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Visualising Infinity on a Mobile Device

Daniel C. Doolan, Sabin Tabirca

Abstract: This paper discusses how a Java 2 Micro Edition (J2ME) application may be
developed to visualise a wide variety of differing fractal types on a mobile phone. A limited
number of J2ME applications are available that are capable of generating the Mandelbrot Set.
At present there are no J2ME applications capable of generating a multitude of fractal image
types.
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1 Introduction

It has been shown that mobile devices are capable of generating high quality images of infinite detail [2]. The
generated images have generally been limited to the Mandelbrot Set. Since the late19th century fractals have been
a favourite topic for mathematicians. Since the dawn of modern day microprocessor based computing the study of
fractals has taken a radical leap, as it is within the computing domain that all the nuances of fractal type images
can be visualised.

Benoit Mandelbrot made a huge contribution in the late 1970’s with the discovery of the Mandelbrot Set
(an index for all the possible Julia Sets). The dawn of the21st century has seen a radical changed in what we
consider a computer to be. It has seen the widespread uptake of mobile phones throughout the world. Devices
that started life in the latter years of the20th century as a mobile communications medium have evolved and
mutated into mobile computing devices of considerable processing power. No longer are mobile phones used for
just telecommunications but for just about any type of application that a standard desktop machine is capable of.

The 2D and 3D visualisation of fractal images is one interesting topic that is coming into the realm of reality
within the mobile computing domain. Current high end phones have processing speeds in the region of 100 to
200Mhz [7] [1], typically running ARM9 type processors. The next evolution in processing power will see such
devices fitted with the ARM11 processor cores with speeds as high as 500Mhz. Mobile devices clearly have a
huge processing potential especially if the combined processing power of the many millions of phones around the
world were put to task on a singular problem. Examples of such computation are already in existence for example
“Distributed Fractal Generation Across a Piconet” [3] demonstrates that the combined processing power of several
mobile devices may be used to distribute the processing load between several devices that are connected together
over a Bluetooth network.

1.1 Mobile Phone Market Penetration

The uptake of mobile devices around the world is staggering. In September 2004 the market penetration stood
at 89% in Ireland [10], by March 2005 it stood at94% [11]. This is a huge increase when in 2001 penetration
stood at only67%[8]. Ireland achieved100%penetration in September 2005, showing an increase of over11%in
a twelve month period. This allows Ireland to join Spain, Finland the Netherlands and Austria in having a100%
penetration rage. Luxembourg is currently on top with a rate of156%[12]. It is expected that Western Europe
will exceed100%usage by 2007 [15]. The year 2015 should see half the world’s population (Four billion people)
using mobile phones as a communications medium [9].

1.2 Primary Aims

The primary purpose of this paper is the development of an application capable of running on a single mobile
device that has the ability to generate a variety of two dimensional fractal images. One of the chief aims is that the
application should be easy to use. This would allow it to be used as a teaching tool. To achieve this each section of
the application has a easy to use Graphical User Interface (GUI) to allow the user to specify the parameters for the
image generation process. Once the user is happy with the image parameters they can then press a button to begin
the image generation process. The resultant output will be a fractal image based on the input parameters.
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2 Mandelbrot & Julia Set Generation

The discovery of the Julia Set in 1918 by Gaston Julia described in his paper “Mémoire sur l’itération des
fonctions rationnelles” proved to be a most important work at the time. It became almost forgotten until Benoit
Mandelbrot brought it back to the forefront with his discovery of the Mandelbrot Set. This ensued a new field of
research that became known as fractal geometry. Both the Julia and Mandelbrot Set images can be generated by
the repeated iteration of a simple function (see Figure 2). The Mandelbrot Set is an Index into the Julia Set, in
other words every possible Julia Set can be represented within the Mandelbrot Set (see Figure 1).

Figure 1: Index of the Julia Set (the Mandelbrot Set)

Jc =
{

Z0 ∈ C| lim
n→∞

Zn 6= ∞
}

where:

Z0 = C,Zn+1 = f (Zn),n≥ 0

M =
{

c∈ C| lim
n→∞

Zn 6= ∞
}

where:

Z0 = 0,Zn+1 = f (Zn),n≥ 0

Figure 2: Julia & Mandelbrot Set Definitions

Fractal images are usually obtained when the generating functionf (z) is non linear. The Mandelbrot Set is
obtained by iterating the functionf (z) = z2+c. When the generating function has the form off (z) = zu+cv many
other Mandel-like Sets may be produced. Algorithms 1 and 2 show how both the Julia and Mandelbrot Sets can be
generated.

