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Information Aggregation in Intelligent Systems Using Generalized
Operators

Imre J. Rudas, János Fodor

Abstract: Aggregation of information represented by membership functions is a central
matter in intelligent systems where fuzzy rule base and reasoning mechanism are applied.
Typical examples of such systems consist of, but not limited to, fuzzy control, decision sup-
port and expert systems. Since the advent of fuzzy sets a great number of fuzzy connectives,
aggregation operators have been introduced. Some families of such operators (like t-norms)
have become standard in the field. Nevertheless, it also became clear that these operators
do not always follow the real phenomena. Therefore, there is a natural need for finding new
operators to develop more sophisticated intelligent systems. This paper summarizes the re-
search results of the authors that have been carried out in recent years on generalization of
conventional operators.
Keywords: t-norm, t-conorm, uninorm, entropy- and distance-based conjunctions and dis-
junctions.

1 Introduction

Information aggregation is one of the key issues in development of intelligent systems. Although fuzzy set
theory provides a host of attractive aggregation operators for integrating the membership values representing un-
certain information, the results do not always follow the modeled real phenomena and it has been shown that in
some situations some operations may work better than others.

Since the pioneering work of Zadeh the basic research was oriented towards the investigation of the properties
of t-norms and t-conorms and also to find new ones satisfying the axiom system. As a result of this a great number
(of various type) of t-operators have been introduced accepting the axiom system as a fixed, unchangeable skeleton.

Until the last few years no strong efforts were devoted to generalize t-operators by modifying “weakening” this
axiom system. On one hand, the sound theoretical foundation as well as their wide variety have given t-norms and
t-conorms almost an exclusive role in different theoretical investigations and practical applications. On the other
hand, people are inclined to use them also as a matter of routine. The following observations support this statement
and .

When one works with binary conjunctions and there is no need to extend them for three or more arguments,
associativity is an unnecessarily restrictive condition. The same is valid for commutativity if the two arguments
have different semantical backgrounds and it has no sense to interchange one with the other.

These observations, which are very often left out of consideration, advocate our study and have urged us to
revise definitions and properties of operations for information aggregation and reasoning.

2 Traditional Operations

The original fuzzy set theory was formulated in terms of Zadeh’s standard operations of intersection, union
and complement. The axiomatic skeleton used for characterizing fuzzy intersection and fuzzy union are known
astriangular norms (t-norms)andtriangular conorms (t-conorms),respectively. For more details we refer to the
book [9].

2.1 Triangular Norms and Conorms

Definition 1. A non-increasing functionN : [0,1]→ [0,1] satisfyingN(0) = 1, N(1) = 0 is called anegation. A
negationN is calledstrict if N is strictly decreasing and continuous. A strict negationN is said to be astrong
negationif N is also involutive:N(N(x)) = x for all x∈ [0,1].

The standard negation is simplyNs(x) = 1−x, x∈ [0,1]. Clearly, this negation is strong. It plays a key role
in the representation of strong negations.

We call a continuous, strictly increasing functionϕ : [0,1]→ [0,1] with ϕ(0) = 0, ϕ(1) = 1 anautomorphism
of the unit interval.
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Definition 2. A triangular norm(shortly: a t-norm) is a functionT : [0,1]2→ [0,1] which is associative, increasing
and commutative, and satisfies the boundary conditionT(1,x) = x for all x∈ [0,1].

Definition 3. A triangular conorm(shortly: a t-conorm) is an associative, commutative, increasingS : [0,1]2 →
[0,1] function, with boundary conditionS(0,x) = x for all x∈ [0,1].

Notice that continuity of a t-norm and a t-conorm is not taken for granted.
In what follows we assume thatT is a t-norm,S is a t-conorm andN is a strict negation.
Clearly, for every t-normT and strong negationN, the operationSdefined by

S(x,y) = N(T(N(x),N(y))), x,y∈ [0,1] (1)

is a t-conorm. In addition,T(x,y) = N(S(N(x),N(y))) (x,y∈ [0,1]). In this caseSandT are calledN-duals. In
case of the standard negation (i.e., whenN(x) = 1− x for x ∈ [0,1]) we simply speak about duals. Obviously,
equality (1) expresses the De Morgan’s law in the fuzzy case.

Generally, for any t-normT and t-conormSwe have

TW (x,y)≤ T (x,y)≤ TM (x,y) and SM (x,y)≤ S(x,y)≤ SS(x,y) ,

whereTM (x,y) = min(x,y), SM (x,y) = max(x,y), TW is the weakest t-norm, andSS is the strongest t-conorm.
These inequalities are important from practical point of view as they establish the boundaries of the possible

range of mappingsT andS.

