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Abstract: The PDPTW is an optimization vehicles routing problem which
must meet requests for transport between suppliers and customers in purpose
to satisfy precedence, capacity and time constraints. We present, in this paper,
a genetic algorithm for multi-objective optimization of a multi pickup and de-
livery problem with time windows (m-PDPTW), based on aggregation method
and lower bounds. We propose in this sense a brief literature review of the
PDPTW, present our approach to give a satisfying solution to the m-PDPTW
minimizing the compromise between total travel cost and total tardiness time.
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1 Introduction

The vehicle routing planning and traffic management are considered a major logistical chal-
lenge in terms of supply, inter-plant transport or distribution transport. [1] Many studies have
been directed mainly towards solving the vehicle routing problem (VRP). It’s an optimization
vehicle routing problem to meet travel demands. Other researchers became interested on an
important variant of VRP which is the PDPTW (Pickup and Delivery Problem with Time Win-
dows) with capacity constraints on vehicles.
The PDPTW is divided into two categories: 1-PDPTW (single-vehicle) and m-PDPTW multi-
vehicle).
In the m-PDPTW problem which we are interested in, we consider a vehicles fleet Vk of capacity
Qk and a set of goods to transport providers to different destinations. The goal is to provide
a set of customers under certain constraints concerning vehicles and their capacity, precedence
between nodes, and this by minimizing the compromise between the total travel cost and total
tardiness time. In this paper we present a literature review of the PDPTW followed by the pro-
posed approach for the optimization of pick-up and delivery problem with time window, using
the genetic algorithms, aggregation method and lower bounds.
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2 Litterature Review

2.1 Vehicle routing problem

The Vehicle Routing Problem (VRP) represents a multi-goal combinatorial optimization
problem which has been the subject of many works and variations in the literature [2] [3]. The
theory of the VRP is formulated as follows: given a depot D and a set of customers orders C =
(c1, ... , Cn), to build a package routing, for a finite number of vehicles, beginning and ending at
the depot. In this routing, a customer must be served only once by a single vehicle and vehicle
capacity transport for a routing should not be exceeded [4] [5]. The Meta heuristics were also
applied to solve the vehicle routing problem. Among these methods, we can include ant colony
algorithms, which were used by Montamenni, R et al for the resolution of DVRP [6], and by Sorin
C. Negulescu et al to solve the Vehicle Route Allocation Problem (VRAP) [7]. Kaoru Hirota et al
have presented a computational intelligence approach to VRSDP (Vehicle Routing, Scheduling,
and Dispatching Problems). The objective of the VRSDP is to produce a delivery schedule for
a group of vehicles, with respect to multiple users, so that while satisfying constraints delivery
cost corresponding to users’ order is minimized [8]. Savelsbergh et al have shown that the VRP
is a NP-hard problem [9].

2.2 The PDPTW: Pickup and Delivery Problem with Time Windows

The PDPTW is a variant of VRPTW where in addition to the existence of time constraints,
this problem implies a set of customers and a set of suppliers geographically located. Every
routing must also satisfy the precedence constraints to ensure that a customer should not be
visited before his supplier. [10] A dynamic approach for resolving the 1-PDP without and with
time windows was developed by Psaraftis, H.N considering objective function as a minimization
weighting of the total travel time and the non-customer satisfaction [11]. Jih, W et al have
developed an approach based on the hybrid genetic algorithms to solve the 1-PDPTW, aiming
to minimize combination of the total cost and total waiting time. [12] Another genetic algorithm
was developed by Velasco, N et al to solve the 1-PDP bi-objective in which the total travel time
must be minimized while satisfying in priority the most urgent requests. In this literature, the
method proposed to resolve this problem is based on a No dominated Sorting Algorithm (NSGA-
II). [13] Kammarti, R et al treat the 1-PDPTW, minimizing the compromise between the total
travel distance, total waiting time and total tardiness time, using an evolutionary algorithm
with special genetic operators, tabu search to provide a set of viable solutions. [14] [15]. This
work has been extended, by proposing a new approach based on the use of lower bounds and
Pareto dominance method, to minimize the compromise between the total travel distance, total
waiting time and total tardiness time. [16] About the m-PDPTW, Sol, M et al have proposed
a branch and price algorithm to solve the m-PDPTW, minimizing the vehicles number required
to satisfy all travel demands and the total travel distance. [17] Quan, L et al have presented a
construction heuristic based on the integration principle with the objective function, minimizing
the total cost, including the vehicles fixed costs and travel expenses that are proportional to the
travel distance. [18] A new metaheuristic based on a tabu algorithm, was developed by Li, H et
al to solve the m-PDPTW. [19] Li, H et al have developed a "Squeaky wheel" method to solve
the m-PDPTW with a local search. [20] A genetic algorithm was developed by Harbaoui Dridi I
et al treating the m-PDPTW to minimize the total travel distance and the total transport cost
[21]. This work has been extended, by proposing a new approach based on the use of Pareto
dominance method to give a set of satisfying solutions to the m-PDPTW minimizing total travel
cost, total tardiness time and the vehicles number. [22] [23]
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3 Mathematical Formulation

