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Abstract: All the current public-key cryptosystems will become insecure
when size of a quantum register is sufficient. An authenticated key agreement
protocol, which is against the attack of quantum computer, is proposed. The
proposed protocol can provide the security properties known session key se-
curity, forward security, resistance to key-compromise impersonation attack
and to unknown key-share attack, key control. We also prove its security in a
widely accepted model.
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1 Introduction

Key agreement is one of the fundamental cryptographic primitive after encryption and digital
signature. Such protocols allow two or more parties to exchange information among themselves
over an adversarially controlled insecure network and agree upon a common session key, which
may be used for later secure communication among the parties. Thus, secure key agreement
protocols serve as basic building block for constructing secure, complex, higher-level protocols.
The first modern key agreement protocol is the Diffie-Hellman protocol given by Diffie and
Hellman in the seminal paper [1] in 1976. Its security is based on the difficulty of solving discrete
logarithm problems. As the first practical key agreement protocol without authentication, it is
not secure to the man-in-the-middle attack. After that, lots of protocols have been published and
some of them use certificates generated by thetrusted third parties (public key infrastructures,
PKIs) to prevent attacks such as the man-in-the-middle attack. Most of the systems based
on PKI are complex and expensive for the cost of the authentication, refresh andrevocation of
certificates. Security of the known key agreement protocols is based on two general mathematical
problems: determination of order and structure of a finite Abelian group, and discrete logarithm
computation in a cyclic group with computable order. Both of the problems can be solved in
polynomial time using Shor’s algorithm for a quantum computer [2]. Thus, most of the current
public-key cryptosystems will become insecure when size of a quantum register is sufficient.
Development of key agreement protocols, which would be strong against a quantum computer,
is necessary.

The rest of our paper is organized as follows. Section 2 describes theoretical background and
a public-key encryption technique. Section 3 analyses the complicity of the problem of searching
for an isogeny between elliptic curves. We give the proposed key agreement protocol in Cection4,
and analyse the security of the proposed protocol in Section 5. We conclude this paper in Section
6.
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2 Elliptic Curves over Fp and Isogeny Star

Let E be a elliptic curve, defined on the finite fields Fp, and it’s equation is

y2 = x3 + ax+ b, a, b ∈ Fp (1)

Then the map

π : (x, y) → (xp, yp) (2)

specifes the Frobenius endomorphism of the curve E. A Frobenius map satisfies its charac-
teristic equation

π2 − Tπ + p = 0 (3)

where T = p − a − ♯E(Fp) is the Frobenius trace. Through the Hasse’s theorem, we know
that

|T | < 2
√
p). (4)

So the discriminant Dπ of the Frobenius equation (3) satisfies

Dπ = T 2 − 4p < 0 (5)

Theorem 1 Elliptic curves are isogenous over Fp if and only if they have equal number of
points.

Proof. See[3].
Theorem 2 Let an elliptic curve E(Fp) have the Frobenius discriminant Dπ and (Dπ

l ) be a
Kronecker symbol for some l-degree isogeny. If (Dπ

l ) = −1, then there are no l-degree isogenies;
if (Dπ

l ) = 1, then two l-degree isogenies exist; if (Dπ
l ) = 0, then 2 or l + 1 l-degree isogenies exist

and l is called Elkies prime number.
Proof. See[3].
Let U = Ei(Fp) be a set of elliptic curves with equal number of points, so that each element

of U is uniquely determined by a j−invariant of an elliptic curve. According to the theorem 1
and the equation (4), we can consider U as a category, and the set of isogenies between elements
of U as a set of morphisms of this category. We can compute ♯U = hDπ , where hDπ is the degree
of Hilbert polynomial[3].

Let l is Elkies prime number, we can get that there are two isogenous elliptic curves for any
elliptic curves of U , from theorem 2. It is practically determined that, when ♯U is prime, all the
elements of U form a single isogeny cycle.

