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Abstract: This paper proposes a genetic algorithm for multiobjective
scheduling optimization based in the object oriented design with constrains
on delivery times, process precedence and resource availability.
Initially, the programming algorithm (PA) was designed and implemented,
taking into account all constraints mentioned. This algorithm’s main objective
is, given a sequence of production orders, products and processes, calculate its
total programming cost and time.
Once the programming algorithm was defined, the genetic algorithm (GA) was
developed for minimizing two objectives: delivery times and total programming
cost. The stages defined for this algorithm were: selection, crossover and
mutation. During the first stage, the individuals composing the next generation
are selected using a strong dominance test. Given the strong restrictions on
the model, the crossover stage utilizes a process level structure (PLS) where
processes are grouped by its levels in the product tree. Finally during the
mutation stage, the solutions are modified in two different ways (selected in
a random fashion): changing the selection of the resources of one process and
organizing the processes by its execution time by level.
In order to obtain more variability in the found solutions, the production orders
and the products are organized with activity planning rules such as EDD,
SPT and LPT. For each level of processes, the processes are organized by
its processing time from lower to higher (PLU), from higher to lower (PUL),
randomly (PR), and by local search (LS). As strategies for local search, three
algorithms were implemented: Tabu Search (TS), Simulated Annealing (SA)
and Exchange Deterministic Algorithm (EDA). The purpose of the local search
is to organize the processes in such a way that minimizes the total execution
time of the level.
Finally, Pareto fronts are used to show the obtained results of applying each
of the specified strategies. Results are analyzed and compared.
Keywords: Scheduling, Process, Genetic Algorithm, Local search, Pareto
Front.
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1 Introduction

The Genetics Algorithms (GA) are a powerful tool for solving combinatorial problems. Nowa-
days, it exits a lot of algorithms inspired in GA for solving real problems such as design of vehi-
cle suspensions [1], product deployment in telecom services [2], design of the flexible multi-body
model vehicle suspensions based on skeletons implementing [3], job-shop scheduling [4], economic
dispatch of generators with prohibited operating zones [5], multi-project scheduling [6], inversion
analysis of permeability coefficients [7], path planning in unstructured mobile robot environ-
ments [8], rough mill component scheduling [9] and power plant control system design [10].

In productive systems is very critical the assignments of resources, for instance, a product has
process and the process requires resources. The programming of the execution of the processes
affects the overall cost and time of the products. Due to this, it is very important try to do the
planning and scheduling in the best way. It can be accomplished with a Genetic Algorithm.

2 Preliminaries

2.1 Local Search

Local search are techniques that allows finding solutions in a set of solutions. It always tries
to improve the actual solution through perturbations. A perturbation is a simple way for chang-
ing a solution. The perturbation depends of the way for representing the solutions, for instance
in figure 1 can be seen a binary representation of a solution, in this case the perturbation can
be done changing ones (1) by zeros (0). On the other hand, in figure 2 can be seen a no-binary
representation of a solution (tour of the Traveling Salesman Problem [11] for example), in this
case the perturbation can be done swapping two elements of the tour.

001001 001101

Perturbation

x x’

Figure 1: A binary representation of solutions. In this case x is the representation of the decimal
number 9. The perturbation was done changing the 4th 0 to 1. Due to this, it creates a new
solution x’ that is the representation of the decimal number 13.

1-2-3-4 1-3-2-4

Perturbation

Swapping 2 and 3

x x’

Figure 2: A no-binary representation of solutions. In this case x is the representation of a tour
in TSP. The perturbation was done changing the 2 and 3 in the string. Due to this, it creates a
new solution x’.
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There exist a many local search algorithms such as Tabu Search (TS) [12], Simulated An-
nealing (SA) [13] and Exchange Deterministic Algorithm (EDA) [14]. Due to this, it is necessary
to find a good representation of the solutions. Obviously, it depends of the problem to solve.

