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Abstract: Barrier coverage is an appropriate coverage model for intrusion
detection by constructing sensor barriers in wireless sensor networks. In this
paper, we focus on the problem how to relocate mobile sensors to construct
k sensor barriers with minimum energy consumption. We first analyze this
problem, give its Integer Linear Programming(ILP) model and prove it to be
NP-hard. Then we devise an approximation algorithm AHGB to construct one
sensor barrier energy-efficiently, simulations show that the solution of AHGB
is close to the optimal solution. Based on AHGB, a Divide-and-Conquer algo-
rithm is proposed to achieve k-barrier coverage for large sensor networks. Sim-
ulations demonstrate the effectiveness of the Divide-and-Conquer algorithm.
Keywords: k-barrier coverage, energy-efficient relocation, mobile sensor net-
work

1 Introduction

Monitoring and surveillance are very important applications of wireless sensor networks,
such as detecting the intruders when they cross international borders, or detecting the spread
of pollutant when sensors are deployed around critical regions(chemical plants,etc.) [1]. Barrier
coverage which is achieved by barriers of sensors, is known to be an appropriate model of coverage
for these applications. Different from the full coverage [2] where the goal is to achieve coverage
for all points in the surveillance field, barrier coverage is unnecessary to cover every point in the
field, thus barrier coverage requires much fewer sensors than full coverage.

Every sensor node is assumed to be stationary in most of barrier coverage literatures[1-5].
However, there are two problems for constructing sensor barriers in a randomly deployed station-
ary sensor network:1) The stationary network may contain gaps, as a result, constructing sensor
barriers becomes impossible. 2) To avoid gaps, it will waste many sensor nodes by increasing the
deployment density. To tackle these problems, we can utilize mobile sensors. After initial random
deployment, a mobile sensor communicates with others to obtain the information of networks,
and compute its new position for relocation, then relocate itself to new position. Therefore,
it will avoid gaps in the sensor network with mobile sensors and guarantee to construct sensor
barriers with much fewer sensors than stationary networks.

For mobile sensors, it is a prominent problem that how to construct k sensor barriers with the
minimum energy consumption. In barrier coverage model, any individual sensor cannot locally
determine whether the given network provides k-barrier coverage or not [2]. However, if using
global information, much communication overhead and computation cost will be brought, and it is
unrealistic for large scale sensor networks. Thus, it is challenging to devise the efficient algorithm
for constructing k-barriers in large scale networks with low communication and computation cost.

This paper is focused on how to achieve k-barrier coverage by the relocation of mobile sensors
with the minimum energy consumption. We present an energy-efficient algorithm to construct
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1-barrier coverage, and a Divide-and-Conquer algorithm to construct k-barrier coverage in large
scale sensor networks.

2 Related Work

Kumar et al. [2] first introduce the notion of weak barrier coverage and strong barrier coverage,
and in [2] [3] the critical conditions of weak and strong barrier coverage in a randomly deployed
stationary sensor network are derived. Chen et al. [1] introduce L-local barrier coverage, and
devise a local algorithm for providing barrier coverage. For line-based deployed sensor network,
Saipulla et al. [4] establish a tight lower-bound for the existence of barrier coverage. By exploiting
collaborations and information fusion between neighboring sensors, Yang et.al [5] propose a
centralized algorithm to find the smallest sensor set which can information-cover the barrier. All
of the above works are focused on how to achieve barrier coverage in stationary network.

Recently, some research works are investigated for barrier coverage in mobile sensor network.
Bhattacharya et al. [6] consider the problem how to optimally move sensors from the interior
to the perimeter of a simple polygon region for detecting intruders. Yang [7] employs a game
theoretic approach to study the sensor movement strategy to defend against barrier intrusions.
Shen et al. [8] propose a centralized algorithm CBarrier and a distributed algorithm DBarrier to
achieve 1-barrier coverage with mobile sensors. However neither of the proposed algorithms in [8]
is energy-efficient because all sensors in the network are required to move. All aforementioned
works only consider 1-barrier coverage problem with mobile sensors, and do not provide the
effective solution for k-barrier coverage, which is important to enhance the successful probability
of movement detection. Our work can achieve k-barrier coverage energy-efficiently with mobile
sensors.

3 Problem Statement

M sensors are randomly deployed in a two-dimensional rectangular strip A with the width
w and the length l. S = {s1, s2 . . . , sM} denotes the set of all sensors. The initial position of si
is (xi, yi) and its relocated position is (x

′
i , y

′
i). The sensing model is disk, each sensor has the

identical sensing radius Rs and can get its own geographic location information.
The movement of mobile sensors consumes much energy, thus how to relocate them with as

less energy as possible becomes very important.And after relocating, the mobile sensors should
achieve barrier coverage. We first formulate the problem how to achieve 1-barrier coverage
with the minimum energy consumption as 1-BCMS (1-Barrier Coverage of Min-Sum of moving
distance ) problem, which is referred as follows.

