallel

rewriting over the multisets of objects of the membrane labelled byL (we omit the label whenever it is
clear from the context). The rules defining the maximal parallel rewriting use two predicates regarding
mpr-irreducibility and(L,w)-consistency.

16 Gabriel Ciobanu

Proposition 1. Let Π be a membrane system. IfC ∈ C(Π) andC′ ∈ C#(Π) such thatC
mpr
=⇒C′, thenC′

is mpr-irreducible.

We denote theparallel communication relationby
tar=⇒. The rules defining the parallel communica-

tion relation use a predicate expressing tar-irreducibility.

Proposition 2. Let Π be a P system. IfC∈ C#(Π) with messages andC
tar=⇒C′, thenC′ is tar-irreducible.

We denote theparallel dissolving relationby
δ=⇒. The rules defining the parallel dissolving re-

lation use a predicate expressingδ -irreducibility. We note thatC ∈ C(Π) iff C is tar-irreducible and
δ -irreducible.

Proposition 3. Let Π be a P system. IfC∈C#(Π) is tar-irreducible andC
δ=⇒C′, thenC′ is δ -irreducible.

According to the standard description in membrane computing, atransition stepbetween two con-
figurationsC,C′ ∈ C(Π) is given by:C⇒C′ iff C andC′ are related by one of the following relations:

eitherC
mpr
=⇒;

tar=⇒C′, or C
mpr
=⇒;

δ=⇒C′, or C
mpr
=⇒;

tar=⇒;
δ=⇒C′.

The three alternatives in definingC ⇒ C′ are given by the existence of messages and dissolving
symbols along the system evolution. Starting from a configuration without messages and dissolving
symbols, we apply the “mpr” rules and get an intermediate configuration which is mpr-irreducible; if
we have messages, then we apply the “tar” rules and get an intermediate configuration which is tar-
irreducible; if we have dissolving symbols, then we apply the dissolving rules and get a configuration
which is δ -irreducible. If the final configuration has no messages or dissolving symbols, then we say
that the transition relation⇒ is well-defined as an evolution between the initial and final configurations.

Proposition 4. The relation⇒ is well-defined over the entire setC(Π) of configurations.

Examples of inference trees, as well as the proofs of the results are presented in [2].
Operational semantics provides us with a formal way to find out which transitions are possible for

the current configuration of a membrane system. Given an operational semantics, we can derive easily an
interpreter for membrane systems, as well as the basis for the definition of certain equivalences and con-
gruences between membrane systems. Moreover, given an operational semantics, we can reason about
the rules defining the semantics. A notion of bisimulation can be defined (see [2]), and the bisimulation
relation allows to compare the evolution behaviour of two membrane systems.

3 Arithmetical Operations in Membrane Systems

The problem of number encoding using multisets is interesting and complex. The first paper on
the encodings and arithmetical operations in membrane systems is [5]. In [5] we present several com-
binatorial results and some encodings of numbers using multisets. Here we present some arithmetical
operations over numbers encoded by a simple and natural encoding (each object of a membrane rep-
resents a unit, and we usen objects to represent the numbern). We indicate the complexity of some
arithmetical operations, and build the membrane systems which implement the arithmetic operations
over the encoded numbers.

A Programming Perspective of the Membrane Systems 17

Addition
Time complexity: O(1)

Π = (V,µ,w0,(R0, /0),0),
V = {a,b},
µ = [0]0,

w0 = anbm,

R0 = {b→ a}.

Addition is trivial; we considern objectsa andm objectsb. The ruleb→ a says that an objectb is
transformed in one objecta. Such a rule is applied in parallel as many times as possible. Consequently,
all objectsb are erased. The remaining number of objectsa represents the additionn+m.

Subtraction
Time complexity: O(1)

Π = (V,µ,w0,(R0, /0),0),
V = {a,b},
µ = [0]0,

w0 = anbm,

R0 = {ab→ λ}.

Subtraction is described in the following way: givenn objectsa andmobjectsb, a ruleab→ λ says
that one objecta and one objectb are deleted (this is represented by the empty symbolλ). Consequently,
all the pairsabare erased. The remaining number of objects represents the difference betweenn andm.

Multiplication without promoters
Time complexity: O(n·m)

The object is a promoter for a rule if the rule can be applied only in the presence of object. Figure 1
presents a P systemΠ1 without promoters for multiplication ofn (objectsa) by m (objectsb), the result
being the number of objectsd in membrane0. In this P system we use the priority relation between
rules; for instancebv→ devhas a higher priority thanav→ u, meaning the second rule is applied only
when the first one cannot be applied anymore. Initially only the ruleau→ v can be applied, generating
an objectv which activates the rulebv→ dev mtimes, and thenav→ u. Now eu→ dbu is appliedm
times, followed byau→ v. The procedure is repeated until no objecta is present within the membrane.
We note that each time when one objecta is consumed, thenm objectsd are generated.

