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Abstract: We propose a stable factorization procedure to generate a strictly
Hurwitz polynomial from a given strictly positive even polynomial. This prob-
lem typically arises in applications involving real frequency techniques. The
proposed method does not require any root finding algorithm. Rather, the
factorization process is directly carried out to find the solution of a set of
quadratic equations in multiple variables employing Newton’s method. The
selection of the starting point for the iterations is not arbitrary, and involves
interrelations among the coefficients of the set of solution polynomials differing
only in the signs of their roots. It is hoped that this factorization technique
will provide a motivation to perform the factorization of two-variable positive
function to generate scattering Hurwitz polynomials in two variables for which
root finding methods are not applicable.
Keywords: Routh-Hurwitz stability, Hurwitz polynomial, stable factoriza-
tion, Newton’s method.

1 Introduction

In many microwave communication system design, modeling and simulation problems, de-
scription of lossless two ports in one or two kinds of elements is essential [5]. In the design of
microwave matching networks, amplifiers or in modeling passive one port devices such as anten-
nas, lossless two ports are either described in terms of driving point immitance or reflectance
functions [6,7]. The methods known as Real Frequency Techniques (RFT) are excellent tools for
design and modeling [5, 8]. Once the independent descriptive parameters are selected, numeri-
cal implementations of real frequency techniques demands the construction of strictly Hurwitz
polynomials. For example, in the simplified real frequency technique (SRFT), the numerator
polynomial h(p) = h0 + h1p + · · · + hnp

n of the driving point input reflectance S11(p) = h(p)
g(p)

completely specifies the scattering parameters of the lumped element reciprocal lossless two port
as follows:

S12 = S21 =
f(p)

g(p)
and S22 =

f(p)

f(−p)

h(−p)

g(p)
(1)

provided that the monic-polynomial f(p) which is constructed on the transmission zeros of the
system under consideration, is pre-selected. In this representation, the denominator polynomial
g(p) = g0 + g1p+ · · ·+ gnp

n is generated as a strictly Hurwitz polynomial from the equation

G(p2) = g(p)g(−p) = h(p)h(−p) + f(p)f(−p) = G0 +G1p
2 + · · ·+Gnp

2n (2)

Copyright c⃝ 2006-2010 by CCC Publications



702 Ö. Eğecioğlu, B. S. Yarman

which is obtained by means of the lossless condition. Once f(p) is selected, (2) is specified in
terms of the real coefficients {h0, h1, . . . , hn} of h(p). For many practical problems, it may be
sufficient to choose f(p) as f(p) = pk, k ≤ n. In this case, (2) results in a set of quadratic
equations such that

G0 = g20 = h2
0

G1 = −g21 + 2g0g2 = −h2
1 + 2h0h2

...

Gi = (−1)ig2i + 2(g2ig0 +

i∑
j=2

(−1)jgj−1g2j−i+1) = (−1)ih2
i + 2(h2ih0 +

i∑
j=2

(−1)jhj−1h2j−i+1)

... (3)
Gk = G(i=k) + (−1)k

...
Gn = (−1)ng2n = (−1)nh2

n

It should be mentioned that the general form of f(p)f(−p) may be described as

F(p2) = f(p)f(−p) = F0 + F1p
2 + · · ·+ Fnp

2n. (4)

Then it is straightforward to revise (4.3) with the help of (4.4). At this point it is the crucial issue
to generate g(p) as a strictly Hurwitz polynomial either employing (2) or (4.3). If one employs
(2), it is sufficient to find the roots of G(p2) and then, construct g(p) on the left halfplane roots
of G(p2), yielding g(p) = g0+g1p+ · · ·+gnp

n. This has been the common practice of the SRFT.
However, if the problem under consideration demands the construction of lossless two-ports with
two kinds of elements, then there is no way to carry out the computation by means of root finding
techniques. In this case, one has to rewrite (2) in two variables as

G(p, λ) = g(p, λ)g(−p,−λ)

and revise (4.3) accordingly. Eventually one needs to solve (4.3) to generate g(p, λ) as a “two
variable scattering Hurwitz polynomial" [1,2]. In this representation the complex variable p = σ+
jω is associated with first kind of elements and the complex variable λ = Σ+jΩ is associated with
the second kind of elements of the lossless two-port. Actually, this way of posing the problem may
be understood as the factorization of the two variable polynomial G(p, λ) as g(p, λ)g(−p,−λ),
which in turn yields the scattering Hurwitz polynomial g(p, λ). Based on the knowledge of
the authors, there is no explicit solution for the factorization of two variable polynomials in the
current literature. However, for the single variable case, root finding techniques provide excellent
results as described within SRFT. Therefore, in this paper, to provide an insight to the general
factorization problem, an attempt will be made to come up with a numerical procedure to solve
(4.3) which is specified in single variable, with the hope that the numerical procedure presented
in this paper may be extended to cover the two variable factorization case.

