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One More Universality Result for P Systems with Objects on Membranes

Gheorghe Bun

Abstract: We continue here the attempt to bridge brane calculi with membrane computing,
following the investigation started in [2]. Specifically, we consider P systems with objects
placedon membranes, and processed by membrane operations. The operations used in this
paper are membrarmeation(cre), and membrandissolution(dis), defined in a way which
reminds the operatiomsno, exdrom a brane calculus from [1]. For P systems based on these
operations we prove the universality, for one of the two possible variants of the operations;
for the other variant the problem remains open.
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1 Introduction

This paper is a direct continuation of [2], where a first step was made to bridge membrane computing [4],
[5], [6] and brane calculi [1]. The main point of this effort is to define P systems which work with multisets
of objects placedn the membranes rather than inside the compartments defined by membranes, and to process
these multisets by means of operations with membranes rather than by multiset rewriting rules acting only on
objects. The operationgino, exo, mate, dripvere formalized in [2] as membrane computing rules, and used
in defining P systems based on them. The universalitjwafe, dripoperations was proved in [2] (for systems
using simultaneously at any step of a computation at most eleven membranes). We give here an universality result
for other two operations, membrane creatiore), and membrane dissolutiodi§), which have the same syntax
aspino, exooperations, but a different interpretation in what concerns the contents of the handled membranes —
details can be found in Section 3 below. Actually, as it was the case in [2]pivith exg we have two variants of
each of the operatiorie, dis For one of these variants, we prove the Turing completeness, while the case of the
other variant remains open (we believe that a similar result holds true).

2 Prerequisites

All notions of formal language theory we use are elementary and standard, and can be found in any basic
monograph of formal language theory. For the sake of completeness, we introduce below only the notion of matrix
grammars with appearance checking — after specifying th&tbwe denote the family of recursively enumerable
languages, and biysREthe family of Parikh images of languages frd& (the Parikh mapping associated with
an alphabeY is denoted byy).

A matrix grammars with appearance checking [3] is a constBiet (N, T,SM,F), whereN, T are disjoint
alphabets (of non-terminals and terminals, respectivedyd,N (axiom), M is a finite set ofmatrices that is
sequences of the forf\; — x1,...,An — Xn), N > 1, of context-free rules oveM U T, andF is a set of occurrences
of rules in the matrices d¥l.

Forw,ze (NUT)* we writew = zif there is a matrix(A; — Xg,...,Ay — Xp) in M and the stringsy; €
(NUT)*,1<i<n+1, suchthatv=w;,z=wp1, and, for alll <i < n, either (L)w; = WAW', w11 = wxw,
for somew/,w’ € (NUT)*, or (2) w; = wi11, A; does not appear iw;, and the ruleA; — x; appears irF. (If
applicable, the rules frore should be applied, but if they cannot be applied, then we may skip them. That is why
the rules front are said to be applied in tlaopearance checkingode.) IfF = 0, then the grammar is said to be
without appearance checking.

The language generated Byis defined byL(G) = {w € T* | S=* w}, where=>* is the reflexive and
transitive closure of the relatioa=-.

The family of languages of this form is denoted MAT,; it is known thatMAT,; = RE.

We say that a matrix grammar with appearance chedg@irg(N,T,S M, F) is in theZ-binary normal fornif
N =N UN2 U {S Z,#}, with these three sets mutually disjoint, and the matricéd ire in one of the following
forms:

1. (S— XA), with X € N1, A € Ny,
2. X=Y,A—-w),with X,;Y € Nj,Ac Np,we (NpUT)* |w| < 2,
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3. (X = Y,A—#), with X € N.,Y € N;U{Z},A€ Ny,
4. (Z—A).

Moreover, there is only one matrix of typeH consists exactly of all rule& — # appearing in matrices of type 3,
and, if a sentential form generated Gycontains the symbd, then it is of the formizw, for somew € (T U {#})*
(that is, the appearance Bafmakes sure that, except fdr all symbols are either terminal or the trap-sym#pl
The matrix of type 4 is used only once, in the last step of a derivation.

For each languade € RE there is a matrix grammar with appearance checldng the Z-binary normal form
such that. = L(G).

As usual, we represent multisets over an alphabby strings oveV, with the obvious observation that all
permutations of a string represent the same multiset.