2.2 Uninorms and Nullnorms

Uninorms

Uninorms were introduced by Yager and Rybalov [19] as a generalization of t-norms and t-conorms. For
uninorms, the neutral element is not forced to be either 0 or 1, but can be any value in the unit interval.

Definition 4. [19] A uninorm U is a commutative, associative and increasing binary operator with a neutral
elemente∈ [0,1] , i.e., for allx∈ [0,1] we haveU(x,e) = x.

T-norms do not allow low values to be compensated by high values, while t-conorms do not allow high values
to be compensated by low values. Uninorms may allow values separated by their neutral element to be aggregated
in a compensating way. The structure of uninorms was studied by Fodoret al. [11]. For a uninormU with neutral
elemente∈ ]0,1] , the binary operatorTU defined by

TU (x,y) =
U(ex,ey)

e

is a t-norm; for a uninormU with neutral elemente∈ [0,1[, the binary operatorSU defined by

SU (x,y) =
U(e+(1−e)x,e+(1−e)y)−e

1−e

is a t-conorm. The structure of a uninorm with neutral elemente∈ ]0,1[ on the squares[0,e]2 and[e,1]2 is therefore
closely related to t-norms and t-conorms. Fore∈ ]0,1[, we denote byφe andψe the linear transformations defined
by φe(x) = x

e andψe(x) = x−e
1−e. To any uninormU with neutral elemente∈ ]0,1[, there corresponds a t-normT

and a t-conormSsuch that:

(i) for any(x,y) ∈ [0,e]2: U(x,y) = φ−1
e (T(φe(x),φe(y)));

(ii) for any(x,y) ∈ [e,1]2: U(x,y) = ψ−1
e (S(ψe(x),ψe(y))).

On the remaining part of the unit square, i.e. onE = [0,e[× ]e,1] ∪ ]e,1] × [0,e[, it satisfies

min(x,y)≤U(x,y)≤max(x,y),

and could therefore partially show a compensating behaviour, i.e. take values strictly between minimum and
maximum. Note that any uninormU is eitherconjunctive, i.e.U(0,1) = U(1,0) = 0, or disjunctive, i.e.U(0,1) =
U(1,0) = 1.
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Representation of Uninorms

In analogy to the representation of continuous Archimedean t-norms and t-conorms in terms of additive gen-
erators, Fodoret al. [11] have investigated the existence of uninorms with a similar representation in terms of
a single-variable function. This search leads back to Dombi’s class ofaggregative operators[7]. This work is
also closely related to that of Klementet al. on associative compensatory operators [15]. Considere∈ ]0,1[ and a
strictly increasing continuous[0,1]→Rmappingh with h(0) =−∞, h(e) = 0 andh(1) = +∞. The binary operator
U defined by

U(x,y) = h−1(h(x)+h(y))

for any (x,y) ∈ [0,1]2 \ {(0,1),(1,0)}, and eitherU(0,1) = U(1,0) = 0 or U(0,1) = U(1,0) = 1, is a uninorm
with neutral elemente. The class of uninorms that can be constructed in this way has been characterized [11].

Consider a uninormU with neutral elemente∈ ]0,1[, then there exists a strictly increasing continuous[0,1]→
Rmappingh with h(0) =−∞, h(e) = 0 andh(1) = +∞ such that

U(x,y) = h−1(h(x)+h(y))

for any(x,y) ∈ [0,1]2\{(0,1),(1,0)} if and only if

(i) U is strictly increasing and continuous on]0,1[2;

(ii) there exists an involutive negatorN with fixpoint esuch that

U(x,y) = N(U(N(x),N(y))))

for any(x,y) ∈ [0,1]2\{(0,1),(1,0)}.
The uninorms characterized above are calledrepresentableuninorms. The mappingh is called anadditive gen-
erator of U . The involutive negator corresponding to a representable uninormU with additive generatorh, as
mentioned in condition (ii) above, is denotedNU and is given by

NU (x) = h−1(−h(x)). (2)

