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Abstract: A comparison between several classification algorithms with fea-
ture extraction on real dataset is presented. Principal Component Analysis
(PCA) has been used for feature extraction with different values of the ratio
R, evaluated and compared using four different types of classifiers on two real
benchmark data sets. Accuracy of the classifiers is influenced by the choice
of different values of the ratio R. There is no best value of the ratio R, for
different datasets and different classifiers accuracy curves as a function of the
number of features used may significantly differ. In our cases feature extrac-
tion is especially effective for classification algorithms that do not have any
inherent feature selections or feature extraction build in, such as the nearest
neighbour methods or some types of neural networks.
Keywords: feature extraction, linear feature extraction methods, principal
component analysis, classification algorithms, classification accuracy.

1 Introduction

Data dimensionality reduction is an active field in computer science. It is a fundamental
problem in many different areas, especially in forecasting, document classification, bioinformatics,
and object recognition or in modelling of complex technological processes. In such applications
datasets with thousands of features are not uncommon. All features may be important for some
problems, but for some target concept only a small subset of features is usually relevant.

To overcome the curse of dimensionality problem, dimensionality of the feature space should
be reduced. This may be done by selecting only the subset of relevant features, or creating new
features that contain maximum information about the class label from the original ones. The
former methodology is named feature selection, while the latter is called feature extraction, and
it includes linear (PCA, Independent Component Analysis (ICA) etc.) and non-linear feature
extraction methods. Finding new features subset are usually intractable and many problem
related to feature extraction have been shown to be NP-hard ( [1]).

Feature extraction brings the immediate effects for application: speeding up a data mining
algorithm, improving the data quality and thereof the performance of data mining, and increasing
the comprehensibility of the mining results. It has been a fertile field of research and development
since 1970’s in statistical pattern recognition ( [2] and [3]), machine learning and data mining.

Some classification algorithms have inherited ability to focus on relevant features and ignore
irrelevant ones. Decision trees are primary example of a class of such algorithms ( [4] and [5]),
but also multi-layer perceptron (MLP) neural networks with strong regularization of the input
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layer may exclude the irrelevant features in an automatic way ( [6]). Such methods may also
benefit from independent feature selection or extraction. On the other hand, some algorithms
have no provisions for feature selection or extraction. The k-nearest neighbour algorithm (k-NN)
is one family of such methods that classify novel examples by retrieving the nearest training
example, strongly relaying on feature selection or extraction methods to remove noisy features.

2 PCA

PCA is a standard statistical technique that can be used to reduce the dimensionality of a
data set. It ( [7]) is known as Karhunen-Loeve transform, has proven to be an exceedingly useful
tool for dimensionality reduction of multivariate data with many application areas in image
analysis, pattern recognition and appearance-based visual recognition, data compression, time
series prediction, and analysis of biological data - to mention a few.

The strength of PCA for data analysis comes from its efficient computational mechanism,
the fact that it is well understood, and from its general applicability. For example, a sample of
applications in computer vision includes the representation and recognition of faces ( [8], [9], [10]
and [11]), recognition of 3D objects under varying pose ( [12]), tracking of deformable objects
( [13]), and for representations of 3D range data of heads( [14]).

PCA is a method of transforming the initial data set represented by vector samples into a
new set of vector samples with derived dimensions. The basic idea can be described as follows: a
set of n-dimensional vector samples X = {x1, x2, x3, ..., xm} should be transformed into another
set Y = {y1, y2, ..., ym} of the same dimensionality, but y-s have the properties that most of their
information content is stored in the first few dimensions. So, we can reduce the data set to a
smaller number of dimensions with low information loss.