3 P Systems Using the Cre/Dis Operations

We start by recalling from [2] the formalization of the operatigitso, exoin terms of membrane computing.

A membrane is represented, as usual, by a pair of square brackets, [ ], but we associate here with membranes
multisets of objecfcorresponding to the proteins embedded in the real membranes). A membrane having asso-
ciated a multiseti (represented by a string) is written in the fofm,; we also use to say that the membrane is
markedwith the multisetu.

The following four operations were defined in [2]:

ping [ o= I Tdw 1)
exa ([ Judv =1 Juew 2)
pinGe [ Juay = [ TWlweo ®3)
eXCb [[ }U} av_>[ }UXV' (4)

in all cases witha € V, u,x € V*, ve V*, with uxe V™ for pinorules, wheré/ is a given alphabet of objects.

In each case, multisets of proteins are transferred from input membranes to output membranes as indicated
in the rules, with proteira evolved into the multisetg (which can be empty). The subscriptande stand for
“internal” and “external”, respectively, pointing to the “main” membrane of the operation in each case.

It is important to note that the multisatsv and the proteira marking the left hand membranes of these rules
correspond to the multisetsv, x from the right hand side of the rules; specifically, the multisatresulting when
applying the rule is precisely split intox andv, with these two multisets assigned to the two new membranes.

The rules are applied as follows. Assume that we have a membrapg, for a € V,u,v,z< V*. By aping
rule as in (1), we obtain any one of the pairs of membrair{eé,zlux ] v Suchthaz =22, 7,7, € V*, and by a
pinoe rule as in (3), we obtain any one of the pairs of membrér{e%v ] ZUx such that = 212, 71,20 € V*.

In the case of the twexooperations, the result is uniquely determined. From a pair of membfangs, |
by anexaq rule as in (2) we obtain the membrahe] and from[ [ |
obtain the same membrafe},, , ..,

The contents of membranes involved in these operations is transferred from the input membranes to the out-
put membranes in the same way as in brane cal®{ fepresent here the possible contents of the respective
membranes):

V!

by anexa rule as in (4) we

21 ZUxV? zlu] Zav’

ping [ Plyy— [l JuxPlyv
qu [[P}UaQ]V_)P[Q]UXW
pince 1 [ Plyay = [[ 1y Plue
exe : [[P],Qlay—=P[QJu

Here we change the interpretation of these rules, as suggested below (because the new semantics do not cor-
respond to the operatiomsno, exqg we change the name of operationscte, dis for “membrane creation" and
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“membrane dissolution™):

ce [ Pliay—= [[Pluw]w
dis Hp]an]v_)[PQ]uxw
cree o [ Plyay—= [Py ]
diss @ [[P]yQJay— [P Qluu

That is, when a membrane is created inside an existing membrane, the new membrane contains all previously
existing membranes, and while dissolving a membrane, its contents remains inside the membrane where it was
placed before the operation. The interpretation of the latter operation is rather similar to the usual dissolution
operation in membrane computing, while the membrane creation is understood as doubling the existing membrane,
with a distribution of the multiset marking the initial membrane to the two new membranes.

Using rules as defined above, we can define a P system as
M= (Auu,...,unR),
where:
1. Ais an alphabet (finite, non-empty) of objects;
2. U is a membrane structure with> 2 membranes;

3. ug,...,Uy are multisets of objects (represented by strings @ydoound to them membranes of: at the
beginning of the computation; the skin membrane is marked wyith A;

4. Ris afinite set otre, disrules, of the forms specified above, with the objects from thédset

For a rule of any type, witli,a,v as abovejuaV is called thewveightof the rule.

In what follows, the skin membrane plays no role in the computatiorrule can be applied to.itAlso, we
stress the fact that there is no object in the compartmerts afmembrane can contain other membranes inside,
but in-between membranes there is nothing.