Clearly, any representable uninorm comes in a conjunctive and a disjunctive version, i.e. there always exist
two representable uninorms that only differ in the points(0,1) and (1,0). Representable uninorms are almost
continuous, i.e. continuous except in(0,1) and(1,0), and Archimedean, in the sense that(∀x∈ ]0,e[)(U(x,x) < x)
and(∀x∈ ]e,1[)(U(x,x) > x). Clearly, representable uninorms are not idempotent. The classesUmin andUmax do
not contain representable uninorms. A very important fact is that the underlying t-norm and t-conorm of a repre-
sentable uninorm must be strict and cannot be nilpotent. Moreover, given a strict t-normT with decreasing additive
generatorf and a strict t-conormSwith increasing additive generatorg, we can always construct a representable
uninormU with desired neutral elemente∈ ]0,1[ that hasT andSas underlying t-norm and t-conorm. It suffices
to consider as additive generator the mappingh defined by

h(x) =





− f
(x

e

)
, if x≤ e

g

(
x−e
1−e

)
, if x≥ e

. (3)

On the other hand, the following property indicates that representable uninorms are in some sense also gener-
alizations of nilpotent t-norms and nilpotent t-conorms:(∀x∈ [0,1])(U(x,NU (x)) = NU (e)). This claim is further
supported by studying the residual operators of representable uninorms in [6].

As an example of the representable case, consider the additive generatorh defined byh(x) = log x
1−x, then the

corresponding conjunctive representable uninormU is given byU(x,y) = 0 if (x,y) ∈ {(1,0),(0,1)}, and

U(x,y) =
xy

(1−x)(1−y)+xy

otherwise, and has as neutral element1
2. Note thatNU is the standard negator:NU (x) = 1−x.

The class of representable uninorms contains famous operators, such as the functions for combining certainty
factors in the expert systems MYCIN (see [18, 5]) and PROSPECTOR [5]. The MYCIN expert system was one
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of the first systems capable of reasoning under uncertainty [2]. To that end, certainty factors were introduced as
numbers in the interval[−1,1]. Essential in the processing of these certainty factors is the modified combining
functionC proposed by van Melle [2]. The[−1,1]2 → [−1,1] mappingC is defined by

C(x,y) =





x+y(1−x) , if min(x,y)≥ 0

x+y(1+x) , if max(x,y)≤ 0
x+y

1−min(|x|, |y|) , otherwise
.

The definition ofC is not clear in the points(−1,1) and(1,−1), though it is understood thatC(−1,1) =C(1,−1) =
−1. Rescaling the functionC to a binary operator on[0,1], we obtain a representable uninorm with neutral element
1
2 and as underlying t-norm and t-conorm the product and the probabilistic sum. Implicitly, these results are
contained in the book of Hájeket al. [14], in the context of ordered Abelian groups.

Nullnorms

Definition 5. [3] A nullnorm V is a commutative, associative and increasing binary operator with an absorbing
elementa∈ [0,1], i.e. (∀x∈ [0,1])(V(x,a) = a), and that satisfies

(∀x∈ [0,a])(V(x,0) = x) (4)

(∀x∈ [a,1])(V(x,1) = x) (5)

The absorbing elementa corresponding to a nullnormV is clearly unique. By definition, the casea = 0 leads
back to t-norms, while the casea = 1 leads back to t-conorms. In the following proposition, we show that the
structure of a nullnorm is similar to that of a uninorm. In particular, it can be shown that it is built up from a
t-norm, a t-conorm and the absorbing element [3].

Theorem 6. Considera∈ [0,1]. A binary operatorV is a nullnorm with absorbing elementa if and only if

(i) if a = 0: V is a t-norm;

(ii) if 0 < a < 1: there exists a t-normTV and a t-conormSV such thatV(x,y) is given by




φ−1
a (SV(φa(x),φa(y))) , if (x,y) ∈ [0,a]2

ψ−1
a (TV(ψa(x),ψa(y))) , if (x,y) ∈ [a,1]2

a , elsewhere

; (6)

(iii) if a = 1: V is a t-conorm.

Recall that for any t-normT and t-conormS it holds thatT(x,y) ≤ min(x,y) ≤ max(x,y) ≤ S(x,y), for any
(x,y) ∈ [0,1]2. Hence, for a nullnormV with absorbing elementa it holds that(∀(x,y) ∈ [0,a]2) (V(x,y) ≥
max(x,y)) and(∀(x,y) ∈ [a,1]2) (V(x,y) ≤ min(x,y)). Clearly, for any nullnormV with absorbing elementa it
holds for allx∈ [0,1] that

V(x,0) = min(x,a) and V(x,1) = max(x,a). (7)

Notice that, without the additional conditions (4) and (5), it cannot be shown that a commutative, associative
and increasing binary operatorV with absorbing elementa behaves as a t-conorm and t-norm on the squares[0,a]2

and[a,1]2.
Nullnorms are a generalization of the well-knownmedianstudied by Fung and Fu [13], which corresponds to

the caseT = min andS= max. For a more general treatment of this operator, we refer to [10]. We recall here the
characterization of that median as given by Czogala and Drewniak [4]. Firstly, they observe that an idempotent,
associative and increasing binary operatorO has as absorbing elementa∈ [0,1] if and only if O(0,1) = O(1,0) = a.
Then the following theorem can be proven.