Π1 = (V,µ,w0,(R0,ρ0),0),
V = {a,b,e,v,u},
µ = [0]0,

w0 = anbmu,

R0 = {r1 : au→ v, r2 : bv→ dev, r3 : av→ u, r4 : eu→ dbu},
ρ0 = {r2 > r1, r4 > r3}.

18 Gabriel Ciobanu

an bm u

eu→ dbu
bv→ dev

0

av→ u
au→ v>

>

Figure 1: Multiplier without promoters

Multiplication with promoters
Time complexity: O(n)

Figure 2 presents a P systemΠ2 with promoters for multiplication ofn (objectsa) by m (objectsb),
the result being the number of objectsd in membrane0. In this P system we use rules with priority and
with promoters. The objecta is a promoter in the ruleb→ bd|a, i.e., this rule can only be applied in the
presence of objecta. The availablem objectsb are used in order to applym times the ruleb→ bd|a in
parallel; based on the priority relation and the availability ofa objects (except onea as promoter), the
rule au→ u is applied in the same time. The priority relation is motivated because the promotera is
a resource for which the rulesb→ bd|aandau→ u are competing. The procedure is repeated until no
objecta is present within the membrane. We note that each time when one objecta is consumed, thenm
objectsd are generated.

Π2 = (V,µ,w0,(R0,ρ0),0),
V = {a,b,u},
µ = [0]0,

w0 = anbmu,

R0 = {r1 : b→ bd|a, r2 : au→ u},
ρ0 = {r1 > r2}.

an bm u

0

au→ u>b→ bd|a

Figure 2: Multiplier with promoters

The membrane systems for multiplication differ from others presented in the literature [17] because
they do not have exponential space complexity, and do not require active membranes. As a particular
case, it would be quite easy to computen2 by just placing the same numbern of objectsa andb. Another
interesting feature is that the computation may continue after reaching a certain result, and so the system
acts as a P transducer [12]. Thus if initially there aren (objectsa) andm (objectsb), the system evolves
and producesn·mobjectsd. Afterwards, the user can inject more objectsa and the system continues the
computation obtaining the same result as if the objectsa are present from the beginning. For example, if
the user wishes to compute(n+k) ·m, it is enough to injectk objectsa at any point of the computation.
Therefore this example emphasizes the asynchronous feature and a certain degree of reusability and
robustness.

A Programming Perspective of the Membrane Systems 19

Division

We implement division as repeated subtraction. We compute the quotient and the remainder ofn2

(objectsa in membrane1) divided byn1 (objectsa in membrane0) in the same P system evolution. The
evolution starts in the outer membrane by applying the rulea→ b(v, in1). The (v, in1) notation means
that the objectv is injected into the child membrane1. Therefore the rulea→ b(v, in1) is appliedn1times
converting the objectsa into objectsb, and objectv is injected in the inner membrane1. The evolution
continues with a subtraction step in the inner membrane, with the ruleav→ eappliedn1 times whenever
possible.

Π = (V,µ,w0,w1,(R0,ρ0),(R1,ρ1),0),
V = {a,b,b′,c,s,u,v},
µ = [0[1]1]0,

w0 = an1s,

w1 = an2s,

R0 = {a→ b(v, in1),b′→ a, r1 : bu→ b′|¬v, r2 : u→ δ |¬v, r3 : csu→ u|v},
ρ0 = {r1 > r2, r2 > r3},
R1 = {r1 : av→ e, r2 : v→ (v,out),

r3 : es→ s(u,out)(c,out), r4 : e→ (u,out)},
ρ1 = {r1 > r2, r2 > r3, r3 > r4}.

0

1

an2 s

a→ b(v, in1)
an1

bu→ b′|¬v

b′→ a

av→ e > v→ (v,out)

>

e→ (u,out)>es→ s(u,out)(c,out)>

t

ctu→ u|v

Figure 3: P system for division

Two cases are distinguished in the inner membrane:

• If there are more objectsa than objectsv, only the ruleses→ s(u,out)(c,out) ande→ (u,out)
are applicable. Rulees→ s(u,out)(c,out) sends out to membrane0 a singlec (restricted by the
existence of a singles into this membrane) for each subtraction step. The number of objectsc
represents the quotient. On the other hand, both rules send outn1 objectsu (equal to the number
of objectse). The evolution continues in the outer membrane by applyingbu→ b′|qv of n1times,
meaning the objectsb are converted into objectsb′ by consuming the objectsu only in the absence
of v (|qv denotes an inhibitor having an effect opposite to that of a promoter). Then the ruleb′→ a
produces the necessary objectsa to repeat the entire procedure.

