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Abstract: Channel estimation is an important and necessary function per-
formed by modern wireless receivers. The goal of channel estimation is to
measure the effects of the channel on known or partially known transmission.
The usual practice in acquiring knowledge about a channel is to model the
channel and then acquire the parameters involved in the model. This paper
proposes a variable partial update model for adaptive communication channel
estimation with a view to improving signal error at the receiver station. The
proposed model is composed of finite impulse response transversal adaptive
filter and least mean square adaptation algorithm. The performance of the
proposed model was compared with the full update model. The evaluation re-
sults indicated that the proposed model performed better than the full update
model in terms of computational complexity, memory load, and convergence
rate.
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1 Introduction

Channel refers to one way telecommunication link or transmission medium through which
information or signal is transmitted from a transmitter to a receiver. It may either be physical or
logical depending on the application, for example cables, and radio frequency are physical chan-
nels while control and traffic channels within the ratio frequency channel are logical channels. In
estimation theory, it is assumed that the desired information is embedded in a noisy signal. Noise
adds uncertainty and if there is no uncertainty then there would be no need for estimation. The
channel deforms the transmitted signals often in unpredictable ways. To retrieve the information
that is transmitted, the received signal has to be processed. The retrieval of information about
the channel either from the received signal or from the signal sent is known as channel estima-
tion. The major sources of impairment in wireless channels include channel time-variation, Inter
Symbol Interference, and Co Channel Interference [6]. In order to deal with these problems, the
transmitted signal needs to be processed at the receiver station. A core feature of many modern
communication systems is their ability to adapt to the working environment. The technology
at the heart of these flexible systems is an adaptive digital filter whose coefficients change in
response to external conditions [3]. An adaptive filter has coefficients that are updated by some
types of adaptive algorithms to improve or optimize its response to a desired performance. In
general, adaptive filters consist of two basic parts: the filter which applies the required processing
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on the incoming signal to be filtered and an adaptive algorithm which adjusts the coefficient of
the filter to improve its performance [1]. Many computationally efficient algorithms have been
developed for adaptive filtering [2]. They are based on either a statistical approach such as
least-mean square (LMS) algorithm or a deterministic approach such as recursive least-square
(RLS) algorithm. The major advantage of the LMS algorithm is its computational simplicity.
The RLS algorithm conversely, offers faster convergence but with a higher degree of compu-
tational complexity. Increased popularity of mobile phones and other wireless communication
products provide the demand for developing appropriate techniques to improve the performance
of existing system for reliable transmission of data over wireless communicational system. Many
applications in wireless communication like channel estimation and echo cancellation require the
adaptive filter to have a very large number of co-efficient, and updating the entire coeflicient
is costly in terms of power, memory and computation, and sometimes impractical for mobile
units [2]. In this paper, an improved computational model for adaptive channel estimation is
proposed. The adaptive channel estimator is modelled using finite impulse response traversal
adaptive filter. The adaptation process of the filtering is performed using Variable Partial Update
LMS algorithm. The coefficient of the adaptive filter is partially updated to reduce computa-
tional cost and memory load, while at the same time updating the step size parameter to enhance
the speed and the accuracy of convergence. The outline of this paper is as follows. In section
2, the review of related works is carried out, and in section 3, the proposed model is described
together with the adaptation algorithm used. Simulation and results are presented in section 4,
and section 5 concludes the study.

2 Related work

Several research works have been done in developing computational models and adaptation
algorithms for adaptive communication channel estimation but all the models failed to address the
issues of convergence rate, memory load and computational complexity efficiently. In particular,
no research work has considered the comparison of the full update and the partial update of
the adaptive digital filter coefficients using the parameters memory load, convergence rate and
computational complexity. In an attempt to reduce computational complexity and improve
asymptotic performance, [4] Proposed active tap detection LMS algorithm. Though the research
work reduces computational burdens as well as unsatisfactory poor convergence rate asymptotic
performance of the adaptive tap in a long channel but storage location is provided for the entire
adaptive tap which is quite expensive. Also, [2| proposed partial updating of the LMS adaptive
filter to reduce the cost of power, memory load and computation. Sequential partial update
LMS is employed in their work. They analyzed the alternating odd/even partial update LMS
algorithm and derived stability bound on step size parameter for wide sense stationary and
cyclo-stationary signals based on external properties of the matrix 2-norm but comparing with
the proposed model, the memory load and computational complexity is still large. The behavior
of three variants of variable step size LMS algorithm for training based multi-user detection
in a CDMA system was studied by [10]. Two of the algorithm have smaller computational
complexity and memory load but still suffers from the fact that their steady state error and
speed of convergence depend on the same parameters (the step size), therefore complementary
pair variable step size LMS was introduced. Although the proposed algorithm has an increased
computational complexity and memory load, but it has better speed performance and more
simple parameters setup which are very important in practical applications. A number of previous
LMS algorithms were analyzed by [5]. They pointed out their weaknesses and proposed a variant
of modified variable step size LMS algorithm which was tested and can ensure convergence in
any cases and can provide a higher speed of convergence and a better level of tracking ability.
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The normalized LMS algorithm is adapted to get higher speed of convergence by adjusting
the step size through the power of input signals. However, we can hardly make an accurate
estimate of the auto correlation matrix and mean square error practically. They also said that
variants of variable step size LMS algorithms have been proposed, but in all of them, the step
size equation can be written as p(n + 1) = apu(n) + yp where p is a function and depends on
the different VSS-LMS algorithm, o« and « are constant, p is the step size and n is the time
index. Previous research works focused on improving the effect of channel on transmitted signal
through proposition of variants of adaptation algorithm and design of improved adaptive digital
filters, this work however, compare the performance of full-update and variable partial update
variants of the adaptation algorithm with design of adaptive digital filter using index factors.
The three performance metrics considered are convergence rate, memory load and computational
complexity.