The transformation is based on the assumption that high information corresponds to high
variance. If we want to reduce a set of input dimensions X to a single dimension Y , we should
transform X into Y as a matrix computation

Y = A ·X (1)

choosing A such that Y has the largest variance possible for a given data set. The single
dimension Y obtained in this transformation is called the first principal component. This com-
ponent is an axis in the direction of maximum variance. The first principal component minimizes
the distance of the sum of squares between data points and their projections on the component
axis. In practice, it is not possible to determine matrix A directly, and therefore we compute the
covariance matrix S as a first step in features transformation. Matrix S ( [15]) is defined as

Sn×n =
1

n− 1

n∑
j=1

(xj − x′)T · (xj − x′) (2)

where

x′ =
1

n

n∑
j=1

xj (3)

In the next step, the eigenvalues of the covariance matrix S for the given data should be
calculated. Finally, the m eigenvectors corresponding to the m largest eigenvalues of S define
a linear transformation from the n-dimensional space to an m-dimensional space in which the
features are uncorrelated. To specify the principal components we need the following additional
explanations about the notation in matrix S: 1) The eigenvalues of Sn×n λ1, λ2, ..., λn, where λ1 ≥
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λ2 ≥, ...,≥ λn ≥ 0 and 2) The eigenvectors e1, e2, ..., en correspond to eigenvalues λ1, λ2, ..., λn,
and they are called the principal axes.

Principal axes are new, transformed axes of n-dimensional space, where the new variables are
uncorrelated, and variance for the i-th component is equal to the i-th eigenvalue. Most of the
information about the data set is concentrated in a few first principal components. In this paper
we research how many of the principal components are needed to get a good representation of the
data. In other words, we try to find the effective dimensionality of the data set. For this purpose
we analyze the proportion of variance. Dividing the sum of the first m eigenvalues by the sum of
all the variances (all eigenvalues), we will get the measure for the quality of representation based
on the first m principal components. The result is expressed as a percentage. The criterion for
features selection is based on the ratio of the sum of the m largest eigenvalues of S to the trace
of S. That is a fraction of the variance retained in the m-dimensional space. If the eigenvalues
are labeled so that λ1 ≥ λ2 ≥, ...,≥ λn, then the ratio can be written as

R =

m∑
i=1

λi

n∑
i=1

λi

(4)

All analyses of the subset of m features represent a good initial estimate of the n-dimensionality
space if the ratio R is sufficiently large, it means greater than the threshold value. This method
is computationally inexpensive, but it requires characterizing data with the covariance matrix S.

In implementation, the transformation from the original attributes to principal components is
carried out through a process by first computing the covariance matrix of the original attributes
and then, by extracting its eigenvectors to act as the principal components. The eigenvectors
specify a linear mapping from the original attribute space of dimensionality N to a new space of
size M in which attributes are uncorrelated.

The resulting eigenvectors can be ranked according to the amount of variation in the original
data that they account for. Typically, the first few transformed attributes account for most of
the variation in the data set and are retained, while the remainders are discarded.

PCA is an unsupervised method, which makes no use of information embodied within the class
variable. Because, the PCA returns linear combinations of the original features, the meaning
of the original features is not preserved. Over the years there have been many extensions to
conventional PCA. For example, Independent Component Analysis (ICA) ( [16] and [17]) is the
attempt to extend PCA to go beyond decorrelation and to perform a dimension reduction onto
a feature space with statistically independent variables. Other extensions address the situation
where the sample data live in a low-dimensional (non-linear) manifold in an effort to retain a
greater proportion of the variance using fewer components ( [18], [19], [20], [21], [22] and [23])
and yet other (related) extensions derive PCA from the perspective of density estimation (which
facilitate modeling non-linearities in the sample data) and the use of Bayesian formulation for
modeling the complexity of the sample data manifold ( [24]).

3 Classification Algorithms

Four supervised learning algorithms are adopted here to build models, namely, IB1, Naive
Bayes, C4.5 decision tree and the radial basis function (RBF) network. This section gives a brief
overview of these algorithms.
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3.1 IB1

IB1 is nearest neighbour classifier. It uses normalized Euclidean distance to find the training
instance closest to the given test instance, and predicts the same class as this training instance.
If multiple instances have the same (smallest) distance to the test instance, the first one found is
used. Nearest neighbour is one of the simplest learning/classification algorithms, and has been
successfully applied to a broad range of problems ( [25]).