Let l1 ̸= l be one more prime isogeny degree with the property that (Dπ
li
) = 1. In this case,

li−degree isogenies form a cycle over U as well. Then we can put the l and li degree isogeny
cycles over each other. Same can be done for other isogeny degrees of such kind.

Definition 1. A graph, consisted of prime number of elliptic curves, connected by isogenies
of degrees satisfying (Dπ

li
) = 1, is an isogeny star.

If an isogeny star is wide enough, we can use it for crypto algorithm constructing. For that
purpose, it is necessary to specify a direction on a cycle and route of isogeny stat. The method
for direction determination on an isogeny cycle is mentioned in [4], we don’t give the detail here..
It uses impact of Frobenius endomorphism on an isogeny kernel. The definition of isogeny stat
is following.

Let S be an isogeny star, L = {li}−a set of Elkies isogeny degrees being used and F = {πi}−a
set of Frobenius eigenvalues, which specify positive direction for every li ∈ L.
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Definition 2. A set R = ri, where ri is number of steps by the li−isogeny in the direction
F = πi, is a route on the isogeny star.

We can define composition[3] of routes A = {ai} and B = {bi} as AB = {ai + bi}. Routes
are commutative: AB = BA.

The computation of iosgeny between elliptic curve can be done using the method in [5, 6, 7],
we don’t give the detail here.

3 Complexity of Isogeny Search

The are several techniques can be used for isogeny search[3]:

• Brute-force: Complexity of these attacks is estimated at isogeny computations.

• Meet-in-the-middle: Complexity of the attack is estimated at isogeny computations.

• Method described in [8]: Complexity of the attack is estimated at isogeny computations.

The reason of the problem of searching for an isogeny between elliptic curves can against the
attack of quantum computer is following[3].

In order to computer the isogenies between elliptic, we must solve the equation

ϕ(X, j) = 0, (6)

and the process of computing the isogeny cycle is following

E1 → ϕl1(X, jE1) = 0 → jE2 → E2 → ϕl2(X, jE2) = 0 → jE3 → ... (7)

.
To compute a chain of q isogenies, one should consecutively solve these q equations, because

of the equation parameter (j−invariant) is changed with every step. So one can’t parallelize and
the problem is against the attack of quantum computer.

Then, we conclude that the complexity of searching for an isogeny between elliptic curves is
O(

√
n) ≈ O( 4

√
p), and the problem can be against the attack of quantum computer.

From the above discussion, the decisional Diffie-Hellman assumption can be easily extent to
the isogenies through the property of isogenies between the elliptic curves.

Definition 3. The decisional Diffie-Hellman assumption over isogeny star (DDHA-IS ):
DDHA-IS is that it is difficult to distinguish the following real Diffie-Hellman distribution

Γreal = {R1(Einit), R2(Einit), R1R2(Einit)|R1, R2 ∈ G} (8)

and random Diffie-Hellman distribution

Γrand = {R1(Einit), R2(Einit), R3(Einit)|R1, R2, R3 ∈ G} (9)

.
More formally, if we define the advantage function AdvDDH−IS

G (A) as

AdvDDH−IS
G (A) = |Pr[A(X) = 1|X ∈ Γreal]− Pr[A(Y ) = 1|Y ∈ Γrand]|, (10)

we say that the DDHA-IS holds in set G if AdvDDH−IS
G (A) is negligible for any probabilistic

polynomial time adversary A.
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4 Key Agreement Protocol Based on Isogeny

In this section we describe the proposed key agreement protocol which is specified by the key
generation and the protocol description.

4.1 Key Generation

In this paper we use an elliptic curve E defined over a finite field Fp, the parameters is
following.