20 Gabriel Ciobanu

• When there are less objectsa than objectsv in the inner membrane we get a division remainder.
After applying the ruleav→ e, the remaining objectsv activate the rulev→ (v,out). Therefore
all these objectsv are sent out to the parent membrane0, and the ruleses→ s(u,out)(c,out) and
e→ (u,out) are applied. Due to the fact that we have objectsv in membrane0, the rulebu→ b′|qv

cannot be applied. Sincen2 is not divisible byn1, the number of the left objectsu in membrane0
represents the remainder of the division. A final cleanup is required in this case, because an object
c is sent out even if we have not a ”complete” subtraction step; the rulectu→ u|v removes that
extrac from membrane0 in the presence ofv. This rule is applied only once because we have a
uniquet in this membrane.

The natural encoding is easy to understand and work with. However it has the disadvantage that
the membranes can contain a very large number of objects when working with very large numbers. We
introduce and study the most compact encoding using two object types (binary case) in [5], where we
present other P systems implementing the arithmetical operations on numbers encoded using the binary
cases of the most compact encoding. We use a web-based simulator available athttp://psystems.
ieat.ro to implement the arithmetical operations, and test each P system.

4 Software Implementations

Several programming paradigms and programming languages have been selected for implement-
ing membrane systems simulators: Lisp, Haskell, MzScheme (as functional programming languages)
Prolog, CLIPS (as declarative languages), C, C++, Java (as imperative and object-oriented languages).
The user interface can be designed separately from the engine performing the evolution, and it is possi-
ble to use different programming languages able to communicate with each other. Each programming
paradigm, each programming language has advantages and disadvantages.

Transition membrane systems and deterministic membrane systems with active membranes are sim-
ulated in Prolog [14]; they are used to solve NP-complete problems as SAT, VALIDITY, Subset Sum,
Knapsack, and partition problems. Sevilla carpets describing the complexity of a membrane system
computation [11] are used as a graphical representation for a partition problem in [20].

Membrane systems with active membranes, input membrane and external output are simulated in
CLIPS and used to solve NP-complete problems in [18]. The simulator presented in [18] allows to
observe the evolution of the systems with active membranes based on production system techniques.
The set of rules and the configurations in each step of the evolution are expressed as facts in a knowledge
base.

Rewriting membrane systems and membrane systems with symport/antiport rules are described as
executable specifications in MAUDE in [1]. The advantage of this approach is that it uses the existing
tools of Maude, and it is used to verify the temporal properties of the membrane systems expressed in
linear temporal logic.

A more complex simulator (written in Visual C++) for membrane systems with active membranes and
catalytic membrane systems is presented in [10]. It provides a graphical simulator, interactive definition,
visualization of a defined membrane system, a scalable graphical representation of the computation,
and step-by-step observations of the membrane system behaviour. The simulation of these membrane
systems has to deal with the potential growth of the membrane structure and adapt dynamically the
topology of the configurations depending if some membranes are added or deleted. Polynomial-time
solutions toNP-complete problems via membrane systems can be reached trading time by space. This
is done by producing (via membrane division) an exponential amount of membranes that can work in
parallel.

In [10] it is presented a software implementation which provides a graphical simulation for two vari-
ants of membrane systems: for the initial version of catalytic hierarchical cell systems, and for membrane

A Programming Perspective of the Membrane Systems 21

systems with active membranes. Its main functions are given by an interactive definition of a membrane
system, a visualization of a defined membrane system, a graphical representation of the computation and
final result, and saving and (re)loading a defined membrane system. The application is implemented in
Microsoft Visual C++ using MFC classes. For a scalable graphical representation, the Microsoft DirectX
technology is used. One of the main features of this technology is that the size of each component of the
graphical representation is adjusted according to the number of membranes of the system. The system
is presented to the user with a graphical interface where the main screen is divided into two windows:
The left window gives a tree representation of the membrane system including objects and membranes.
The right window provides a graphical representation of the membrane system given by Venn-like dia-
grams. A menu allows the specification of a membrane system for adding new objects, membranes, rules
and priorities. By using the functionsStart, NextandStop, the users can observe the system evolution
step-by-step.