Our problem is characterized by the following parameters:

• N: Set of customers, supplier and depot vertices,

• N′: Set of customers and supplier vertices,

• N+: Set of supplier vertices,

• N−: Set of customers vertices,

• n: Size of the initial population,

• K: Vehicle number,

• dij : Euclidian distance between the vertex i and the vertex j. If dij = ∞ then the road
between i and j doesn’t exist,

• tijk: Time used by the vehicle k to travel from the vertex I to the vertex j,

• [ei, li]: Time window of the vertex i,

• si: Stopping time at the vertex i,

• qi: Goods quantity of the vertex i request. If qi > 0, the vertex i is a supplier; if qi < 0,
the vertex i is a customer and if qi = 0 then the vertex was served.

• Qk: Capacity of vehicle k,

• i = 0...N : Predecessor vertex index,

• j = 0...N : Successor vertex index,

• k: 1...K: Vehicle index,

• Xijk =

{
1 If the vehicle travel from the vertex i to the vertex j
0Else

• Ai: Arrival time of the vehicle to the vertex i,

• Di: Departure time of the vehicle from the vertex i,

• yik: The goods quantity in the vehicle k visiting the vertex i,

• Ck: Travel cost associated with vehicle k,

• A vertex is served only once,

• A vertex is served only once,

• The capacity constraint must be respected,

• The depot is the starting and finishing vertex for the vehicle,

• The vehicle stops at every vertex for a period of time to allow the request processing,

• If the vehicle arrives at a vertex i before its time windows beginning date it waits.
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The function to minimize is given as follows:

Minimizef =

 λ1c1
∑
k∈K

∑
i∈N

∑
j∈N

CkdijkXijk+

λ2c2
∑
k∈K

∑
i∈N

∑
j∈N

max(0, Di − li)Xijk

 (1)

Where λi and ci are weights and scaling coefficients.
Subject to:

N∑
i=1

K∑
k=1

xijk = 1, j = 2, ...N (2)

N∑
j=1

K∑
k=1

xijk = 1, i = 2, ...N (3)

∑
i∈N

Xi0k = 1,∀k ∈ K (4)

∑
j∈N

X0jk = 1,∀k ∈ K (5)

∑
i∈N

Xiuk −
∑
j∈N

Xujk = 0,∀k ∈ K, ∀u ∈ N (6)

Xijk=1⇒yjk=yik+qi,∀i,j∈N ;∀k∈K (7)

y0k=0,∀k∈K (8)

Qk ≥ yik ≥ 0,∀i ∈ N ;∀k ∈ K (9)

Dw ≤ Dv,∀w ∈ N+;∀v ∈ N− (10)

D0 = 0 (11)

Xijk = 1 ⇒ Di + tijk ≤ Dj∀i, j ∈ N ;∀k ∈ K (12)

The constraint (2) and (3) ensure that each vertex is visited only once by a single vehicle. The
constraint (4) and (5) ensure that the vehicle routing is beginning and finishing in the depot.
The constraint (6) ensures the routing continuity by a vehicle. (7), (8) and (9) are the capacity
constraints. The precedence constraints are guaranteed by (10), (11) and (12).