When using any rule of any type, we say that the membranes from its left hand sideavedin the rule;
they all are “consumed", and the membranes from the right hand side of the rule are produced instead. Similarly,
the objecta specified in the left hand side of rules is “consumed”, and it is replaced by the multiset

The evolution of the system is defined in the standard way used in membrane computing, with the rules applied
in the non-deterministic maximally parallel manner, with each membrane involved in at most one rule. Thus,
the parallelism is maximal at the level of membranes — each membrane which can evolve has to do it — but each
multiset of objects evolves in a sequential manner, as only one rule can act on any multiset in a transition step.
More precise details can be found in [2]. A computation which starts from the initial configuratiucéessful
if (i) it halts, that is, it reaches a configuration where no rule can be applied, and (ii) in the halting configuration
there are only two membranes, the skin (marked witland an inner one. Thesultof a successful computation
is the vector of multiplicities of objects which mark the inner membrane in the halting configuration. The set of all
vectors computed in this way By is denoted bys(I1).

The family of all sets of vectorBs(IM) computed by P systeni$ using at any moment during a computation
at mostm membranes, andre, dis rules of weight at mosp, g, respectively, is denoted SOR,(crep, disy).
When one of the parametars p, q is not bounded we replace it with

We end this section by pointing out some relations which follow directly from the definitions (and from Turing-
Church thesis).

Lemma 1. (i) PsORy(crep, disg) € PSORy(crey,disy), forallm<nt,p< p',q<d.
(i) PsOR(cre,,dis,) C PSRE

We also recall the main result from [2PsOR;(mate;, drips) = PSRE(the notation is self-explanatory).
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4 Universality for the Cre/Dis Operations

In the case otre, disoperations as defined above, we cannot generate vectors of norm 0 or 1: in each rule
[ uav = [ udve [ ualy = [ ik (nECESSary in the last step of any computation in order to get only one internal
membrane) we have imposed to héwerv > 2. That is why the universality below is obtained modulo vectors of
the form(0,...,0) and(0,...,0,1,0,...,0). We denote by°’SRE andPsORy(crep, dis;) the sets of vectors from
PsREandPsOR,(crep, disy) having the sum of elements greater than or equal to 2.

Theorem 2. PSRE = PSORy(crep, disy) for all m>7,p > 4, andq > 4.
Proof. Let us consider a languagiec RE = MAT,, L C V2/*, for an alphabeV with n symbols. We write this
language in the form
L= | {abdb(L).
a,bev

Let Gap = (Nap, V, San, Man, Fap) be @ matrix grammar with appearance checking suchlifaf,) = d;b(L), for
a,b e V. We consider these grammadag, in the Z-normal form, with the notations from Section 2 (heNgg =
Nab1 U Nap 2 U {San, Zan, #}), and we construct the matrix gramn@e= (N,V, S M, F) with

N = NMUNU{Zspp|abeV}IU{SH},
Ny = U Nab,lv
a,beVv
Ny = U Nab,2,
a,beV
M = {(S— XA |for (Sp— XA) € My, a,beV}
U {X—=YA-w)|for( X —=Y,A—w) e Mg,abeV}
U {(Zap— ab) |for (Z— A) € Map,a,beV}.

Obviously,L(G) = L.

We assume that all two-rules matrices frrare injectively labeled, in the form : (X —Y,A— X), | € Lab,
for a set of label$.ab.

Starting from the gramma® we now construct a P system

N=Al49%R),

with the alphabet

A {Y YY" oy Yiv Al Yvi Yvii Yviii Yix yX | Y € Nl}
{a,a’;a” | a e N;uV}

{A|Ae Ny}

{Zab. Zi, Zih Zap | @b €V}

U {EaHaH/7S.|.aSZaS37C17' . .,C]_]_,CO,C,O,C,OI,Cg,Cg,dez,di,dé, f/a f/lv#}7

cC C C

and the rules from the s&as constructed below.
Any computation starts from the configuratipf | g ¢ ], . by using the following rules:

Step 1: [las = [ [Ix]sy:

Step 2: [[Tx]s, = [ Ixeas

Step3:  [Ixgegn — [ [ Ixg looar

Step4:  [Jgx = [ [ealx e = [ []e Jap
Step5: [ [Jealx = [eax [ e o, = [egap
Step6:  [Ixae — [ [Ixales [ea, = [ [ Jap

for each matriXS;p — XA) € Mgy, fora,b e V.
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The rules are used as indicated in the table above, with two rules simultaneously applied in steps 4, 5, 6. The
only possible branching is in step 3, when instead of the[rdles . 4 — [ [ ]xs, |¢a,» We Can also use the rule
[Jepa, = L ]d0 ], In this way we obtain the membrane$ ] , }d , with XS distributed among them. Because
S; will be never mtroduced we continue only with rules WhICh process membranes markegi avittd;, namely,
the rules from the third column of Table 1; in this way, the computation will never stop, both because we can return
again and again to a pair of membranes of the forjr|, |, . and because pairs of membranes marked v4ith
will appear and introduce trap objects/membranes — see also below.