By simulating parallelism and nondeterminism on a sequential machine one can lose the power and
attractiveness of membrane system computing. Parallel and cluster implementation for transition mem-
brane systems in C++ and MPI are reported in [8] and [9]. The rules are implemented as threads. At
the initialization phase, one thread is created for each rule. Rule applications are performed in terms of
rounds. To synchronize each thread (rule) within the system, two barriers implemented as mutexes are
associated with the thread. At the beginning of each round, the barrier that the rule thread is waiting on
is released by the primary controlling thread. After the rule application is done, the thread waits for the
second barrier, and the primary thread locks the first barrier. Since each rule is modelled as a separate
thread, it should have the ability to decide its own applicability in a particular round. Generally speaking,
a rule can run when no other rule with higher priority is running, and the resources required are avail-
able. When more than one rule can be applied in the same conditions, the simulator picks randomly one
among the candidates. With respect to the synchronization and communication, for every membrane, the
main communication is done by sending and receiving messages to and from its father and children at
the end of every round. With respect to the termination, when the system is no longer active, there is no
rule in any membrane that is applicable. When this happens, the designated output membrane prints out
the result and the whole system halts. In order to detect if the membrane system halts, each membrane
must inform the other membranes about its inactivity. It can do so by sending messages to others, and by
using a termination detection algorithm [4].

The implementation was designed for a cluster of computers. It is written in C++ and it makes use of
Message Passing Interface (MPI)as its communication mechanism. MPI is a standard library developed
for writing portable message passing applications, and it is implemented both on shared-memory and on
distributed-memory parallel computers. The program was implemented and tested on a Linux cluster at
the National University of Singapore; the cluster consisted of 64 dual processor nodes.

The above implementations represent the first generation of membrane systems simulators. The
recent developments are related to biological applications, and to a new generation of Web-based sim-
ulators. WebPS is an open-source web-enabled simulator for membrane systems [6]. The simulator is
based on CLIPS, and it is already available as a Web application. As any Web application, WebPS does
not require an installation. It can be used from any machine anywhere in the world, without any previous
preparation. A simple and easy to use interface allows the user to supply an XML input both as text and
as a file. A friendly way of describing membrane systems is given by an interactive JavaScript-based
membrane system designer. The interface provides a high degree of (re)usability during the development
and simulation of the membrane systems. The initial screen offers an example, and the user may find
useful documentation about the XML schema, the rules, and the query language. The query language
helps the user to select the output of the simulation. The simulator is free software, and it offered at
http://psystems.ieat.ro under theGNU General Public License. This allows anyone to con-
tribute with enhancements and error corrections to the code, and possibly develop new interfaces for
the C and CLIPS level APIs. These interfaces can be local (graphical or command-line), or yet other

22 Gabriel Ciobanu

Web-based ones.
In the same paper [6], the authors present an accelerator for parallelization of the existing sequential

simulators. This accelerator is used to parallelize an existing CLIPS simulator [18]. The speedup and the
efficiency of the resulting parallel implementation are surprisingly close to the ideal ones.

5 Conclusion and Related Work

Structural operational semantics is an approach originally introduced by Plotkin [19] in which the
operational semantics of a programming language or a computational model is specified in a logical
way, independent of a machine architecture or implementation details, by means of rules that provide an
inductive definition based on the elementary structures of the language or model. Structural operational
semantics is intuitive and flexible, and it becomes more attractive during the years by the developments
presented by Kahn [15] and Milner [16]. Configurations are states of transition systems, and computa-
tions consists of sequences of transitions between configurations, and terminating (if it terminates) in a
final configuration. We present a structural operational semantics of the membrane systems; the infer-
ence rules provide a big-step operational semantics due to the parallel nature of the model. A structural
operational semantics of the systems emphasizes also the deductive nature of the membrane computing
by describing the transition steps by using a set of inference rules. Considering a setR of inference
rules, we can describe the computation of a membrane system as a deduction tree. In [3] we translate
the big-step operational semantics of membrane systems into rewriting logic. By using the rewriting en-
gine Maude [13], we obtain an interpreter for membrane systems, and verify various properties of these
systems.

Looking at the membrane systems from the point of view of programming theory, we define an
appropriate data representation for P systems, and make the first steps to define an arithmetic unit for
these abstract machine inspired by cells. The natural encoding over multisets is very close to biology,
and can help to understand some biological mechanisms, improving also some computational models
inspired by biology.

We have designed and implemented sequential and parallel software simulators; we present some
of them, and compare with other software simulators of the P systems. A web-based implementation is
presented in [6].