2 Mathematical problem statement

Let G(z2) = G0 + G1z
2 + G2z

4 + · · · + Gnz
2n be a real polynomial with G0 > 0. Consider a

factorization of G of the form
G(z2) = g(z)g(−z) (5)
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for a real polynomial g(z) = g0 + g1z + g2z
2 + · · · + gnz

n as required in (4.3). Call (5) a stable
factorization of G, if the polynomial g is stable: that is, the real parts of the zeros of g are strictly
negative. We also refer to a stable polynomial as strictly Hurwitz. From physical considerations
that give rise to the problem, G0, G1, . . . , Gn are such that G admits a stable factorization. Our
aim is to determine the coefficients of g(z) as a function of G0, G1, . . . , Gn.

2.1 On root finding

This one dimensional problem is theoretically solvable quite easily by root finding: Since G

is a real polynomial, it can be factored as

G(z2) = c(z2 − α1)(z
2 − α2) · · · (z2 − αn)

with c > 0 and the αi complex. For i = 1, 2, . . . , n, let βi = ±√
αi, where the sign is picked so

that βi has a negative real part. Then g(z) =
√
c(z − β1)(z − β2) · · · (z − βn), and the gi can

be computed from this product. However, we wish to avoid this approach as the real motivation
behind the treatment of the one variable case is the factorization problem in two variables to
generate scattering Hurwitz polynomials, for which root finding techniques do not apply.

2.2 Basic elements of Routh-Hurwitz stability

The conditions for a real polynomial

g(z) = g0 + g1z+ g2z
2 + · · ·+ gnz

n (6)

with g0 > 0 to be strictly Hurwitz are given in terms of the positivity of the Hurwitz determinants

∆i = det



g1 g3 g5 . . . g2i−1

g0 g2 g4 . . . g2i−2

0 g1 g3 . . . g2i−3

0 g0 g2 . . . g2i−4

. . . . . . .

. . . . . . gi

 .

The indices in each row increase by two and the indices in each column decrease by one. The
term gj is taken to be zero if j < 0 or j > n. Note that ∆1 = g1.

Theorem 1. (Routh-Hurwitz stability) A necessary and sufficient condition that the polynomial
(6) is strictly Hurwitz is that ∆1, ∆2, . . . , ∆n be all positive [3].

Since ∆n = gn∆n−1, the condition that ∆n−1 and ∆n be positive is equivalent to the require-
ment that ∆n−1 and gn be positive. Furthermore, a necessary condition for (6) to be strictly
Hurwitz is that all coefficients g0 through gn be positive.

3 The main quadratic system

Comparing coefficients in (5), we derive a quadratic system of n+1 equations in the variables
g0, g1, . . . , gn:

Gk =
∑

i+j=2k

(−1)igigj, (k = 0, 1, . . . n) (7)
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This is the system we are aiming to solve in the factorization problem. The additional constraint
is that the polynomial (6) is stable. When n = 5,

G0 = g20

G1 = −g21 + 2g0g2

G2 = g22 + 2g0g4 − 2g1g3

G3 = −g23 − 2g1g5 + 2g2g4 (8)
G4 = g24 − 2g3g5

G5 = −g25

So in this case the stable factorization problem is to find a solution (g0, g1, g2, g3, g4, g5) of the
quadratic system (8) in which each gi > 0, and in addition the constraints

∆2 = det

[
g1 g3
g0 g2

]
> 0, ∆3 = det

 g1 g3 0

g0 g2 g4
0 g1 g3

 > 0, ∆4 = det


g1 g3 g5 0

g0 g2 g4 0

0 g1 g3 g5
0 g0 g2 g4

 > 0

are satisfied. In the general case G0, G1, . . . , Gn with G0 > 0 are given as input. The output the
solution required is real g0, g1, . . . , gn, with g0 > 0 such that g0, g1, . . . , gn is a solution of the
associated quadratic system (7) of n + 1 equations and g(z) = g0 + g1z + · · · + gnz

n is strictly
Hurwitz. We assume that the Gk are given so that the system has a solution of the required
type.