Theorem 7. [4] Considera ∈ [0,1]. A continuous, idempotent, associative and increasing binary operatorO
satisfiesO(0,1) = O(1,0) = a if and only if it is given by

O(x,y) =





max(x,y) , if (x,y) ∈ [0,a]2

min(x,y) , if (x,y) ∈ [a,1]2

a , elsewhere

.
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Nullnorms are also a special case of the class ofT-S aggregation functions introduced and studied by Fodor
and Calvo [12].

Definition 8. Consider a continuous t-normT and a continuous t-conormS. A binary operatorF is called aT-S
aggregation function if it is increasing and commutative, and satisfies the boundary conditions

(∀x∈ [0,1])(F(x,0) = T(F(1,0),x))
(∀x∈ [0,1])(F(x,1) = S(F(1,0),x)).

WhenT is the algebraic product andS is the probabilistic sum, we recover the class of aggregation functions
studied by Mayor and Trillas [17]. Rephrasing a result of Fodor and Calvo, we can state that the class of associative
T-Saggregation functions coincides with the class of nullnorms with underlying t-normT and t-conormS.

2.3 The Role of Commutativity and Associativity

One possible way of simplification of axiom skeletons of t-norms and t-conorms may be not requiring that
these operations to have the commutative and the associative properties. Non-commutative and non-associative
operations are widely used in mathematics, so, why do we restrict our investigations by keeping these axioms?
What are the requirements of the most typical applications?

From theoretical point of view the commutative law is not required, while the associative law is necessary to
extend the operation to more than two variables. In applications, like fuzzy logic control, fuzzy expert systems and
fuzzy systems modeling fuzzy rule base and fuzzy inference mechanism are used, where the information aggrega-
tion is performed by operations. The inference procedures do not always require commutative and associative laws
of the operations used in these procedures. These properties are not necessary for conjunction operations used in
the simplest fuzzy controllers with two inputs and one output. For rules with greater amount of inputs and outputs
these properties are also not required if the sequence of variables in the rules are fixed.

Moreover, the non-commutativity of conjunction may in fact be desirable for rules because it can reflect dif-
ferent influences of the input variables on the output of the system. For example, in fuzzy control, the positions
of the input variables the “error” and the “change in error” in rules are usually fixed and these variables have
different influences on the output of the system. In the application areas of fuzzy models when the sequence of
operands is not fixed, the property of non-commutativity may not be desirable. Later some examples will be given
for parametric non-commutative and non-associative operations.

3 Generalized Conjunctions and Disjunctions

The axiom systems of t-norms and t-conorms are very similar to each other except the neutral element, i.e. the
type is characterized by the neutral element. If the neutral element is equal to 1 then the operation is a conjunction
type, while if the neutral element is zero the disjunction operation is obtained. By using these properties we
introduce the concepts of conjunction and disjunction operations [1].

Definition 9. Let T be a mappingT : [0,1]× [0,1] → [0,1]. T is a conjunction operationif T(x,1) = x for all
x∈ [0,1].

Definition 10. Let S be a mappingS : [0,1]× [0,1] → [0,1]. S is a conjunction operationif S(x,0) = x for all
x∈ [0,1].

Conjunction and disjunction operations may also be obtained one from another by means of an involutive
negationN: S(x,y) = N(T (N(x) ,N(y))), andT (x,y) = N(S(N(x) ,N(y))).

It can be seen easily that conjunction and disjunction operations satisfy the following boundary conditions:
T(1,1) = 1, T(0,x) = T(x,0) = 0, S(0,0) = 0, S(1,x) = S(x,1) = 1. By fixing these conditions, new types of
generalized operations are introduced.

Definition 11. Let T be a mappingT : [0,1]× [0,1] → [0,1]. T is a quasi-conjunction operationif T(0,0) =
T(0,1) = T(1,0) = 0, andT(1,1) = 1.