To classify an unclassified vector X, this algorithm ranks the neighbours of X amongst a
given set of N data (Xi, ci), i = 1, 2, ..., N, and uses the class labels cj (j = 1, 2, ...,K) of the K
most similar neighbours to predict the class of the new vector X. In particular, the classes of
these neighbours are weighted using the similarity between X and each of its neighbours, where
similarity is measured by the Euclidean distance metric. Then, X is assigned the class label with
the greatest number of votes among the K nearest class labels.

The nearest neighbour classifier works based on the intuition that the classification of an
instance is likely to be most similar to the classification of other instances that are nearby to it
within the vector space. Compared to other classification methods such as Naive Bayes’, nearest
neighbour classifier does not rely on prior probabilities, and it is computationally efficient if the
data set concerned is not very large. If, however, the data sets are large (with a high dimen-
sionality), each distance calculation may become quite expensive. This reinforces the need for
employing PCA and information gain-based feature ranking to reduce data dimensionality, in
order to reduce the computation cost.

3.2 Naive Bayes

This classifier is based on the elementary Bayes’ Theorem. It can achieve relatively good
performance on classification tasks ( [26]). Naive Bayes classifier greatly simplifies learning by
assuming that features are independent given the class variable. More formally, this classifier is
defined by discriminant functions:

fi(X) =

N∏
j=1

P (xj | ci)P (ci) (5)

where X = (x1, x2, ..., xN ) denotes a feature vector and cj , j = 1, 2, ..., N, denote possible
class labels.

The training phase for learning a classifier consists in estimating conditional probabilities
P (xj | ci) and prior probabilities P (ci). Here, P (ci) are estimated by counting the training ex-
amples that fall into class ci and then dividing the resulting count by the size of the training set.
Similarly, conditional probabilities are estimated by simply observing the frequency distribution
of feature xj within the training subset that is labeled as class ci. To classify a class-unknown
test vector, the posterior probability of each class is calculated, given the feature values present
in the test vector; and the test vector is assigned to the class that is of the highest probability.

3.3 C4.5 Decision Tree

Different methods exist to build decision trees, but all of them summarize given training data
in a tree structure, with each branch representing an association between feature values and a
class label. One of the most famous and representative amongst these is the C4.5 tree ( [27]).
The C4.5 tree works by recursively partitioning the training data set according to tests on the
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potential of feature values in separating the classes. The decision tree is learned from a set of
training examples through an iterative process, of choosing a feature and splitting the given
example set according to the values of that feature. The most important question is which of
the features is the most influential in determining the classification and hence should be chosen
first. Entropy measures or equivalently, information gains are used to select the most influential,
which is intuitively deemed to be the feature of the lowest entropy (or of the highest information
gain). This learning algorithm works by: a) computing the entropy measure for each feature,
b) partitioning the set of examples according to the possible values of the feature that has the
lowest entropy, and c) for each are used to estimate probabilities, in a way exactly the same as
with the Naive Bayes approach. Note that although feature tests are chosen one at a time in a
greedy manner, they are dependent on results of previous tests.

3.4 RBF Networks

A popular type of feed forward network is RBF network. Usually, the RBF network consists
of three layers, i.e., the input layer, the hidden layer with Gaussian activation functions, and
the output layer. Each hidden unit essentially represents a particular point in input space, and
its output, or activation, for a given instance depends on the distance between its point and
the instance-which is just another point. Intuitively, the closer these two points, the stronger
the activation. This is achieved by using a nonlinear transformation function to convert the
distance into a similarity measure. A bell-shaped Gaussian activation function, whose width
may be different for each hidden unit, is commonly used for this purpose. The hidden units are
called RBFs because the points in instance space for which a given hidden unit produces the
same activation form a hypersphere or hyperellipsoid.

The output layer of an RBF network takes a linear combination of the outputs of the hidden
units and-in classification problems-pipes it through the sigmoid function. The parameters that
such a network learns are (a) the centers and widths of the RBFs and (b) the weights used to
form the linear combination of the outputs obtained from the hidden layer.