Definition 1 (1-BCMS ). Given a surveillance field A and a set of mobile sensors S, find a subset
Sc in S and the destination position (x

′
i , y

′
i) of each sensor si in Sc, such that the sum of moving

distance of all relocating sensors is minimized, meanwhile, the relocating sensors construct one
sensor barrier in A.

4 Problem Analysis

For simplicity, A is divided into N equal-sized grids, where N = nl × nw, nl = ⌈l/2Rs⌉,
nw = ⌈w/2Rs⌉. The set of central points of grids is G = {g1, g2, . . . , gN}, where gi denotes the
central point of the ith grid. It is obvious that a grid can obtain 1-barrier coverage when just
only one sensor is located at its central point. Thus, this paper assumes that the destination
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position of relocation of each sensor is selected from G. Under the above grid model, we call a
sensor barrier as a grid barrier, which is shown in Figure 1. In a grid barrier, every sensor is
located at the central point of a grid, and the distance between neighboring sensors is no more
than 2Rs.

As shown in Figure 1, the surveillance field is 1-barrier covered after constructing a grid
barrier with mobile sensors. The problem how to construct a grid barrier with the minimum
moving distance could be formulated as 1-GBMS (1-Grid Barrier Min-Sum of moving distance)
problem. Obviously, based on grid model, 1-GBMS problem is equivalent to 1-BCMS problem.
Therefore, we study the 1-GBMS problem in the following.

Figure 1: A grid barrier Figure 2: Region A after adding virtual vertices
and virtual columns

Definition 2 (1-GBMS ). Given a set of mobile sensors S and the set G of central points of grids
in a surveillance field A , find a subset Sg in S and the destination position pi from G for each
sensor si in Sg, such that the sum of moving distance is minimized, meanwhile, the relocating
sensors construct a grid barrier in A.

In this section, the Integer Linear Programming Model of 1-GBMS is derived. As shown in
Figure 2, We first add two virtual columns of grids beside the leftmost and rightmost column, and
two distinguished vertices O and T that represent the virtual origin and the virtual destination
of any barrier, respectively. The set of grids in the left virtual column is denoted by VGl, and
the set of grids in the right one is denoted by VGr. AG = G

∪
VGr

∪
VGl denotes the set of all

grids, AS = S
∪
{O, T } denotes the set including all sensor nodes and two virtual vertices. We

give sequence number to vertices in AS and AG, respectively. Specifically, The sequence number
of O is 1, and that of T is M

′ , all sequence numbers of the actual sensors are given from 2 to
M

′
− 1. All grids in AG are given from 1 to N ′. n

′
l denotes the number of grids in one row. Let

xij = 1, when the sensor si moves to the grid gj, otherwise xij = 0. The distance between si and
gj is dij. The ILP model is described in Figure 3.

Constraint (2) and (3) enforce that a sensor is only allowed to move into at most one grid,
and a grid is only allowed to be covered by at most one sensor.A barrier could be considered as a
flow from O to T . Constraint (4) constrains that the flow is 1, which entering a grid in leftmost
column of G from virtual vertex O , and constraint(5) guarantees that the flow leaving a grid
in rightmost column of G to T is 1. By flow conservation law, if one sensor moves into a grid
gj, there must exist two sensors in the four adjacent grids(left, right, top, bottom) of gj to make
sure that the flow of entering gj and leaving gj are 1, respectively. This constraint is enforced
by constraint (6).

We show by Theorem 1 that the 1-GBMS problem is NP-hard by restrictions to the famous
Knapsack Problem.

Theorem 3. 1-GBMS Problem is NP-hard.

Proof: Firstly, we make some restrictions of 1-GBMS problem as follows.
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Figure 3: ILP Model

Restriction1: ∀j, k ∈ G,∀i ∈ S, let dij = dik, i.e., for any sensor si, the distance between si
and any grid is equal.

Restriction2: The number of sensors that construct a grid barrier is no more than K. In
original 1-GBMS problem, there is no restriction to this number.

According to Restriction1, the moving distance of a sensor is just related to its own position,
i.e., if we select one sensor, the moving distance of this sensor is fixed. Thus, the sum of moving
distance is just related to the set of selected sensors. We assume ci is the cost when si moves
to gj, let ci = 1/di, as a result, ci increases as di decreases. Then 1-GBMS problem is reduced
as a new problem how to select no more than K sensors from S, such that the sum of cost is
maximized. The new problem formulation is shown as follows.
Maximize:

∑M
i=1 cixi (9)

Subject to:∑M
i=1 1×xi ≤ K (10)

xi = {0, 1}, i = 1, 2, 3, .....M (11)
(11) shows that the number of selected sensors is no more than K. This formulation is the

same as Linear Programming Model of Knapsack Problem [9]. Since Knapsack Problem is NP-
hard,the original problem 1-GBMS is NP-hard.