3 Architecture of the proposed model

The block diagram for Variable Partial Update LMS Model is applied in this work, Figure 1
depict the model, while the adaptation module of the proposed model is an improvement on [2]
which is depicted in Figure 2. The difference between the model developed in [2] and this work is
the updates of the coefficients. This model uses index factors of three and five for updates while [2]
uses alternate even and odd updates of the coefficients The model consists of four major modules
vis-f-vis; unknown channel, FIR filter, summer (>_), and adaptation algorithm. The unknown
channel is positioned parallel to the FIR filter so that the same input signal can be transmitted
simultaneously. The estimation is adaptive and parallel, this is because in wireless situation the
paths that a signal takes between the transmitter and the receiver may keep changing. The signal
transmitted through the unknown channel is the desired training signal d(k), while the signal
transmitted through the FIR filter output is the estimated training signal y(k). The two signals
are transmitted through the summer to give the estimated error signal e(k).The estimated error
signal is then used to update the coefficient of the FIR filter using the adaptation algorithm
called Variable step size Partial Update Least Mean Square algorithm (VPU-LMS) [6].

It is assumed that the variable partial update LMS filter in fig 2 is a standard transversal
FIR filter of length L > 5. Let (z;,) be the input sequence and let (w; ;) denote the coefficients
of the adaptive filter.

Wn = [wl,n, w2, nw3,n...wL,n|
Xn = [zl,n,22,nx3,n...xL,n|
Where the terms define above are for the instant n and T denotes the transpose operator. Also,
let d(n) denotes the desired response. It represents a known training signal which is transmitted
over a noisy channel with unknown FIR transfer function. It was assumed that d(n) obeys a
FIR model given by

T

d(n) =z, + k(n) (1)

Where k(n) is the autoregressive noise signal that is independent of the input sequence X,,. We
also assumed that the filter coefficient is a mutually exclusive set. The elements of the set are
coefficients with index factors of three and five i.e. filter length that is divisible by three and
five. Therefore the set S is defined as S = {ws, ws, wg, wg, wig....}

The proposed algorithm called variable partial update LMS algorithm. The algorithm up-
dates only the coefficient of the adaptive filter with index factors of three and five. It also makes
sure that only the active coefficients (i.e. value not equal to zero) are used for the update process.
The step size parameter is updated to ensure convergence of the algorithm. The algorithm is
described in following steps:
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Figure 1: The block diagram for Variable Partial Update LMS Model
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Figure 2: Transversal FIR Filter Structure for the Variable Partial Update-LMS Model
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e Compute the output of the adaptive filter

T
y(n) = wy;n; (2)
where j € S and T is the Transpose operator.

e Compute the output error
e(n) = d(n) —y(n) 3)
where d(n) = x, + K(n) is the desired output of the transfer filter

e Update the coefficient of the adaptive filter using Equation(1).

Wi(n—1),j+ pe(n)* X(n),j if j € S; and W0,

Wot1 = { Win-1),; otherwise.

e Update the step size of the adaptive filter

p(n+1) = ap(n — 1) + p(n)p(n) (5)

Hmax if ]M(’I’L + ]-) > Wmaz,
M(n + 1) = Hmin if ]M(n + 1) < Umin, (6)
u(n+1) otherwise.

_ /87(” - 1) if J:u(n + 1) > Umazs

V() = { v(n—1) otherwise. (7)
where v and (8 are constant values, 0 < v, 8 > 1. The algorithm will adjust the parameter v
with the constant 5. To ensure convergence the parameter 8 must satisfy that 0 < 8 < 1

4 Simulation and Results

To test the performance of the proposed variable partial update LMS algorithm, we simulated
the discrete signal sequence generated in Mat lab environment using pseudo random number
generator with zero mean and variance of one, and a noise signal sequence which is obtained by
introducing 0.8 noise level to the discrete signal. These signals form the desired signals that were
input to the finite impulse response filter. The outputs from the filter form the actual signal
which was subtracted from the desired signal to obtain the mean square error. To establish
the superiority of the proposed partial update model over the full update model, training was
performed using fifty different sets of input data with different value of the step size to obtain
the average result of the mean square error (MSE) and the efficiency of the two models.