One way to determine the first set of parameters is to use clustering, without looking at
the class labels of the training instances at all. The simple k-means clustering algorithm can be
applied, clustering each class independently to obtain k basis functions for each class. Intuitively,
the resulting RBFs represent prototype instances. Then the second set of parameters can be
learned, keeping the first parameters fixed. This involves learning a linear model using one of the
techniques such as, linear or logistic regression. If there are far fewer hidden units than training
instances, this can be done very quickly.

RBF networks ( [28]) are a special class of neural networks in which the distance between the
input vector and a prototype vector determines the activation of a hidden neuron. Prototype
vectors refer to centers of clusters obtained during RBF training. Usually, three kinds of distance
metrics can be used in this network, such as Euclidean, Manhattan, and Mahalanobis distances.
The RBF network provides a function Y : Rn → RM , which maps n-dimensional input patterns
to M -dimensional outputs ({(Xi, Yi) ∈ Rn × RM , i = 1, 2, ..., N}). Assume that there are M
classes in the data set. The m-th output of the network is as follows ( [29]):

ym(X) =

K∑
j=1

wmjθj(X) + wm0bm (6)

In this case X is the n-dimensional input pattern vector, m = 1, 2, ...,M, and K is the number
of hidden units. M is the number of classes (outputs), wmj is the weight connecting the j-th
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hidden unit to the m-th output node, bm is the bias, and wm0 is the weight connecting the bias
and the m-th output node.

The radial basis activation function θ(x) of the RBF network distinguishes it from other
types of neural networks. Several forms of activation functions have been used in applications
( [29]):

• θ(x) = e
−x2

2σ2 (7)
• θ(x) = (x2 + σ2)−β , β > 0 (8)
• θ(x) = (x2 + σ2)β , β > 0 (9)
• θ(x) = x2 ln(x) (10)

here σ is a parameter that determines the smoothness properties of the interpolating function.
A disadvantage of RBF networks is that they give every feature the same weight because all are
treated equally in the distance computation. Hence they cannot deal effectively with irrelevant
features.

4 Experiments and results

Real datasets called "Statlog (Australian credit approval)" and "Statlog (German credit
data)" for tests were used, taken from the UCI repository of machine learning databases. These
datasets were used to compare the classification performance using IB1, Naive Bayes, RBF net-
works and C4.5 decision tree classifiers, in conjunction with the use of PCA and different value
of the ratio R. The classification performance is measured using ten-foldcross-validation.

German Credit Data

This dataset classifies people described by a set of features as good or bad credit risks. Data
set characteristics is multivariate, feature characteristics are categorical and integer. Number of
instances is 1000, number of features is 20, and there are no missing values.

Australian Credit Approval

This file concerns credit card applications. Data set characteristics is multivariate; feature
characteristics are categorical, integer and real. Number of instances is 690, number of features
is 14, and there are missing values. This dataset is interesting because there is a good mix of
features continuous, nominal with small numbers of values, and nominal with larger numbers of
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values. There are also a few missing values.

Australian credit approval data Classification accuracy without PCA
Naive Bayes 77,7

C4.5 decision tree 86,1
IB1 classifier 81,2
RBF network 79,7

Table 1: Classification results for Australian credit approval data without using PCA.

The number of input compo-
nents produced - Australian
credit approval data

20 22 25 29 29 30 32 33

R 0,8 0,85 0,9 0,95 0,96 0,97 0,98 0,99

Table 2: The number of input components produced using PCA at various ratio R values for
Australian credit approval data.

Figure 1: The classification performance using Naive Bayes, C4.5 decision tree, IB1 and RBF
network classifiers, in conjunction with the use of PCA and different value of the ratio R. Statlog
(Australian credit approval) data set

Classification results without using PCA as a standard statistical technique that can be used
to reduce the dimensionality of a data set, for Australian credit approval are presented in Table
1, and for German credit data in Table 3.