2

The solution of 1-GBMS problem by ILP model is optimal, but it is polynomial unsolvable
as the network size increases since it is NP-hard. Thus a polynomial approximation algorithm
is required.

5 AHGB Algorithm

Under grid model, there are nw rows of grids in A. If we deploy one sensor in each grid in a
selected row, it is said to construct a horizontal grid barrier in A. As a result , A is 1-barrier
covered. Kumar [2] proved that by constructing horizontal grid barrier the fewest sensors are
required to achieve 1-barrier coverage. Thus the mobile sensors needed to relocate for 1-barrier
coverage by constructing horizontal grid barrier is fewest, and the sum of moving distance in
this relocation method could be less than other method with great probability. Based on above
observations, we propose an approximation algorithm AHGB(Approximate to Horizontal Grid



620 D. Ban, W. Yang, J. Jiang, J. Wen, W. Dou

Barrier), which mainly has two steps :1) Horizontal Grid Barrier Selection, which finds a row
from A as a horizontal grid barrier. 2) Optimal Movement, which finds the optimal movement
strategy for relocating mobile sensors to the selected horizontal grid barrier, subject to minimize
the sum of moving distance.

5.1 Horizontal Grid Barrier Selection

If each of the mobile sensors which construct the barrier moves to its nearest grid, the sum
of moving distance is minimized. Based on the above idea, we propose HGBS approach. For any
grid gk, we first assign a weight to it. The weight is the distance between gk and the nearest
sensor si to it. Then we compute the sum of weight of each row, and find the row which has the
smallest weight as barrier_position. The HGBS approach is described as shown in Figure.4.

5.2 Optimal Movement

If we select the ith row as the position of horizontal grid barrier by HGBS, the destination
positions of mobile sensors needed to move are known. The destination positions are the nl grids
in ith row. Then we select nl nodes from M sensors, and find the optimal movement strategy to
relocate the selected sensors to the nl grids in horizontal grid barrier. We call this problem as
Optimal Movement Problem.

When we find the optimal movement strategy subject to minimize the sum of moving distance,
we get a one-to-one matching between the selected sensors and grid positions with the minimum
sum of weight. Thus Optimal Movement Problem is equivalent to Bipartite Weighted Matching
Problem [9]. The Hungarian Method is known as an optimal solution to Bipartite Weighted
Matching Problem, which can be used as the solution method for Optimal Movement Problem.
The computation complexity of Hungarian is O(m2n) [9], m is the size of the set which has fewer
nodes, and the size of the other set is n.

Figure 4: HGBS Approach Figure 5: Algorithm AHGB

5.3 AHGB Algorithm

The AHGB Algorithm is summarized briefly as follows. First, we get the position informa-
tion of all sensors(SP) and the position information of N grids (GP), and find the horizontal
grid barrier by HGBS approach. Then we construct a weighted bipartite graph with SPand GB
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which denotes the set of grids in the selected horizontal grid barrier, and find the optimal match-
ing by Hungarian Method to identify the sensors required to move(MS) and their destination
positions(TP). At last,we send destination positions to identified sensors and move them to grids
in horizontal grid barrier. The pseudocode of algorithm AHGB is shown in Figure 5.

The computation complexity of the step3 and step7 is O(N) and O(n2
lM) [9], respectively.

Since nl > nw, we can obtain n2
l > N. Therefore, the computation complexity of AHGB is

O(n2
lM). The communication overhead of AHGB is O(M), because we need to get the positions

of all M sensors at the initial phase as shown in step1. In section 7, we show that the performance
of AHGB is close to the optimal solution.

Algorithm AHGB can only construct one sensor barrier energy-efficiently, and it is not ap-
plicable for large scale sensor networks because it is centralized. In the next section, we present
an efficient algorithm to achieve k-barrier coverage for large scale sensor networks.

6 Divide-and-Conquer Algorithm

k-barrier coverage is often required to guarantee to detect the moving target. According to
[2], one sensor cannot locally determines whether the surveillance field is k-barrier covered or
not. It is difficult to devise a distributed and energy-efficient algorithm for k-barrier coverage in
large scale sensor networks. [8] presented a distributed algorithm DBarrier to construct 1-barrier
coverage, which cannot provide the solution for k-barrier coverage. Furthermore, DBarrier is not
energy-efficient since all sensors in the network are required to move iteratively. In this section,
we propose a Divide-and-Conquer algorithm to achieve k-barrier coverage energy-efficiently for
large scale sensor networks. The main idea of Divide-and-Conquer algorithm is described as
follows:

1)A is divided into k× v equal-sized subregions, the length of each subregion is ls = l/v,the
width is ws = w/k.