Algorithm 1 The Julia Set Algorithm
for each (x,y) in[xmin,xmax]× [ymin,ymax]

constructz0 = x+ j×y;
find the orbit ofz0 [first Niter elements]
if(all the orbit points are under the threshold)

draw (x,y)

Algorithm 2 The Mandelbrot Set Algorithm
for each (x,y) in[xmin,xmax]× [ymin,ymax]

c = x+ i×y;
find the orbit ofz0 while under the threshold R
if(all the orbit points are not under the threshold)

draw (x,y)

2.1 Implementation

A simple to use Graphical User Interface (GUI) is provided within the application to allow the user to enter
various parameters detailing the type of image to be generated (see Figure 3). The parameters dealing with the
fractal image itself include: the image size, number of iterations, radius, cPower, zPower, formula type and image
inversion. The other options are for the rate of fractal zoom, and the accuracy of the crosshair (seen in the Image
output screen (Canvas)).

Figure 3: Mandelbrot Settings GUI and Output Image Figure 4: Julia Set Image & Results Output Screen

A thread is used for the generation of the fractal image to allow for user interaction with the image as it is
being generated. The outputted image is redrawn at regular intervals so the user can see the progress of the image
generation process. The fractal image itself is generated as an array of Integers (Listing 1). This array is then passed
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to the createRGBImage(. . .) method of the Image class to generate the Image object that is ultimately displayed
within the onscreen Canvas. The Canvas has a crosshair present to allow the user to navigate around the image and
select an area to zoom on. The crosshair is controlled by the directional keys of the mobile device. The user may
also view the corresponding Julia Set (Figure 4) for any point that the crosshair is currently indicating, by selecting
the “View Julia Set” option from the Mandelbrot Set Canvas Menu.

for ( int i =0; i <SIZEX; i ++) for ( int j =0; j <SIZEY; j ++){
Complex c = new Complex (( XMIN+i * STEPX),( YMIN+j * STEPY));
Complex z = new Complex ();
for ( k=0; k<NR_ITER; k++){

z=f ( z, c);
if ( z. getAbs ()> R){

r = c[ k%l ][0]; g = c[ k%l ][1]; b = c[ k%l ][2];
color = b + ( g<<8) + ( r <<16) + alpha ;
pixels [( j * SIZEX) + i ] = color ;
break ;

}
}

}

Listing 1: Code listing of Mandelbrot Set Function

The application allows for a variety of Mandel-like
images to be generated of the formf (z) = zu + cv,
f (z) = zu− cv and f (z) = zu + cv + z. The cPower and
zPower parameters of the GUI dictate the values ofu
and v. The inverted representation of each form may
also be generated by selecting the appropriate option
from the GUI, producing images of the formf (z) = zu+
inv(cv), f (z) = zu− inv(cv) and f (z) = zu + inv(cv)+z.

2.2 Processing Results

The application was tested using a number of image sizes as well as a varying the number of iterations (see
Table 1). The 6680 was unable to generate an image of 600 pixels square. Testing with a Nokia 3220 it was unable
to generate an image of2002 pixels. However it was capable of generating images of1002 and1502 pixels, but
with considerable processing times, 56,503ms and 298,365ms for1002 at 50 and 500 iterations respectively.

Device Iter 100×100 200×200 300×300 400×400 500×500 600×600
Nokia 6630 50 3,000ms 9,812ms 19,484ms 33,812ms 53,359ms 76,859ms
Nokia 6680 50 3,141ms 12,516ms 21,859ms 36,234ms 60,859ms N/A
Nokia 6630 500 13,281ms 52,344ms 111,484ms 196,125ms 301,344ms 429,047ms
Nokia 6680 500 12,359ms 48,000ms 103,219ms 187,797ms 290,062ms N/A

Table 1: Image Generation Times for the Mandelbrot Set (xmin,ymin -2.0, xmax,ymax 2.0).

3 Prime Number Fractal Generation

Mathematicians have been studying prime numbers for thousands of years, with it origins going all the way
back to ancient Greece and the period of Euclid. Prime numbers have remained a mystery throughout the inter-
vening centuries. Their is currently ongoing work to find a prime number with ten million digits or more [4]. The
largest prime found to date was discovered15th December 2005 by Dr. Curtis Cooper and Dr. Steven Boone, the
43rd Mersenne Prime230,402,457−1 being9,152,052digits in length. The second largest was discovered by Dr.
Martin Nowak18th February 2005, the42nd Mersenne Prime,225,964,951−1 containing 7,816,230 digits. The next
largest was discovered15th May 2004 by Josh Findley (41st Mersenne Prime,224,036,583−1 containing 7,235,733
digits. These discoveries were part of the Great Internet Mersenne Prime Search (GIMPS) project. It is likely that
within the next year or so a ten million digit prime number will be found.