The evolution of the membrane structure is indicated in Figure 1.

Initial [[lgs 12

Step 1 [[[1x]s 1
Step 2 [ ]xq,dlsz A
Step 3 [ [ xg Jeody 12
Step 4 [TTT T ealx T 1oy 1a
Step 5 [ [ eax esa, 1a
Step 6 (LD D Ixalele a1

Figure 1: The evolution of membranes at the beginning of computations.

Thus, we end with a configuration of the fofnd [ [ [ Jxale ], g2
The rules for simulating the two-rules matrices frrare indicated in Table 1; by’ we denote here the string
obtained fromw by priming one symbol; ifv = A, thenw = f/, hencea’ = f/,a” = f” and, inrow 6,0 = A.

Step| m:(X—=Y,A—-w) m:(X—=Y,B—#)
1 [[xle—=[xe [[x]e—=1xe [[e oy = [epeany
2 | llaex = [ wlex [xee = xaele | e = Hele
3 | [lexlg=[leve | [lxele = vineg | [ea =11 ]g
4 Hc'3Y/E H]C’SY"}E HYV'C’EH (1] Yv"} [[]c4]dl_’[]c5dl
5 1 [HarTeyyr = [aneyr Hyvu ST TTym leg | ey = [ e ley
e = [ [ e
6 [Ha”céY”}E*’Hac’aY"E HHc/3 [Hce]dlﬁ[]qdl
7 HC’SY”E — [ []C’SY’” Je ([ Tyvii ]c”H’ — [ ]Y'Xc”H’ []C7d1 — [ []Cg]dl
8 [HchME_’HYWE ([ ]Y'XC”H’] —’HY'XH/E [Hcs]dl_’[]chl
9 [lyme = Tl ] Tvve — eI ega, = [l e ]y
10 | [llwwle—llve [y Je = [ve oo tay = [epa
11 Hye—[lvIe ye—[llvle Hepa, = e Ty

Table 1: Rules for simulating two-rules matrices.

We also consider the rules

[Ixe — [ [ 14]e, foreach matrbm : (X —Y,A—w)
[HH/}EHH##E’
[Jaw— [ []e]e
[H# #_)H##-

The simulation of matrices i is performed by modifying the marking of the central membranes, those
emerging from the initial membranes with markings andE, with these operations being assisted by the two
membranes with markings, andd; and their successors, which are external to the central membranes where
the sentential form o6 is produced. Always during the computation, the membranes remain embedded one in
another, in a linear manner, never having two membranes on the same level (here stands the essential difference
between the interpretation of tkee, disoperations and the interpretation of fhi@o, excoperations from [1], [2]).
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The evolution of the membranes and of their relevant markings can be followed in Figure 2. If in the second
step the rulé | \e — [ [ ], ]gx is not applicable (hence the matrix cannot be applied), then the rulé, . —
[ [ ]4«]g Will be applied, introducing the trap-objettand the computation will never halt.

Starting [TTT T Te e Jay 1
Step 1 [T Txealcpesd 12
Step 2 (I w Tex T leg 1
Step 3 [[[H]a]EY'c’} Jay 12
stepd 111111y loy e loo I
Step 5 [T D aregyr Te Teg lay 1
Step 6 L e Lo, 1
sep? (111 awlelnle
Step 8 [T vme Jogay 1
Step 9 [TOT T v le e lay 1
Step 10 [T v Jeypa 1
Step 11 ([T v lele lay Ia

Figure 2: The evolution of membranes when simulatimg (X — Y,A — w).

The evolution of membranes in the case of the simulation of a matriXX — Y,B — #) can be followed in
Figure 3. This time, iB is present, in step 2 we have to use the fulg e — [ [ ]x 44 ], and the computation
will never halt. If no copy oB is present, then the central membrane does not evolve, waiting for the membrane
marked withc; to be produced; this membrane can be used in the next step for evolving the central membrane.