2) In each subregion, algorithm AHVGB(Approximate to Horizontal and Vertical Grid Bar-
rier) independently constructs a horizontal grid barrier and a vertical grid barrier.

3) We obtain k-barrier coverage in A when all AHVGB are finished. Figure. 6 illustrates
that A is 3-barrier covered when the Divide-and-Conquer algorithm is finished.

Figure 6: 3-barrier coverage when the Divide-
and-Conquer algorithm is finished

Figure 7: Gaps may exist in sensor networks

6.1 AHVGB Algorithm

As shown in Figure 7, there maybe exist a gap between two horizontal neighboring subre-
gions.Thus, additional sensors are required to connect the two adjacent horizontal grid barriers
to eliminate gaps. This section proposes a method which adds a vertical grid barrier between
two adjacent subregions. Since the width of subregion is small, the sensors required to move for
constructing vertical grid barrier is few.

We use AHVGB algorithm to construct a horizontal grid barrier and a vertical grid barrier in
each subregion. In AHVGB algorithm, every subregion can independently construct barriers by
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local information in its own area without communication with other subregions. The AHVGB
is improved from AHGB algorithm. Specifically, when horizontal grid barrier has been selected,
AHVGB constructs the weighted bipartite graph with NewGB = GB

∪
Gr, but AHGB uses GB,

as shown in step6 in Figure 5. GB is the set of grids in the selected horizontal grid barrier, Gr

denotes the set of grids in the rightmost vertical column of A.

6.2 Low Communication Overhead and Computation Cost

In our Divide-and-Conquer algorithm, each subregion is only 1
k×v

of A. By dividing the
large surveillance strip into small subregions, the message delay, communication overhead, and
computation cost can be significantly reduced. The position information of a sensor node only
need to be transmitted within the small subregion where the node is located, resulting in smaller
delay and communication overhead compared with the whole network. The computation cost is
also much lower since the number of nodes in each subregion is much less than that in the whole
area.

7 Performance Evaluation

We conduct simulations by MATLAB7.0 to evaluate the performance of our algorithms. The
sensing radius Rs = 2.5m. The mobile sensors are randomly deployed according to a Poisson
point process.

In this section, we evaluate the performance of AHGB compared with the optimal solution
computed by ILP model, which is polynomial unsolvable as the network size increases. In Figure
8, sensors are initially deployed in a 15m×500m strip, it shows the comparison of the sum of the
moving distance between AHGB and the optimal solution, as the number of sensors increases
from 100 to 800. The performance of AHGB is close to the optimal solution. In particular, the
difference is only 4% when the sensor number is 300.
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Figure 8: Sum of Moving Distance vs. Node
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Figure 9: AHGB vs. CBarrier

We compare AHGB with CBarrier [8]which also achieves 1-barrier coverage. In Figure 9, the
sum of moving distance by CBarrier increases fast as the number of sensors increases, but that
of AHGB does not change much. The reason is that all sensors in the network are required to
move in CBarrier, and only part of sensors is selected for relocation in AHGB .The experiment
parameters of Figure9 are the same as Figure 8.

Figure 10 shows the effectiveness of Divide-and-Conquer algorithm. There are many gaps in
the network after initial deployment, and 3-barrier coverage is achieved, when the algorithm is
finished. Sensors are initially deployed in a 60m×160m strip according to Poisson point process
with the density 0.02.
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Figure 10: Effectiveness of Divide-and-Conquer
algorithm
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Figure 11: Average Moving Distance vs. Length
of Region

As shown in Figure 11, the average moving distance of sensors does not change much, as we
increase the length of strip with the constant deployment density 0.02. It implies that our Divide-
and-Conquer algorithm can be applicable to large scale sensor networks. The initial experiment
parameters of Figure 11 are the same as Figure 10.

8 Conclusions

In this paper, we first formulate the problem how to construct 1-barrier coverage with the
minimum energy consumption in mobile sensor network as 1-BCMS problem, and analyze it in
detail. Then an energy-efficient algorithm for 1-barrier coverage and an energy-efficient Divide-
and-Conquer algorithm for k-barrier coverage are presented. At last, simulations demonstrate
the effectiveness and energy-efficiency of the proposed algorithms. In the future, we will study
how to achieve k-barrier coverage in hybrid sensor networks.
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