Figure 5: PNF Examples with 5 & 20 Million Primes Figure 6: Prime Number Fractal User Interface

The visualisation of prime numbers is again of interest to many in the mathematical community. Probably the
most well know visualisation was discovered by Stanislaw Ulam (the Ulam Spiral) in 1963 while doodling during
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a scientific meeting [14]. An alternate visualisation is the prime number fractal (Figure 5) where the resultant
image has a central area of brightness and typically resembles a gaseous nebula or some other cosmic object. It
is generally recognised that Adrian Leatherland from Monash University in Australia constructed the first prime
number fractal [6].

The application has a very simple User Interface with only a few components (Figure 6). The options are: the
Sieve Size, Image Size, and initial coordinates for x and y.

3.1 Theoretical Background

The most important and evident feature of a prime number fractal image is the central area of brightness. This
results in the pixels within the vicinity of the central area are visited more often than pixels around the periphery
of the image. The movements in the Up, Down, Left, Right directions occur randomly but each direction produces
approximately the same number of moves (see Table 3). Hence the trajectory of moves is random, generally staying
around the central area of brightness.

Theorem 1. The number of Up, Down, Back, Forward movements are asymptotically equal.

Proof. Dirichlet’s theorem assures ifa andb are relatively prime then there are an infinity of primes in the
seta·k+b,k > 0. This means that the random walk has an infinity of Up, Down, Left, Right moves. Ifπa,b(x)
denotes the number of primes of the forma ·k+b less thanx then we know from a very recent result of Weisstein

[16] thatlimx→∞
πa,b(x)
li(x) = 1

ϕ(a) whereli(x) is the logarithmic integral function andϕ(a) the Euler totient function.

The particular casea = 5 giveslimx→∞
π5,k(x)
li(x) = 1

ϕ(5) = 1
4,∀k ∈ 1,2,3,4, which means thatπ5,1 ≈ π5,2 ≈ π5,3 ≈

π5,4(x)≈ li(x)
4 clearly the two dimensional prime number fractal algorithm has asymptotically the same number of

Up, Down, Left and Right moves.
Even on Desktop systems the process of generating primes can take a significant amount of time for example

21,157ms on a AMD Athlon XP2600 system (Table 4). The generation of the primes examines all the numbers be-
tween0 andn the input size. As the prime numbers become larger their distribution becomes far sparser (Table 2).
Their should be at least one prime betweenn and2(n).

# Primes Sieve Size
1 Million 15,485,865
2 Million 32,452,850
5 Million 86,028,130
10 Million 179,424,680

Table 2: Sieve Size

#Primes 1 Million 5 Million 10 Million 20 Million
Left 249,934 1,249,832 2,499,755 4,999,690
Right 205,015 1,250,079 2,500,284 5,000,241
Up 250,110 1,250,195 2,500,209 5,000,270
Down 249,940 1,249,893 2,499,751 4,999,798

Table 3: Distribution of Moves for a two Dimensional Prime Number Fractal

#Primes 1 Million 5 Million 10 Million
Athlon XP2600 1,781ms 9,752ms 21,157ms
AMD 500Mhz System 4,084ms 23,946ms 51,552ms

Table 4: Processing Times to Generate Primes on Desktop Systems

3.2 The Fractal Algorithm

The generation of the fractal image requires the iteration through a loop (Algorithm 3) for all numbers from1
to n. The first requirement of the algorithm is to determine if the numberi is Prime or not.

The sieve of Eratosthenes is an time efficient method for determining primality of a sequence of numbers.
The time complexity isO(n · log log n), however the space requirement isO(n). The algorithm iterates through
the sequence from2 to n crossing off all numbers> 2 that are divisible by2. It then moves on to the smallest
remaining number, and removes all of its multiples. The process of moving on and removing multiples continues
until all numbers up to

√
n have been crossed off. In Java one may use an array of boolean values to indicate if the

number at indexi of the array is prime. A boolean in J2SE requires one byte for storage, however the BitSet class
may be used. This reduces the storage requirements toO(n

8) bytes. As mobile devices have such a limited memory
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this approach cannot be used, hence the need for an alternate method. Determination of the primality is achieved
by calling the methodisPrime(i) (Algorithm 4). It returns a boolean value indicating if the number is prime or not.

If the number is prime then the process of plotting the prime takes place. Firstly the direction is calculated
by carrying out modular division by5 yielding p mod5∈ {1,2,3,4} this mapping can be clearly seen in Table 5.
Next depending of the direction the current pixel location is updated to reflect the direction indicated by the prime.
Lastly the colour of the pixel at the new cell location is incremented.