Definition 12. Let Sbe a mappingS: [0,1]× [0,1]→ [0,1]. Sis aquasi-disjunction operationif S(0,1) = S(1,0) =
S(1,1) = 1, andS(0,0) = 0.
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It is easy to see that conjunction and disjunction operations are quasi-conjunctions and quasi-disjunctions,
respectively, but the converse is not true.

OmittingT(1,1) = 1 andS(0,0) = 0 from the definitions further generalization can be obtained.

Definition 13. Let T be a mappingT : [0,1]× [0,1] → [0,1]. T is a pseudo-conjunction operationif T(0,0) =
T(0,1) = T(1,0) = 0.

Definition 14. Let S be a mappingS : [0,1]× [0,1] → [0,1]. S is a pseudo-disjunction operationif S(0,1) =
S(1,0) = S(1,1) = 1.

Theorem 15. Assume thatT andSare non-decreasing pseudo-conjunctions and pseudo-disjunctions, respectively.
Then there exist the absorbing elements 0 and 1 such asT (x,0) = T (0,x) = 0 andS(x,1) = S(1,x) = 1.

3.1 Entropy-based Conjunction and Disjunction Operators

The question of how fuzzy is a fuzzy set has been one of the issues associated with the development of the
fuzzy set theory. In accordance with a current terminological trend in the literature, measure of uncertainty is being
referred asmeasure of fuzziness,or fuzzy entropy[16].

Throughout this part the following notations will be used;X is the universal set,F(X) is the class of all fuzzy
subsets ofX , ℜ+ is the set of non negative real numbers,Ā is the fuzzy complement ofA∈F(X) and|A| is the
cardinality ofA.

Definition 16. Let Xbe a universal set andA is a fuzzy subset ofX with membership functionµA. The fuzzy
entropyis a mappinge: F(X)→ℜ+ which satisfies the following axioms:

AE 1 e(A) = 0 if A is a crisp set.
AE 2 If A≺ B thene(A) ≤ e(B); whereA≺ B means thatA is sharper than B.
AE 3 e(A) assumes its maximum value if and only ifA is maximally fuzzy.
AE 4 e(A) = e

(
Ā
)

, ∀A∈ X.

Let ep be equilibrium of the fuzzy complementC and specifyAE 2 andAE 3 as follows:
AES 2A is sharper than Bin the following sense:
µA (x)≤ µB (x) for µB (x)≤ ep andµA (x)≥ µB (x) for µB (x)≥ ep, for all x∈ X.
AES 3A is defined maximally fuzzy whenµA (x) = ep ∀x∈ X.
Let A be a fuzzy subset ofX and define the following functionfA : X → [0,1] by

fA : x 7→
{

µA(x) if µA (x)≤ ep

C(µA (x)) if µA (x) > ep
(8)

DenoteΦA the fuzzy set generated byfA as its membership function.

Theorem 17. Theg(|ΦA|) is an entropy, whereg:ℜ→ℜ is a monotonically increasing real function andg(0) = 0.

Definition 18. Let A be a fuzzy subset ofX. fA is said to be anelementary fuzzy entropy functionif the cardinality
of the fuzzy setΦA = {(x, fA (x)) |x∈ X, fA (x) ∈ [0,1]} is an entropy ofA.

It is obvious thatfA is an elementary entropy function.
Now we introduce some operations based on entropy. For more details we refer to [1].

Definition 19. Let A andB be two fuzzy subsets of the universe of discourseX and denoteϕA andϕB their elemen-
tary entropy functions, respectively. Theminimum entropy conjunction operationsis defined asI∗ϕ = I∗ϕ (A,B) ={(

x,µI∗ϕ (x)
)
|x∈ X, µI∗ϕ (x) ∈ [0,1]

}
, where

µI∗ϕ : x 7→




µA (x) , if ϕA (x) < ϕB (x)
µB (x) , if ϕB (x) < ϕA (x)

min(µA (x) ,µB (x)) , if ϕA (x) = ϕB (x)
. (9)

Definition 20. Let A andBbe two fuzzy subsets of the universe of discourseX and denoteϕA andϕB their elemen-
tary entropy functions, respectively. Themaximum entropy disjunction operationis defined asU∗

ϕ = U∗
ϕ (A,B) ={(

x,µU∗
ϕ (x)

)
|x∈ X, µU∗

ϕ (x) ∈ [0,1]
}

, where
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Figure 1: Entropy based conjunction operator (left) and entropy based disjunction operator (right)

Figure 2: The construction ofI∗ϕ (left) and the construction ofU∗
ϕ (right).