1)Fp: the finite field;
2)Einit: an initial elliptic curve, its equation is y2 = x3 + ainitx

3 + binit, ainit, binit ∈ FpŁť
3)d:number of isogeny degrees being used;
4)L = li, 1 ≤ i ≤ d: a set of Elkies isogeny degrees being used;
5)F = πi, 1 ≤ i ≤ d: a set of Frobenius eigenvalues, which specify the positive direction for

every li ∈ L;
6)k:a limit for number of steps by one isogeny degree in a root. For any root {ri}, numbers

of steps are selected in −k ≤ ri ≤ k;
7)H:SHA-1;
8)Select random routes RprivA and RprivB. The value RprivA is a secret key of the user A,

and RprivB is the secret key of the user B;
9)Compute the curves EpubA = RprivA(Einit) and EpubB = RprivB(Einit), which are the public

key of a user A and B, respectively;

4.2 Our Key Agreement Protocol

Let E be the elliptic curve, defined on the finite field , with the equation (1), and let AE and
BE be its parameter and j be its j−invariant. The proposed protocol is following.

1) A generate random route RA and computes EA = RA(Einit), eA = H(AEA
, BEA

). At last,
A sends M1 = {AEA

, BEA
, ea} to B.

2) Upon receiving M1, B checks whether eA equals H(AEA
, BEA

). If not, B stops the
session. Otherwise, B generate random route RB and computes EB = RB(Einit), E′

B = RB(EA),
E′′

B = RprivB(EA), eB = H(AEB
, BEB

, AE′′
B
), BE′′

B
). At last, B sends M2 = {AEB

, BEB
} to A.

3) Upon receiving M2, A computes E′
A = RA(EB), E′′

A = RA(EpubB), E′′′
A = RA(EpubB) and

checks whether the equation eB = H(AEB
, BEB

, AE′′
A
), BE′′

A
) holds or not. If it does not hold,

then A terminates the execution. Otherwise, A computes e′A = H(AE′′′
A
), BE′′′

A
) the session key

skAB = H(AE′
A
)⊕BE′

A
). At last, A sends M3 = e′A to B.

4) Upon receiving M3, B computes E′′′
B = RB(EpubA) and checks whether the equation e′A =

H(AE′′′
B
), BE′′′

B
) holds or not. If it does not hold, then B terminates the execution. Otherwise,

computes the session key skBA = H(AE′
B
)⊕BE′

B
).

As a result, A and A achieve the same shared secret key:

E′
A = RA(EB) = RA(RB(Einit)) = RB(RA(Einit)) = RB(EA) (11)

skAB = H(AE′
A
)⊕BEA

) = H(AE′
A
)⊕BE′

A
) = skAB (12)

and authenticate each other.
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5 Security analysis

5.1 Security model

In this work we shall use a modified Bellare-Rogaway key exchange model [9, 10] to analyse
the protocol security. In the model, each party involved in a session is treated as an oracle, and
an adversary can access the oracle by issuing some specified queries (defined later). An oracle
Πs

i,j denotes the s−th instance of party i involved with a partner party j in a session.
The security of a protocol is defined by a game with two phases. In the first phase, an

adversary E is allowed to issue the following queries in any order.
1)Send(Πs

i,j ,m). Upon receiving the message m, oracle Πs
i,j executes the protocol and re-

sponds with an outgoing message m or a decision to indicate accepting or rejecting the session. If
the oracle Πs

i,j does not exist, it will be created as initiator if m = λ, or as a responder otherwise.
2)Reveal(Πs

i,j). If the oracle has not accepted, it returns ⊥; otherwise, it reveals the session
key.

3)Corrupt(i). The party responds with its private key.
Once the adversary decides that the first phase is over, it starts the second phase by choosing

a fresh oracle and issuing a query, where the fresh oracle and query are defined as follows.
Definition 4 (fresh oracle) An oracle Πs

i,j is fresh if (1)Πs
i,j has accepted; (2)Πs

i,j is unopened
(not been issued the query); (3) party j ̸= i is not corrupted (not been issued the Corrupt query);
(4) there is no opened oracle Πt

j,i, which has had a matching conversation to . The above fresh
oracle definition is particularly defined to cover the key-compromise impersonation resilience
property since it implies that the user could have been issued a query.