2.2 Genetic Algorithm

Genetic Algorithm (GA) is a search technique used for solving optimizations problem. The
most important in GA is the design of the chromosome. It is the representation of the feasible
solutions. Consequently, the behavior of the GA depends of the chromosome. Due to this, a
bad chromosome implies a bad behavior of the GA. On the other hand, a good chromosome may
imply a good behavior of the GA. The framework of GA can be seen in figure 3.

Genetic Algorithm

S = Create Initial Solutions

Do

Selection (S)

Crossover (S)

Mutation (S)

Until Condition Stop = True

End Genetic Algorithm

Figure 3: The Framework of a Genetic Algorithm.

GA has three important steps. First, it selects the solutions for the crossover and mutation
step. This selection can be done using a metric, for example the Inverse Generational Distance
(IGD) [15]. Second, it takes pairs of solutions for crossing. It can be done at random. Crossover
consists in creates new solutions with parts of two solutions. The two original solutions are
named parents (father and mother) and the two new solutions sons. It is created with half from
father and half from mother. Lastly, it takes some sons for mutating it. The mutation is a step
that allows creating new solutions. It can be done using a perturbation or a local search. The
three steps of GA can be seen in figure 4.

0 1 2 3

1 0 3 2

0 1 3 2

1 0 2 3

3 1 0 2

2 0 1 3

Swap(1, 2)

Swap(0, 3)

Parents

Selection Crossover Mutation

Sons

Figure 4: Steps of a Genetic Algorithm.
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3 A Genetic Algorithm for Multiobjective Hard Scheduling Op-
timization

We state a new Genetic Algorithm for Multiobjective Hard Scheduling Optimization (GAMHSO).
This algorithm works in scenarios with the following characteristics: there are production orders
that are composed by a set of products. Each of the products is described by a product tree that
contains all the processes needed to build such product.

For a product to be ready, it is required the execution of all processes that belongs to its tree. A
process may need the execution of another process (precedence) or other subpart before it can
be executed. The execution of some processes can be only done in certain times (schedules). To
execute a process, a group of resources is required. The defined resources are: machinery, em-
ployees, and vehicles. It is not necessary for a group of resources to contain all types of resources.

Finally, if a subcomponent is required, it has to be constructed by a set of processes or it
can be modeled by a process that indicates idle state (the subcomponent has not arrived yet to
the system). This scenario can be seen in a domain model in figure 5.

Figure 5: Domain model for scenario of GAMHSO

Formally GAHMSO is defined in figure 6. The two objectives of GAMHSO is found a set
of solutions nondominated of the programming of the processes minimizing the overall time and
cost.

The initial solutions are created with some heuristics. The heuristics organizes the produc-
tion orders with rules. GAHMSO use three rules for creating the initial solutions. It selects
the heuristic in at random. The available heuristics for creating the initial solutions are Early
Due Date (EDD), Long Process Time (LPT) and Short Process Time (SPT). EDD organizes the
production orders from lower to upper respect to the due date. SPT organizes the production
orders from lower to upper respect to the summation of the processes time of the products. LPT
is the contrary to SPT.
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Once the initial solutions are created, the selection step selects solutions from the overall set
of solutions. The selected solutions are named candidates. The candidates are the solutions that
can be crossed for creating new solutions. The amount of candidates is defined by the candidate
rate CR.

It is very important the definition of the chromosome for the crossover step. For instance,
consider the product of the figure 7. The representation of two feasible solutions could be to
program the execution of processes in the order 8 - 11 - 9 - 10 - 6 - 7 - 5 - 4 - 1 - 2 - 3 and 11 -
10 - 6 - 5 - 4 - 2 - 8 - 9 - 7 - 1 - 3. The program indicates a feasible solution for programming
the processes. Some processes can be executed parallel, so the order indicates the priority in the
utilization of the resources. For instance, processes 8 and 9 can be executed at the same time,
but in the first solution, if 8 uses a machine that 9 requires, 9 could not executed until 8 free the
resource. The problem with this representation is that the crossover step could create unfeasible
solutions. For example, if we split the two solutions mentioned in the middle and later we cross
those solutions, we will obtain the solutions 8 - 11 - 9 - 10 - 6 - 2 - 8 - 9 - 7 - 1 - 3 and 11 - 10 -
6 - 5 - 4- 7 - 5 - 4 - 1 - 2 - 3. Obviously, those are unfeasible solutions.