3.1 Newton’s method

We consider the vector valued function f : IRn+1 → IRn+1 which has as its set of real zeros
the solutions to the quadratic system (7). For n = 5, f : IR6 → IR6 is f = (f0, f1, . . . , f5)

t with

f0 = x20 −G0

f1 = −x21 + 2x0x2 −G1

f2 = x22 + 2x0x4 − 2x1x3 −G2

f3 = −x23 − 2x1x5 + 2x2x4 −G3

f4 = x24 − 2x3x5 −G4

f5 = −x25 −G5

We compute the Jacobian matrix as

Jf = 2



x0 0 0 0 0 0

x2 −x1 x0 0 0 0

x4 −x3 x2 −x1 x0 0

0 −x5 x4 −x3 x2 −x1
0 0 0 −x5 x4 −x3
0 0 0 0 0 −x5

 .

We calculate by elementary operations

det(Jf) = 26(−x0x5)det


−x1 x0 0 0

−x3 x2 −x1 x0
−x5 x4 −x3 x2
0 0 −x5 x4

 = 26(−x0x5)det


x1 x3 x5 0

x0 x2 x4 0

0 x1 x3 x5
0 x0 x2 x4





Stable Factorization of Strictly Hurwitz Polynomials 705

and det(Jf) = 26(−x0)∆5. For general n we have a similar identity relating the Jacobian of f and
∆n as

det(Jf) = 2n+1(−1)nx0∆n. (9)

Thus the Jacobian Jf does not vanish at (g0, g1, . . . , gn) at if (g0, g1, . . . , gn) corresponds to a
stable g(x). In other words, starting from an initial point that is close enough to the stable
solution, the Jacobian of f does not vanish. Starting with an initial vector X0 = (x0, x1, . . . , xn)

t

we compute the iterates by Newton’s method as

Xn+1 = Xn − J−1
f (Xn)f(Xn)

until successive iterates are within a given tolerance. The invertibility of Jf at the point Xn is
guaranteed for Xn close to a stable solution (g0, g1, . . . , gn). However a real solution g(z) of the
quadratic system found by Newton’s method is not necessarily strictly Hurwitz. The polynomial
we want is obtained from g(z) by flipping the sign of some of its roots and making each one have
negative real part, even though we do not have access to the roots themselves.

Example 1. Suppose G(x2) = G0 +G1x
2 +G2x

4 +G3x
6 +G4x

8 with G0 = 9.244, G1 = 72.286,
G2 = 217.183, G3 = 296.638, G4 = 155.673. G(x2) = g(x)g(−x) where

g(x) = g0 + g1x+ g2x
2 + g3x

3 + g4x
4

with g0 = 3.040, g1 = 2.289, g2 = 12.749, g3 = 4.637, g4 = 12.476 is strictly Hurwitz. Starting
with the initial random vector of coefficients (1.933, 2.008, 0.181, 0.870, 2.582), and tolerance 0.01,
Newton’s method converges to the polynomial

3.040+ 0.004x+ 11, 887x2 − 0.003x3 + 12.477x4

of the quadratic system in 14 iterations. This polynomial is not stable. Its roots are −0.0928±
0.6956j and 0.0929± 0.6972j.

3.2 An auxiliary problem

The necessity of being able to “flip" the sign of certain roots of a given real polynomial as
indicated above results in the following auxiliary problem:

Given a real polynomial g(x) = g0 + g1x + · · · + gnx
n of degree n with g0 > 0,

construct the real polynomial h(x) = h0 + h1x + · · · + hnx
n with h0 = g0, such that

the roots of h are ± roots of g and h is strictly Hurwitz.

If we could generate the polynomials h whose roots differ from the roots of g only in their
sign, then we could test each polynomial generated by the Routh-Hurwitz criteria to see if it is
stable. But there cannot be an analytic way involving radicals to do this: Consider a generic
fifth degree polynomial g(x) = g0 + g1x + · · · + g5x

5 with g0 > 0. Let r be a real root of g,
and let h(x) = h0 + h1x+ · · ·+ h5x

5 be the polynomial with h0 = g0, which has identical roots
as g(x), except for its fifth root it has −r instead of r. Since g4 and h4 are the negative of the
sums of the roots of g(x) and h(x) respectively, we have r = 1

2
(h4 − g4). We can also calculate

g(x)/(x − r) by synthetic division and compute the roots of this quartic by radicals. Thus if
there were a way of computing the coefficients of h(x) from those of g(x) by means of radicals,
then this would allow us to express the roots of a general fifth degree polynomial by radicals.
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4 Algorithmic approaches to finding g(x)

There are two essentially distinct approaches to find the strictly Hurwitz polynomial g(x)
given the input data G0, G1, . . . , Gn with G0 > 0. Both have a random component.