Starting [T IxTele, Tag I
Step 1 HHX|E]CZC3d1]A
Step 2 [[[[])QE]C’S]czdl]/\
Step 3 ([ vaiHE%M]dl]A
Step 4 [ [[Hcgyvii]EH]csdlh
StepS  [[[TLT vt Jeg Thr Jeles 1oy Ia
Step 6 [ HYV“i]c’s/H’]E]qdl])\
Step 7 [[[[HYch’éH’]E]CB]dl])\
Step 8 [T vive Jegay 1
Step 9 [TTT T e dege oy 1
Step 10 [T v Jeypay 1
Step 11 [Ty Tele Jay I

Figure 3: The evolution of membranes when simulatimg (X — Y,B — #).

Another step when we can apply a rule different from that indicated in Table 1 is step 4, when we can also use
the rule[ |,z — _[ [ 1 ]g- In this way, we pass to the configuration of membrangs [ ], Jew, Jea, 1as
wherew;w, = YY'c5. No rule can be applied to the two inner membranes other[thdp, | — [ ] .e, and again
the computation will never stop.

Therefore, the simulation of matrices@should be done as above, and in this way we return to a configuration
as that we have started with, with four membranes marked Xuith c;,d;, respectively (the central membranes
also having on them the symbols of the current sentential for@which is simulated irfT).

Note that the rules used for simulating a matrix: (X — Y, A — w) cannot be mixed with the rules used for
simulating a matribxm, : (X" — Y’, A" — #), because of the injective labeling of matrices frbfrand because of
the priming of symbols froniN;.

The process can be iterated, hence at some moment we introduce the Zmioleintified by the symbols
from Ny used. The respective configuration is of the fofm:[ [ [ ], ]e ], |4, 15~ The central membrane will
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“swallow" all other membranes, also removing all auxiliary objects. To this aim, we use the following rules:

Stepl  [[lg,]le—=[lze
Step2 [ }ZébE Jopes = [ ]Z’bbCZC3’
Step3  []» " CaCathy =[]z ]c3d1’
Step4 [ [z, Jeg, — | }z”b%dlv
Step 5 [ ]Zabc3d1 [ ]z }dlv
Step6 [ [z g — | ]z’” ,
Step 7 [zgan— [ [z b
Step8 [ [Jzy]p—[law

for all a,b € V. Furthermore, we consider the rules

zge = e

[ []0'3]({3*”##0'3,
[Jua— [ [l4s], forallacV.

The first of these rules is used in step 2 if the rplp]z,bE Jepes — | ]Z,bbczc3 is not used — the objectscsd;
might be used at that time by the rdle. . 4 — [ [ ]c,3 ] ,0, from Table 1. Similarly, if this last rule is used in
step 3 instead of the rule] 2, cocady [ ]Zéb ] cg0,» then a membrane marked with is introduced, which will

never be removed. In particular, after 11 steps, we introduce another membrane markegg aviththen the rule
[ ]d3 ]C,3 — ]##d3 is used, preventing the termination of the computation. In conclusion, the evolution of the
membranes in the final stage of the computation is as indicated in Figure 4.

Starting [ [[[[]z, ]elc, lg, |2
Step 1 [[HZ E}0203d1]
Step 2 ] abbczcgdl]
Step 3 [ [ 1)z, Jeaey 1
Step 4 [ s
Step 5 [z a1
Step 6 [ [z, 1
Step 7 [ Tag Do)
Step 8 [ [anl)

Figure 4: The evolution of membranes in the end of computations.

The equalityy (L(G)) = P(INM) follows from the previous explanations.

With the observation that the maximal number of membranes present in the system is seven, in step 5 from
Figure 3 (during the simulation of matrices with a rule to be used in the appearance checking mode), and that the
rules have the weight as specified in the theorem, we conclude the proof. O

5 Final Remarks

The case of using the operatiotrs,, dis: remains as a task for the reader, and the same with other operations
from brane calculus — see also [2] for related problems. Improvements of the result in Theorem 2 are also plausible
in what concerns the degree of context-sensitivity of the rules (and maybe also in what concerns the number of
membranes). The same problems can be formulated for the result from [2].

As a general research topic, it remains to systematically investigate P systems with multisets of objects placed
on membranes (maybe also in the compartments), processed by membrane handling operations like in brane calculi
(maybe also by local multiset rewriting rules).
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