4 Genetic Algorithm For Optimization Of The m-PDPTW

4.1 Generation of the initial populations

In our case, we generate two types of populations. A first population noted Pnode (Figure
1), which represents all nodes to visit with all vehicles, according to the permutation list coding.
The second population noted Pvehicle (Figure 2) indicates nodes number visited by each vehicle.
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Figure 1: The permutation list coding

Figure 2: Example of Individual from the population Pvehicle

4.2 Correction procedures

Before beginning the construction of the population Pnode/vehicule, we proceed to the correc-
tion procedures of precedence and capacity between nodes. We consider the following couples
customer / supplier: (1,5), (2,8), (9,7), (10,3) and (4,6), noting that Qkmax= 60 and q = 20, we
present, respectively, in figures 3 and 4 the principle of correction precedence and capacity.

Figure 3: Correction precedence

Figure 4: Correction capacity

4.3 Computation procedure

Taking into account the population Pnode, correction procedures and Pvehicle we illustrate
in Figure 5 an example of an individual from the population Pnode/vehicule . Knowing that it is
necessary to verify that a couple is visited by only one vehicle. [24]

with: N ′ = 10 andK = 2
Figure 6 represents the process to determine the population Pnode/vehicule.

The principles of different genetic operations such as crossover and mutation operator are
detailed in our work [21].



Multi-Objective Optimization for the m-PDPTW: Aggregation Method With Use of Genetic
Algorithm and Lower Bounds 251

Figure 5: Example of an individual from the population Pnode/vehicule

4.4 Multi-criteria evaluation

A multi-objective problem is defined as an optimization vector problem, which seeks to
optimize several components of a vector function cost.

Pareto dominance method

A multi-criteria problem P is composed of n variables, m inequality constraints, p equality
constraints and k criteria that can be formulated as follows:

P ⇒


minf(x)= [f1, f2, f3, .....fk(x)]
gi(x)≤0i=0...m

gj(x)=0j=0...p

(13)

However, it is necessary to find solutions representing a possible compromise between the criteria.
The Pareto optimality concept introduced by the economist V. Pareto in the twentieth century
is frequently used [25]. V. Pareto formulated the following concept: in a multi-criteria problem,
there is equilibrium so that we can not improve one criterion without deteriorating at least one
other. This equilibrium has been called Pareto optimal A solution is noted Pareto optimal if
it is dominated by any other point in solutions space. These points are noted non dominated
solutions.
A point X ∈ E dominates Y ∈ E if:{

∀i, fi(x) ≤ fi(y)
and∃ j, such asfj(x) < fj(y)

(14)

Figure 7 shows an example where we seek generations of the initial populations to minimize
f1and f2. The points 1, 3 and 5 are not dominated. On the contrary point 2 is dominated by
point 3, and point 4 is dominated by point 5.

Aggregation method

In the resolution of MOP (Multi objectives Problem), several traditional methods are trans-
forming the MOP into a single objective problem. Among these methods we find the aggregation
method. This is one of the first methods used to generate Pareto optimal solutions. It is to trans-
form the problem (MOP) in a problem (PMOλ) which combines the different cost functions of
the problem into a single objective function F generally linear [26]:

F (x) =

n∑
i=1

ciλifi(x) (15)

Where λi and ci are weights and scaling coefficients, according to the application, that the
different objectives are not necessarily commensurable. The constants ci are usually initialized
to 1

fi(x∗) where fi(x∗) is the optimal solution associated to the objective function fi considered



252 I. Harbaoui Dridi, R. Kammarti, M. Ksouri, P. Borne

Figure 6: Computation procedure
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Figure 7: Dominance example

separately. The idea of the aggregation method (Figure 8) is to fix a weight vector i.e. find a
hyper-plane in the objective space (a line for a bi-criteria problem) with a fixed orientation. The
Pareto optimal solution is the point where the hyper-plane has a common tangent with a feasible
space. The advantage of the aggregation method is to produce a single solution and thus do not
require interaction with the decision maker.