µU∗
ϕ :x 7→





µA (x) , if ϕA (x) > ϕB (x)
µB (x) , if ϕB (x) > ϕA (x)

max(µA (x) ,µB (x)) , if ϕA (x) = ϕB (x)
. (10)

The geometrical representation of the minimum fuzziness conjunction and the maximum fuzziness disjunction
operators can be seen in Fig. 1.

Several important properties of these operations as well as their construction can be found in [1]. Now we
present only two figures about the construction.

Notice also thatI∗ϕ is a quasi-conjunction,U∗
ϕ is a quasi-disjunction operation, andU∗

ϕ is a commutative semi-
group operation on[0,1] [1].

3.2 A Parametric Family of Quasi-Conjunctions

Let us cite the following result, which is the base of the forthcoming parametric construction, from [1].

Theorem 21. SupposeT1,T2 are quasi-conjunctions,S1 and S2 are pseudo disjunctions andh, g1,g2 : [0,1]→
[0,1] are non-decreasing functions such thatg1 (1) = g2 (1) = 1. Then the following functions

T (x,y) = T2 (T1 (x,y) ,S1 (g1 (x) ,g2 (y))) (11)

T (x,y) = T2 (T1 (x,y) ,g1S1 (x,y)) (12)

T (x,y) = T2 (T1 (x,y) ,S2 (h(x) ,S1 (x,y))) (13)

are quasi-conjunctions.
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By the use of this Theorem the simplest parametricquasi-conjunction operations can be obtained as follows:

T (x,y) = xpyq, (14)

T (x,y) = min(xp,yq) , (15)

T (x,y) = (xy)p (x+y−xy)q (16)

wherep,q≥ 0.

4 Distance-based Operations

Let ebe an arbitrary element of the closed unit interval[0,1] and denote byd(x,y) the distance of two elements
x andyof [0,1]. The idea of definitions of distance-based operators is generated from the reformulation of the
definition of the min and max operators as follows

min(x,y) =
{

x, if d(x,0)≤ d(y,0)
y, if d(x,0) > d(y,0) , max(x,y) =

{
x, if d(x,0)≥ d(y,0)
y, if d(x,0) < d(y,0)

Based on this observation the following definitions can be introduced, see [1].

Definition 22. Themaximum distance minimum operatorwith respect toe∈ [0,1] is defined as

min
max

e
(x,y) =





x, if d(x,e) > d(y,e)
y, if d(x,e) < d(y,e)

min(x,y) , if d(x,e) = d(y,e)
. (17)

Definition 23. Themaximum distance maximum operatorwith respect toe∈ [0,1] is defined as

max
max

e
(x,y) =





x, if d(x,e) > d(y,e)
y, if d(x,e) < d(y,e)

max(x,y) , if d(x,e) = d(y,e)
. (18)

Definition 24. Theminimum distance minimum operatorwith respect toe∈ [0,1] is defined as

min
min

e
(x,y) =





x, if d(x,e) < d(y,e)
y, if d(x,e) > d(y,e)

min(x,y) , if d(x,e) = d(y,e)
. (19)

Definition 25. Theminimum distance maximum operatorwith respect toe∈ [0,1] is defined as

max
min

e
(x,y) =





x, if d(x,e) < d(y,e)
y, if d(x,e) > d(y,e)

max(x,y) , if d(x,e) = d(y,e)
. (20)

4.1 The Structure of Distance-based Operators

It can be proved by simple computation that if the distance ofx andyis defined asd(x,y) = |x−y| then the
distance-based operators can be expressed by means of the min and max operators as follows.

min
max

e
=





max(x,y) , if y > 2e−x
min(x,y) , if y < 2e−x
min(x,y) , if y = 2e−x

,
min
min

e
=





min(x,y) , if y > 2e−x
max(x,y) , if y < 2e−x
min(x,y) , if y = 2e−x

(21)

max
max

e
=





max(x,y) , if y > 2e−x
min(x,y) , if y < 2e−x
max(x,y) , if y = 2e−x

,
max
min

e
=





min(x,y) , if y > 2e−x
max(x,y) , if y < 2e−x
max(x,y) , if y = 2e−x

(22)

The structures of themaxmin
e and theminmin

e operators are illustrated in Fig. 3.
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Figure 3: Maximum distance minimum operator (left) and minimum distance minimum operator (right).

5 Summary and Conclusions

In this paper we summarized some of our contributions to the theory of non-conventional aggregation operators.
Further details and another classes of aggregation operators can be found in [1].
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