Algorithm 3 2D Prime Number Fractal Algorithm
for i = 0 to n -1 do begin

if(isPrime(i)) then
dir = p[i] mod 5;
if dir = 1 then x–;
if dir = 2 then x++
if dir = 3 then y–
if dir = 4 then y++
pixels[x,y] ++;

end if;
end for;

Algorithm 4 isPrime( ) Algorithm
boolean isPrime(long p)
begin

long d;
if(p=1) return false;
if(p=2 || p=3) return true;
if(p % 2=0 || p % 3=0) return false;
for(d=3;d<= sqrt(p); d=d+2)

if(p % d=0) return false;
return true;

end

1. Left: p mod5 = 1⇒ (x,y) goes in(x− inc,y)
2. Right: p mod5 = 2⇒ (x,y) goes in(x+ inc,y)
3. Up: p mod5 = 3⇒ (x,y) goes in(x,y− inc)
4. Down: p mod5 = 4⇒ (x,y) goes in(x,y+ inc)

Table 5: Mapping of Direction Values to Pixel Movement

3.3 Processing Results

As is the case with Desktop systems the generation of the primes is the most computationally expensive op-
eration. The results (Table 6) show that a significant amount of time is required to generate the prime numbers.
This limits the computation of the image to just a few hundred thousand primes so the image may be generated
and displayed to the user in a reasonable amount of time.

#Primes 20,000 40,000 60,000 80,000 100,000
Nokia 6630 44,797ms 129,235ms 240,313ms 373,437ms 524,703ms
Nokia 6680 44,984ms 129,000ms 240,078ms 372,875ms 524,046ms

Table 6: Processing Times to Generate PNF on Mobile Devices

4 Plasma Fractal Generation

Plasma Fractals are often referred to as “Fractal Clouds” and the resultant image typically has a cloud like
appearance (Figure 7). The generation of this type of fractal uses a recursive algorithm known as Random Midpoint
Displacement. Applying the exact same algorithm in the 3D universe to height values will result in the generation
of fractal terrain. An example of this method being used for the generation of terrain in the film industry is Star
Trek II “The Wrath of Kahn” where Random Midpoint Displacement was used to generate the terrain of a moon,
the scene being called the “Geneses Sequence”.

The procedure for generating a “Fractal Cloud” (Algorithm 5) begins by assigning a colour to each of the
four corners of a blank image. Executing the “divide(. . .)” algorithm will firstly find the colour for the central
point of the image by calculating the average value of the four corners. The colour value at the central point
is then randomly displaced. The image area is then divided into four smaller sections by recursively calling the
“divide(. . .)” again for each of the four quadrants. This division process will continue until the image cannot be



14 Daniel C. Doolan, Sabin Tabirca

Figure 7: Plasma Fractal Examples (Grain1.2 , 2.2, 5.8, 9.6)

further broken down. By this time the sub quadrants have reached the pixel level. Several example Applets that
use this procedure may be found on the Internet [13] [5].

Algorithm 5 Plasma Fractal Algorithm

divide(x,y,w,h,tLC,tRC,bRC,bLC)
float nW = w /2, nH = h /2;
if(w > 1 || h > 1)

int displace = displace(nW,nH);
Color top = avgColors() + displace;
Color right = avgColors() + displace;
Color bottom = avgColors() + displace;
Color left = avgColors() + displace;

Color centre = avgColors() + displace;
divide(x,y,nW,nH,tLC,top,centre,left);
divide(x+nW,y,w,h,top,tRC,right,centre);
divide(x+nW,y+nH,w,h,centre,right,bRC,bottom);
divide(x,y+nH,w,h,left,centre,bottom,bLC);

else
drawPixel(x,y)

4.1 Processing Results

The results show that mobile devices are capable of generating respectably sized Plasma Fractal Images in a
reasonable amount of time (Table 7).

Image Size 100×100 200×200 300×300 400×400 500×500 600×600
Nokia 6630 672ms 2,219ms 6,672ms 6,328ms 6,156ms 23,453ms
Nokia 6680 671ms 2,328ms 7,468ms 7,344ms 6,828ms 25,329ms

Table 7: Processing Times to Generate Plasma Fractals

5 Further Work

The primary focus of this paper was on the generation of two dimensional fractal on Mobile Devices. The
obvious progression from this application is to expand the generating functions into the third dimension. In the
case of the Plasma Fractal this will yield a randomly generated terrain if the height values of a plane are randomly
displaced instead of the colour values of a two dimensional image.

6 Conclusion

An integrated tool has been developed to generate a variety of two dimensional fractals. The fractals in question
being the Mandelbrot Set, Julia Set, Prime Number Fractal and the Plasma Fractal. It has been shown that the
Mandelbrot and Plasma Fractal Image can be generated in reasonable time. The generation of the PNF image
however does involve significant computation resources, especially when the number of primes is greater than 100
thousand.
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