Figure 8:

Multi-objective optimization and computing of lower bounds

The computing of lower bounds has been studied in literature for several scheduling problems
which we quote: the problems with a machine [27], with parallel machines [28] and [29], the hybrid
flow-shop problems [30] and the flexible job shop problems [31]. These proposed methods for
computing of the lower bounds are generally based on the relaxation of constraints (preemption of
tasks, constraints related resources ...) to minimize one or more criteria for optimal scheduling.
Based on these methods and seen that we don’t have information on the optimal solutions
associated with different cost functions fi for our problem we should compute the minimum
value to determine the scaling constants ci . For this objective, we use the relaxation of various
constraints. To find a minimum value associated with the criterion of total travel cost f1 =∑
k∈K

∑
i∈N

∑
j∈N

CkdijXijk, we have treated this problem to the travelling salesman problem when we

try to minimize
∑
i∈N

∑
j∈N

dijXij . We subsequently determine the routing crossed by a single vehicle,

minimizing the total travel distance by incorporating the constraints and capacity precedence.
What gives us dmin .p.c.
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dmin .p.c = min(
∑
i∈N

∑
j∈N

dijXij) (16)

By setting K, the number of vehicles used, we get:

dmin k.p.c =
dmin .p.c

K
(17)

Consequently, we acquire a value f1b that represents a minimum value of the total travel cost.

f1b =
∑
k∈K

Ckdmin k.p.c (18)

To determine the minimum value of the total tardiness time, we fix K the vehicles number and
find out the population Pnode/vehicule . Thus, we calculate the total tardiness time for each
individual and determine the minimum.

f2b =
∑
k∈K

∑
i∈N

∑
j∈N

max(0, Di − li)Xijk (19)

Knowing that for the criterion of tardiness, a better lower bound is zero. We will have therefore:{
c2 =

1
f2b

s.c.f2b ̸= 0
(20)

4.5 Computational results

To test our approach, we use benchmark problem instances generated by Li and Lim [19]
from Solomon’s ones [32]. Corresponding to Solomon’s classification of C1, C2, R1, R2, RC1
and RC2, their data sets were also generated in six classes: LC1, LC2, LR1, LR2, LRC1 and
LRC2. The LC problems are clustered whereas in the LR problems, providers and customers
are randomly generated. Therefore in the LRC problems the providers and the customers are
partially clustered and partially randomly distributed. While LC1, LR1 and LRC1 problems
have a short scheduling horizon, LC2, LR2 and LRC2 have longer scheduling one. [33] In our
work, we consider a vehicle number k ranging between 1 and 25. Table 1 shows the results of
our simulation using the parameters of the problem LRC1. Of course, for every given solution,
we note the corresponding routing, crossed by each vehicle.

Nsol: represents the number of non dominated solutions.
Nk: represents the vehicles number used.
We observe that our approach generates a multiple number of solutions that give flexibility of
choice for the decision maker and that by using two different methods to determine the vehicles
number used, minimizing the compromise between the total travel cost and the total tardiness
time. We also observe that we obtain a total tardiness equal to zero with a tolerable cost.

5 Conclusion

In this paper, we have presented our approach to solve the m-PDPTW, based on Pareto
dominance method, with use of genetic algorithm and lower bounds. Our purpose was in a first
part a brief literature review on the VRP, 1-PDPTW and m-PDPTW. The mathematical for-
mulation of our problem is detailed in second part. Then, we have detailed the use aggregation
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LRC1 Nsol Nk f1b f2b f1 f2 F (x)

LRC101 4 11 67971,97 39,08 187085,73 2,173 1,09
192150,78 2,09
192843,93 1,32
194911,78 0,651

LRC101 1 25 67971,97 0 216261,26 0 2,49
LRC103 2 11 645,1144 0 1946,2465 0 1,09

1711,304 0,429
LRC103 1 25 645,1144 0 2081,1978 0 2,49
LRC105 3 9 697,0005 0,823 1862,0582 4,28 0,89

1965,2465 0,823
1947,6537 4,27

LRC105 2 25 697,0005 0 2171,1193 0,107 2,49
2246,6729 0

LRC107 1 11 647,345 0 1803,9515 0 1,09
LRC107 1 25 647,345 0 2171,1006 0 2,49

Table 1: Results for the LRC1 problem

method and lower bounds to determine a set of solutions, minimizing our objective functions.
Simulation was presented in a last part by using benchmark’s data.
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