Acknowledgements

The contributions of this paper were obtained together with my colleagues. Many thanks to Oana
Andrei and Dorel Lucanu for the joint work on the operational semantics of the membrane systems.
Many thanks to Cosmin Bonchiş and Cornel Izbaşa for their contributions to the arithmetical operations
over multisets in the framework of membrane systems, and to the software implementation WebPS.

References

[1] O. Andrei, G. Ciobanu, D. Lucanu. Executable Specifications of the P Systems. InMembrane
Computing WMC5, LNCS vol.3365, Springer, 127-146, 2005.

[2] O. Andrei, G. Ciobanu, D. Lucanu. Structural Operational Semantics of P Systems.Proceedings
WMC6, LNCS vol.3850, Springer, 32-49, 2006.

[3] O. Andrei, G. Ciobanu, D. Lucanu. Operational Semantics and Rewriting Logic in Membrane
Computing.Proceedings SOS Workshop2005, to appear inENTCS.

A Programming Perspective of the Membrane Systems 23

[4] H. Attiya, J. Welch,Distributed Computing: Fundamentals, Simulations and Advanced Topics.
McGraw-Hill, 2000.

[5] C. Bonchiş, G. Ciobanu, C. Izbaşa. Encodings and Arithmetic Operations in Membrane Com-
puting. In Jin-Yi Cai, S. Barry Cooper, Angsheng Li (Eds.):Theory and Applications of Models
of Computation, LNCS 3959, Springer, 618–627, 2006.

[6] C. Bonchiş, G.Ciobanu, C. Izbaşa, D. Petcu. A Web-based P systems simulator and its par-
allelization. In C.Calude et al. (Eds.):Unconventional Computing, LNCS vol.3699, Springer,
58-69, 2005.

[7] G. Ciobanu. Distributed Algorithms over Communicating Membrane Systems.Biosystems
vol.70, Elsevier, 123-133, 2003.

[8] G. Ciobanu, R. Desai, A. Kumar. Membrane Systems and Distributed Computing. InProceed-
ings WMC3, LNCS vol.2597, Springer, 187-202, 2003.

[9] G. Ciobanu, W. Guo. P Systems Running on a Cluster of Computers. InProcedings 4th WMC,
Taragona, LNCS vol.2933, Springer, 123-139, 2004.

[10] G. Ciobanu, D. Paraschiv. P System Software Simulator.Fundamenta Informaticae49, 61-66,
2002.

[11] G. Ciobanu, Gh. P̆aun, Gh.Ştef̆anescu. Sevilla Carpets Associated with P Systems.Report 26/03
Rovira i Virgili University, Tarragona, 135-140, 2003.

[12] G. Ciobanu, Gh. P̆aun, Gh. Ştef̆anescu. P Transducers.New Generation Computing24, 1–28,
2006.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, J.F. Quesada. Maude:
Specification and Programming in Rewriting Logic.Theoretical Computer Science, vol.285,
187-243, 2002.

[14] A. Cordon-Franco, M.A. Gutierrez-Naranjo, M.J. Perez-Jimenez, A. Riscos-Nunez, F. Sancho-
Caparrini. Implementing in Prolog an Effective Cellular Solution for the Knapsack Problem. In
Proceedings 4th WMC, Taragona, LNCS vol.2933, Springer, 140-152, 2004.

[15] G. Kahn.Natural semantics, Technical Report 601, INRIA Sophia Antipolis, 1987.

[16] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leeuwen
(Ed.),Handbook of Theoretical Computer Sciencevol.B, 1201-1242, Elsevier Science, 1990.

[17] Gh. P̆aun.Membrane Computing. An Introduction. Springer, 2002.

[18] M.J. Perez-Jimenez, F.J. Romero-Campero. A CLIPS Simulator for Recognizer P Systems with
Active Membranes. InProceedings 2nd Brainstorming Week on Membrane Computing, Uni-
versity of Sevilla Tech. Rep 01/2004, 387-413, 2004.

[19] G. Plotkin. Structural operational semantics.Journal of Logic and Algebraic Programming
vol.60, 17-139, 2004.

[20] A. Riscos-Núñez,Cellular Programming: Efficient Resolution of Numerical NP-Complete
Problems. PhD Thesis, University of Seville, 2004.

24 Gabriel Ciobanu

Gabriel Ciobanu
Romanian Academy

Institute of Computer Science
Address: Blvd. Carol I nr.8, Iaşi

E-mail: gabriel@iit.tuiasi.ro