A1 : Generate an initial vector X0 = (x0, x1, . . . , xn)
t and run Newton’s method starting with

X0. Let the converged polynomial be h(x). If h(x) passes the Routh-Hurwitz criteria, then
it is the strictly Hurwitz polynomial desired and we are done. If not, generate another X0

and continue.

A2 : Generate an initial vector X0 = (x0, x1, . . . , xn)
t and run Newton’s method starting with

X0. Let the converged polynomial be h(x). If h(x) passes the Routh-Hurwitz criteria, then
it is the strictly Hurwitz polynomial desired and we are done. If not, use the coefficients
of h(x) to generate another X0 and continue.

A1 is simple to implement. On the other hand the number of executions of the Newton method
is fewer for A2, which essentially goes from a computed h(x) to another polynomial whose roots
are negatives of some of the roots of h(x). We shall indicate a number of methods for A2.

Example 2. In [8], the data given for a monopole antenna is modeled using the linear interpo-
lation technique proposed for positive real functions. We used this problem for the experimental
evaluation of A1 and A2. For this model G(x2) = G0+G1x

2+G2x
4+G3x

6+G4x
8 with G0 = 9.244,

G1 = 72.286, G2 = 217.183, G3 = 296.638, G4 = 155.673. Employing A1, the strictly Hurwitz
polynomial

g(x) = g0 + g1x+ g2x
2 + g3x

3 + g4x
4

with g0 = 3.040, g1 = 2.289, g2 = 12.749, g3 = 4.637, g4 = 12.476 was found. The initial vectors
X0 = (x0, x1, x2, x3, x4)

t were generated by picking xi independently and uniformly in the range
0 < xi <

√
G0. The average number of different starting points required for the Newton method

for convergence to g(x) with a tolerance of 0.001 is about 8 with a standard deviation of 5.

Next we consider two properties of the family of polynomials which are solutions to (4.3) and
differ only in the signs of their roots.

4.1 Selection of starting points

For A2, we use the following idea: Suppose we have two real solutions g(x) and h(x) to the
quadratic system of equations (7). Then G(x2) = g(x)g(−x) = h(x)h(−x) where g(x) and h(x)
have the same roots up to signs. Define F(x) = h(x)/g(x). Since h(x)/g(x) = g(−x)/h(−x), F(x)
satisfies the functional equation

F(x)F(−x) = 1 . (10)

Put F(x) = c0 + c1x+ c2x
2 + · · · with c0 = 1. >From (10), we have

1 = c20

0 = −c21 + 2c2

0 = c22 + 2c0c4 − 2c1c3

0 = −c23 + 2c0c6 − 2c1c5 + 2c2c4

0 = c24 + 2c0c8 − 2c1c7 + 2c2c6 − 2c3c5
... =

...
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The general form of the k-th equation for k ≥ 1 is

0 =
∑

i+j=2k

(−1)icicj.

In this infinite system, each of c2, c4, c6, . . . can be expressed in terms of the coefficients c1, c3, c5, . . ..
In fact, we can represent c2k as a polynomial in c1, c3, . . . c2k−1. >From the second equation,
c2 =

1
2
c21. Using this with the third equation we get

c4 = − 1
2
c22 + c1c3 = − 1

8
c41 + c1c3 and c6 =

1
2
c23 + c1c5 −

1
2
c31c3 +

1
16
c61 .

In the general case we can write

c2k = 1
2
(−1)k+1c2k +

k−1∑
i=1

(−1)i+1cic2k−i . (11)

In (11), we repeatedly substitute the expressions obtained for the earlier coefficients with even
indices, we arrive at the expression of c2k in terms of c1, c3, c5, . . .. Therefore

F(x) = 1+ c1x+
1
2
c21x

2 + c3x
3 + (c1c3 −

1
8
c41)x

4 + c5x
5 + (1

2
c23 + c1c5 −

1
2
c31c3 +

1
16
c61)x

6 + c7x
7 + · · ·

Thus h(x) = g(x)
(
1+ c1x+

1
2
c21x

2 + c3x
3 + (c1c3 −

1
8
c41)x

4 + c5x
5 + · · ·

)
for some real numbers

c1, c3, c5, . . .. We can use the form of the coefficients of F(x) to pick a new starting point if the
solution g(x) we obtain from the Newton’s method fails to be stable.