Inputs: C ,R ρR

Output: A set (S) of nondominated solutions.

GAMHSO

S = Create Initial Solutions(EDD, LPT, SPT)

Do

S’ = Selection of Candidates (S, C )R

C = Crossover of Candidates (S’, ρ )R

x = generated a integer in [0,2] with a uniform distribution.

switch(x)

case 0: C = TabuSearch(C)

case 1: C = SimulatedAnnealing(C)

case 2: C = Exchange Deterministic Algorithm(C)

end

S = S U C

S = Remove Domiated Solutions(S)

Until Condition Stop = True

End GAMHSO

Figure 6: The framework of GAMHSO

4 Definition of the Chromosome

The objectives of GAMSHO are the optimization of overall cost and time. It plays with the
programming order of the execution of the processes. So it is very important to provide a good
representation of the solutions.

Consider again the product of the figure 7. It has subparts because it is modeling the real-
ity. But, żwhat does a subpart mean? It means that the process that contains the subpart
cannot be executed until the processes that build it have been executed. In other words, there
exists a precedence constrain between the process that contain the subpart and the processes



830 E. Niño, C. Ardila, A. Perez, Y. Donoso

that build the subpart. If we applied this to the figure 7, we are going to obtain the tree of the
figure 8. In this tree does not exist subpart, we replace the subpart for the precedence between
the processes. Once the tree is ready, we need to create a chromosome that allows the represen-
tation of the programming.

Process1 Process2 Process3

Process4 Process5

Process6

Process7

Process8 Process9

Process10

Process11

Prod A

SubPrt1

SubPrt2

Figure 7: Tree Product A. Product A requires of the execution of the processes 1, 2 and 3.
Process 1 requires the execution of the process 7. Process 7 requires the subpart1. SubPart1
requires the execution of the processes 8 and 9. Process 2 does not require processes. Process 3
require the execution of the processes 4 and 5.Process 5 requires the execution of the process 6.
Process 6 requires the SubPart 2. SubPart 2 requires the execution of process 10 and process 10
requires the execution of process 11.

First we group the processes by level. It means that the time execution of a process in a
superior level depends on the finalization execution time of the parents in a low level. Formally:

p.start_time = max(parenti.finalization_time) (4.1)

For instance, if process 5 finishes its execution in time 20 and the process 4 finishes its
execution in time 40, process 3 will start its execution in time 40. On the other hand, the
process 2 can be executed since time 0.

Once the levels of the processes have been identified, those are grouped in a level structure.
It can be seen in figure 9. Each process knows its children in the superior level. Due to this, the
chromosome for GAMHSO can be seen in figure 10. The production orders are executed from
left to the right (from up to down). The products are built from left to the right (from up to
down). The processes are executed from right to the left (from down to up). The processes are
processed from left to the right (from up to down).

The crossover step consists in select two solutions, split in the middle and cross. It can be
done by levels. An example can be seen in figure 11. The number of solution that can be crossed
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Process1 Process2 Process3

Process4 Process5

Process6

Process7

Process8 Process9

Process10

Process11

Prod A

Level 0: Processes 1, 2 and 3

Level 1: Processes 4, 5 and 7

Level 2: Processes 6, 8 and 9

Level 3: Process 10

Level 4: Process 11

Figure 8: A view of the precedence tree of Product A group by level.

Process1

Process2

Process3

Process4

Process5

Process6Process7

Process8

Process9

Process10 Process11

Prod A Level0 Level1 Level2 Level3 Level4

Figure 9: A representation of the Product A in a level structure.

is specify by the crossover rate (ρR). Once the solution is created, it is necessary to schedule
the processes of the solution for obtaining the time and cost of the solution. The Programming
Algorithm (PA) is an algorithm that requires a solution for programming all the processes for
all the products of the production orders. It verifies is a process can be executed with three val-
idations: First, it verifies the process precedence. Second, it verifies if the resource are available
for the execution of the process. Lastly, it verifies is the process can be executed in the journey.
Once a process completes its execution, it set the initial time to his children to his finalization
time. PA can be seen in figure 12.