Table 2 and 4 show the number of input components produced for each ratio R value inves-
tigated. It can be observe from the tables that the number of input components reduces with
decreasing values of the ratio R used.

In Figure 1 classification performance for Naive Bayes and RBF network are significantly
better with PCA. For IB1 and C4.5 decision tree classifiers the results are better without PCA.
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For greater value of the ratio R classification accuracy of IB1 classifier is better. The others
types of classifier in our experiment have the better results with greater value, but when value
reached some boundaries performance of classifier are the same or worst.

German credit data Classification accuracy without PCA
Naive Bayes 75,4

C4.5 decision tree 70,5
IB1 classifier 72
RBF network 74

Table 3: Classification results for German credit data without using PCA.

The performance of some classifiers depends on its generalization capability, which in turn
is dependent upon the data representation. One important characteristic of data representation
is uncorrelated. This is because correlated data reduce the distinctiveness of data representa-
tion and thus, introduce confusion to the classifier model during the learning process and hence,
producing one that has low generalization capability to resolve unseen data. The results demon-
strated that the elimination of correlated information in the sample data by way of the PCA
method improved Naive Bayes and RBF network classification performance (Figure 1).

At point 0.95% of the ratio R value with 29 input components, all classifiers significantly
improved the classification accuracy. After that the ratio R value, the classification accuracy is
about the same with little variations between classifiers. It suggests that this number of inputs is
sufficiently optimal for the all classifiers to learn distinct features in the data and perform better
input/output mapping.

The number of input com-
ponents produced - German
credit data

31 34 38 42 43 44 45 46

R 0,8 0,85 0,9 0,95 0,96 0,97 0,98 0,99

Table 4: The number of input components produced using PCA at various ratio R values for
German credit data.

German credit data doesn’t consist of correlated information caused by overlapping input
instances. Without correlation in sampled data there is not confusion in classifiers during the
learning process (Figure 2) and thus, no degrades their generalization capability. In this case all
classifiers’ classification performance doesn’t improved by PCA. For greater value of the ratio R
classification accuracy of IB1 classifier is better. Naive Bayes classifier has the worst results with
greater values of the ratio R. Classification accuracy of RBF network have oscillation values.
Classification accuracy for C4.5 decision tree doesn’t change too much with different values of
the ratio R.

This final part of the comparative study is set to investigate the differences between different
classifiers, in terms of their classification ability. It is clear from Figures 1 and 2 that on average,
Naive Bayes and RBF network classifiers tend to significantly outperform the decision tree and
IB1 classifiers.

5 Conclusions

Feature extraction leading to reduced dimensionality of the feature space. PCA is one of the
most popular techniques for dimensionality reduction of multivariate data points with application
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Figure 2: The classification performance using Naive Bayes, C4.5 decision tree, IB1 and RBF
network classifiers, in conjunction with the use of PCA and different value of the ratio R. Statlog
(German credit data) data set

areas covering many branches of science. This is especially effective for classification algorithms
that do not have any inherent feature selections or feature extraction builds in, such as the
nearest neighbour methods or some types of neural networks. PCA has been used for feature
extraction with different values of the ratio R, evaluated and compared using four different types
of classifiers on two real benchmark data sets. Accuracy of the classifiers is influenced by the
choice different values of ratio R (Figure 1 and Figure 2).

There is no best value of the ratio R, for different datasets and different classifiers accuracy
curves as a function of the number of features used may significantly differ. But, in more cases,
the value of 0.95 gave the best results.

Several improvements of the feature extraction method presented here are possible:

• The algorithms and datasets will be selected according to precise criteria: different algo-
rithms with PCA as linear feature extraction method, and several datasets, either real or
artificial, with nominal, binary and continuous features.

• ICA and others linear feature extraction methods may be included.

• Problem of data dimensionality reduction may be analysed with non-linear feature extrac-
tion methods.

These conclusions and recommendations will be tested on larger datasets using various clas-
sification algorithms in the near future.
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