4)Test(Πs
i,j).Oracle Πs

i,j which is fresh, as a challenger, randomly chooses b ∈ {0, 1} and
responds with the session key, if b = 0, or a random sample from the distribution of the session
key otherwise.

After this point the adversary can continue querying the oracles except that it cannot reveal
the test oracle Πs

i,j or its partner Πt
j,i (if it exists), and it cannot corrupt party j. Finally, the

adversary outputs a guess b′′ for b. If b′ = b, we say that the adversary wins. The adversary’s
advantage is defined as

AdvE(k) = |2Pr[b′ = b]− 1|. (13)

We use the session ID which can be the concatenation of the messages in a session to define
matching conversations, i.e., two oracles Πs

i,j and Πt
j,i have matching conversations to each other

if they have the same session ID.
A secure authenticated key (AK) agreement protocol is defined as follows.
Definition 5 Protocol Π is a secure AK if:
1). In the presence of a benign adversary, which faithfully conveys messages, on Πs

i,j and Πt
j,i,

both oracles always accept holding the same session key, and this key is distributed uniformly
on {0, 1}k;

2). For any polynomial time adversary E, AdvE(k) is negligible.

5.2 Security analysis

Using the above security definitions, we have the following Theorem 1.
Theorem 3. In the random oracle, if DDHA-IS is hard, our proposed protocol is a secure

AK protocol.
Proof : The first two conditions follow immediately from the description of our proposed

protocol and the assumption that H is random oracle.
Let’s turn to the second condition. We use the method proposed by Pan et al.[10] to analyze

the security. Consider there exists an adversary E and AdvE(k) is non-negligible. Suppose its
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running time is t. We will use E to construct an algorithm F which can solve DDHA-IS. Let l, N
and qH be the number of sessions related to E, the number of entitys and the queries’ numbers
of H(·) made by E.

Given (E1, E2, E3), where E1 = R1(Einit), E2 = R2(Einit), E3 = R3(Einit). First, F selects
randomly i, j, r, s and generates the public/private key pair for every entity. Then, F starts E
and answers all queries made by E.

H query : If the input exists, answers by its corresponding value. Otherwise, F picks a
random number as the answer to the new query, and adds the input, output pair at the end of
the H−string;

Corrupt query : Because F knows all entities’ private keys, F can answers by the corre-
sponding private key;

Reveal query : If the input is Πs
i,j or Πt

j,i, F selects b′ as its output and halts. Suppose
the input is Πs′

i′,j or Πt′
j,i′ , where (i′, s′) ̸= (i, t) and (i′, t′) ̸= (i, t). Because F knows all entity’s

private keys and simulates the run of i′ and j according to the protocol, F can get random
numbers selected by i′ and j. So, F knows the session key of Πs′

i′,j or Πt′
j,i′ , and answers by this

session key.
Send query : If the input is Πs

i,j and an empty string, F computes eA = H(AE1 , BE1)
and answers by AE1 , BE1 , eA. If the input is Πs

i,j and a string that is not none, F computes
E′′′

A = RprivA(E2) and answers by {e′A}. If the input is Πt
j,i and a string that is not none,

computes E′′
B = RprivB(E1), eB = H(AE2 , BE2 , ), A

′′
E2
, B′′

E2
and answers by AE2 , BE2 , eB. Else,

answers by random numbers according to the protocol.
Test query : If the input is not Πs

i,j , F outputs b′ ∈ {0, 1}k and halts. Else, if AE3 and BE3

exist in H−string, let the corresponding value be r; Else, F selects r randomly and appends
{AE3 , BE3 , r} to the H−string. F answers by r.

When E halts, F outputs E’s output b′ and halts.
1)Suppose Πs

i,j , selected by F , is the input of the Test oracle, and Πs
i,j and Πt

j,i have matching
conversations. If E3 is the DH value of E1, E2, r is the session key. Else r is a random number.
Because E3 is the DH value of E1, E2 with the probability 1

2 and F answers all queries made
by E correctly, the probability of the event that distinguishes r and the session key correctly is
equivalent to the probability of the event that F decides whether (E1, E2, E3) is a DH triple.