The mutation step of GAMHSO consists in the improvement of the solutions through Local
Search (LS). GAMHSO works with three LS: Tabu Search (TS), Simulated Annealing (SA) and
Exchange Deterministic Algorithm (EDA).

5 Experimental Settings

We tested GAMHSO in a computer AMD Turion 64, 2 GB of RAM and a Hard Disk of 120
GB.

The test consisted in build 1000 products of type A (Figure 7). The parameters were CR = 0.4,
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has a set of
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Figure 10: The Chromosome for GAMHSO.

ρR = 0.5. We tested the performance of GOMHSA with EDA, TS and SA. For making a real
comparison, we use the Inverted Generational Distance (IGD) metric [15]. It is defined as follows:

Given a reference set A∗, the IGD value of a set A ⊂ Rm is defined as:

IGD(A,A∗) =
1

|A∗|

∑
v∈A∗

{min
u∈A

d(u, v)} (5.1)

6 Results of GAMHSO

The Pareto Fronts for each LS can be seen in figure 12. The results of IGD metric between
the LSs can be seen in table 1. The running times for GAMHSO for each LS can be seen table
2.

EDA SA TS

EDA

SA

TS

1137.0605 7485.2654

6157.3669

6388.229

0

0

01134.2321

7367.1584

Table 1: The IGD-metrics values for each LS against the rest of LS.

EDA

TS

SA

Running Time in seconds

32

57

128

Table 2: Running times of GAMHSO with each LS.
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S1
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A 0 1 2 3

a

b

c

f

d

g

h

e

S2

O

A 0 1 2 3
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d

g

e
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c
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New
Solution

Solution 1 e-d-g-h-c-f-a-b

Solution 2 e-h-d-g-f-c-b-a

Solution 3 e-h-d-g-c-f-a-b

Figure 11: An example of the crossover step of GAMHSO.

7 Conclusions and Future Works

We designed a new Genetic Algorithm for Hard Scheduling Optimization (GAMHSO). It
works with very difficult scenarios of productive systems. Also, we define a chromosome for
GAMHSO that avoids the creation of unfeasible solutions. Due to this, it is not necessary to
verify if a solution (for the crossover step) is a feasible solution. Consequently, the performance
of the algorithm is satisfactory in comparison with the size of the feasible solutions space. On the
other hand, we state a new Programming Algorithm (PA) for scheduling of a set of production
orders. PA is a flexible algorithm that allows the incorporations of new restrictions to the
processes. It allows calculate the overall time and cost of a set of production orders. We made
a real comparison of the GAMHSO behavior with some local search strategies such as Exchange
Deterministic Algorithm (EDA), Tabu Search (TS) and Simulated Annealing (SA). The best
performance of GAMHSO was using EDA and SA. Lastly, we will investigate a new chromosome
that allows the crossover between production orders.
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Programming Algoritm(O as a set of production orders)

Cost = 0

Time = 0

For Each o in OOrder

For Each P in oProduct

For Each l in PLevel

For Each p in PProcess

t = p.initialTime

Do

While p cannot be executed in time t

t = t+1

End While

it = t

While p can be executed in time t

t = t+1

End While

ft = t

For all Resources r used for p. r.programTask(it,ft). Cost = Cost+r.getCost

Until t = 0

For all Processes Children pc of p. pc. = max(pc.initialTime,t)initialTime

If Thent > Time

Time = t

End If

End For

End For

End For

End For

Return Time,Cost

End Programming Algorithm

Figure 12: The Framework of the Programming Algorithm (PA) for getting the overall cost and
time of the programming of a set of production orders.

Figure 13: Pareto Fronts for GAHMSO for each LS. Notice that TS is dominated by SA and
EDA. GAHMSO a similar behavior for SA and EDA
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