For algorithm A2, we generate a new initial point h(x) for Newton’s method from the current
computed solution g(x) = g0 + g1x + · · · + gnx

n with g0 > 0 by setting hk =
∑k

i=0 gick−i for
k = 0, 1, . . . , n with c0 = 1 and 0 =

∑k
i=0 gick−i for k > n. We then express the even indexed ci

in terms of the odd index ones. After this stage, the hk’s involve only c1, c3, . . . , cn−1 (or up to
cn if n is odd.) We pick random values for these ci’s satisfying these constraints.

Example 3. For the data in Example 2, we considered the experimental evaluation of A2. The
initial vector X0 = (x0, x1, x2, x3, x4)

t was generated by picking xi independently and uniformly
in the range 0 < xi <

√
G0. Following that the algorithm jumps to the next initial vector using

the ideas presented above. The average number of iterations to converge to the strictly Hurwitz
polynomial within a tolerance of 0.001 was 2, with a standard deviation of 1.

4.2 A linear algebraic property

Given a real polynomial g(x) = g0 + g1x + · · · + gnx
n of degree n, we briefly consider the

problem of constructing a new polynomial h(x) = h0 + h1x+ · · ·+ hnx
n whose roots depend on

the roots of g, without actually finding the roots themselves. Without loss of generality, gn = 1.
Suppose the roots of g are β1, . . . , βn and the required roots of h are p(β1), . . . , p(βn) for

some polynomial p. Consider the companion matrix of g defined by

C =


0 1 0 0

0 0 1 0
...

. . .
...

0 1

−g0 −g1 · · · −gn−1





708 Ö. Eğecioğlu, B. S. Yarman

The characteristic polynomial of C is det(xI − C) = g(x). Then h can be expressed in terms of
only the coefficients of g as det(xI− p(C)) = h(x) without calculating the zeros β1, . . . , βn. For
example for g(x) = g0 + g1x+ x2 with zeros β1, β2,

C =

[
0 1

−g0 −g1

]
and the characteristic polynomial of C2 − 3C has zeros β2

1 − 3β1, β
2
2 − 3β2. We compute

C2 − 3C =

[
0 −2

3g0 + g20 3g1 + g21

]
and therefore

h(x) = det(

[
x 2

−3g0 − g20 x− 3g1 − g21

]
) = 2g0(3+ g0) − g1(3+ g1)x+ x2 .

The reason for this is that C is similar to an upper triangular matrix with β1, . . . , βn on the
diagonal [4],

BCB−1 =


β1

0 β2 ∗
...

. . .
0 . . . 0 βn

 , so that Bp(C)B−1 =


p(β1)
0 p(β2) ∗
...

. . .
0 . . . 0 p(βn)

 .

Functions other than polynomials can be used for p (e.g. mixtures of exponential and certain
rational functions). However for this approach to work, each βi must be transformed by the
same function p. We only want to change the sign of one of the βi at a time.

Let I(i) be the matrix that is obtained from the identity matrix by changing the ith 1 to a
−1. We would like to construct the matrix si(C) such that

Bsi(C)B
−1 = I(i)BCB−1. (12)

Then the characteristic polynomial of si(C) has zeros β1, . . . , βi−1,−βi, βi+1, . . . , βn. >From
(12), si(C) = BI(i)B−1C. If b1, . . . , bn are the column vectors of B and c1, . . . , cn are the row
vectors of B−1, then si(C) and C are related by

si(C) = (I− 2bici)C . (13)

We do not need the matrix B exactly (this may involve finding eigenvalues, which are not per-
mitted in this approach). The characteristic polynomial of the perturbed matrix in (13) will be
used as a starting point for the next iteration of Newton’s method, so bi and ci and the outer
product bici can be approximate.

5 Conclusions and further work

We have proposed a stable factorization procedure generate strictly Hurwitz polynomial from
a given strictly positive even polynomial. The factorization process is carried out directly to find
the solution of a set of quadratic equations in many variables employing Newton’s method.

It is hoped that the method presented in this paper generalizes to two-variable polynomials.
This would make possible the generation of scattering Hurwitz polynomials, which are the two-
dimensional analogues of strict Hurwitz polynomials.
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