2) Suppose Πs
i,j , selected by F , is the input of the Test oracle, or Πs

i,j and Πt
j,i have not

matching conversations. F outputs correctly with the probability 1
2 .

Suppose the success probability of E is 1
2+ϵ, where ϵ is non-negligible. Because the first event

happens with the probability 1
l2

, the success probability of F in this condition is 1
2l2

+ ϵ
l2

. The
second event happens with the probability 1− 1

l2
. So the success probability of in this condition

is 1
l2
− 1

2l2
. From the above discussion, we know the success probability of F is 1

2 +
ϵ
l2

. Then we
can solve the DDHP-IS with non-negligible probability. This is a contradiction. So our proposed
protocol satisfies the second condition. i.e., the protocol is a secure AK protocol.

5.3 Other discussion

A number of desirable attributes of key agreement protocols have also been identified [9]
and nowadays most protocols are analyzed with such attributes. Here, the following six security
properties must be considered for the proposed protocol: a known-key security, perfect forward
secrecy, a key-compromise impersonation attack, a unknown key-share security, a key-control
security. Regarding the above mentioned definitions, the following theorems are used to analyze
the six security properties of the proposed protocol. Our protocol also satisfies the following
security notions which are often used to judge the security of key agreement protocols.
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Known session key security: A protocol is called Known session key security, if an adver-
sary, having obtained some previous session keys, cannot get the session keys of the current run
of the key agreement protocol. In our scheme, the agreed session key relies on the one-way hash
function and session secrets. The output of hash function is distributed uniformly in {0, 1}k, thus
one session key which is the output of hash function has no relation with the others. Besides, the
session key is generated with the session secrets which are computed from the random ephemeral
key, thus even one session’s session secrets are revealed, the other session secrets will still remain
safe.

Perfect forward secrecy: A protocol is called Perfect forward secrecy, if compromise of the
three private keys of the participating entities does not affect the security of the previous session
keys. Even if an attacker gets the value the secret key RprivA and RprivB in our scheme, he can’t
deduce E′

A or E′
B, without the knowledge of the two random numbers RA and RB. Therefore,

our scheme can provide perfect forward secrecy.
No key-compromise impersonation: The compromise of one entity’s static private key

does not imply that the private keys of other entities will also be compromised in our protocol.
The adversary may impersonate the compromised entity in subsequent protocols, but he cannot
impersonate other entities. This property is called no key-compromise impersonation.

First, suppose an attacker C obtains the long-term private key RprivA from the compromised
user A. In order for the key-compromise impersonation attack to succeed, C must know A’s
ephemeral keys . In this case, C would also have to extract from ’s ephemeral public value RA,
so as to generate the same session key with A. C, however, will face the problem of searching
for an isogeny between elliptic curves. Therefore, the proposed protocol is secure against a
key-compromise impersonation attack.

No unknown key-share: If the adversary convinces a group of entities that they share
some session key with the adversary, while in fact they share the key with another entity, we call
the protocol as suffering from unknown key-share attack. To implement such an attack on our
protocol, the adversary is required to learn the private key of some entity. Otherwise, the attack
hardly works. Hence, we claim that our protocol has the attribute of no unknown key-share.

No key control: No key-control security means that neither entity can’t force the session
key to a preselected value. From the execution of the proposed protocol, we know that the only
possibility of key-control attack may be brought out by the participant of the protocol B. But,
for the party B to make the party A generate the session key KB which is preselected value by
B, B should solve the equation E′

B = RB(EA).This is the problem of searching for an isogeny
between elliptic curves. Therefore, the proposed protocol provides a no key-control security.

6 Conclusion

In this paper, we propose a secure and efficient authenticated key agreement, which works on
the isogeny star. We prove that our protocol meets the security attributes under the assumption
that the problem of searching for an isogeny between elliptic curves is secure.
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