Table 1 shows the values of the step size and other simulation parameters. The full update
LMS algorithm and our partial update LMS algorithm were simulated using various values of
step size. Figure 3 shows the comparison of the full update and the partial update model

The proposed algorithm exhibit variable update of the step size. In order to test this algorithm
for speed and accuracy of convergence, we used the parameters specified in Table 2 for the case
when step size is less than the minimum step size (0.0036). Figure 4 shows a specimen comparison
of the proposed partial update model with the equivalent full update model.

We illustrate the case when the step size is set to a large value or possibly larger than
the maximum step size. Table 3 shows the parameters used for the simulation. In a normal
situation, when the mean square error is magnified, stability of the filter is affected. This is
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Step Hmaz Hmin Y « ﬁ Length
Size Value

0.001 1.9 0.001 0.0007 0.2 0.01 50
0.0011

0.0013

0.0017

0.0020

0.0030

Table 1: Simulation Parameters for Fixed Step Size (u)

Compare Partial and Full Update using Fixed Step Size (0.001)

—#— y1 (FULL)
—&— y2 (PARTIAL)

Mean Square Error

NUMBER OF

ITERATION

Figure 3: Mean Square Error versus Number of Iteration for Step Size of 0.001

Step Hmaz  MHmin v « B Length
Size Value

0.0036 0.09 0.01 0.0007 0.2 0.01 50
0.0049

0.0052

Table 2: Simulation Parameter for Variable Step Size, for (@ < ptimin )

Compare Partial and Full Update using Variable Step Size For { g < pmin ), (0.0035)
30 T T T T T T T T

——y1 (FULL)
—&—y2 (PARTIAL)

Mean Square Error

NUMBER OF ITERATICON

Figure 4: Mean Square Error versus Number of Iteration for (u < timin)
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shown in Figure 5 where the mean square error was magnified and the accuracy of convergence
was adversely affected for the full update model. However, the reverse is the case for the partial
update model, with the speed and accuracy of convergence still enhanced.

Compare Partial and Full Update using Variable Step Size For ( ¢ > pmax ), (0.25)
20 T T T T T T

———y1 (FULL)
18- —&— y2 (PARTIAL) |

Mean Square Emor

NUMBER OF MERATION

Figure 5: Mean Square Error versus Number of Iteration for (@ > fimaz)

Step Hmax  Hmin Y «Q 5 Length
Size Value

0.25 1.9 0.001 0.0007 0.2 0.01 50

0.30

0.40

Table 3: Simulation Parameter for Variable Step Size for (¢ > pimaz)

The filter length was varied with a constant step size to evaluate the system performance. The
filter length is equivalent to the number of coefficients required for the update of the filter. The
parameter considered here is the memory load. Each of the coefficient requires a unit storage,
therefore the lesser the number of coefficient the lesser the memory requirement. For the full
update model, all the coefficients are used for the update process therefore the memory load (M)
is equivalent to the filter length (L). In the case of partial update model, only the coefficients
with index factors of three and five are used for the update. Therefore memory load M = % + %
Where % and % are the sets of filter length divisible by factors of three and five respectively.
Simulation was carried out for fifty iterations using the parameters in Table 4. The result shown
in Figure 6 revealed that the performance of the system is below 50% for full update model and

up to 86% for the partial update model.

4.1 Computational Complexity

Computational complexity refers to the number of hardware resources required to implement
the system. The complexity of an algorithm determines the hardware requirement and com-
putational cost. The hardware required to implement the full update and the partial update
finite impulse response transversal adaptive filter are the multiplier, summer and the memory.
The multiplier is use to multiply the input with the corresponding weight, memory to store the
weights, and summer to perform the addition. The computational complexity of our model was
estimated by counting the number of hardware resources as described in [12] such as multipliers,
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Filter  tmazr Mmin 0% «@ I3 Step size Memory Load

Length Full Update  Partial Update
20 0.02 0.01 0.0007 0.2 0.01 0.003 20 9
50 50 23
70 70 33
90 90 42
100 100 47
130 130 61
150 150 70
170 170 79
200 200 93
250 250 126

Table 4: Simulation Parameter for System Performance Evaluation
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Figure 6: System Performance versus Filter Length
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summers and memories required for a single iteration for each model as shown in Table 5. The
evaluation result shown in Figure 7 revealed that the computational complexity of the proposed
partial update model is considerably lower when compared with the full update model.

Filter ~Memories Summers Multipliers Memories Summers Multipliers

length  (FU) (FU) (FU) (PU) (PU) (PU)
20 20 20 20 9 9 9
50 50 50 50 23 23 23
70 70 70 70 33 33 33
90 90 90 90 42 42 42
100 100 100 100 47 47 47
130 130 130 130 61 61 61
150 150 150 150 70 70 70
170 170 170 170 79 79 79
200 200 200 200 93 93 93
250 250 250 250 126 126 126

Table 5: Evaluation of Computational Complexity

250 4 BFULL UPDATE
B PARTIAL UPDATE

200 4

FILTER LENGHT
&8

a8

50 4

1 2 3 “ & 6 7 B ] 10

COMPUTATIONAL COMPLEXITY

Figure 7: Filter Lengths versus Computational Complexity

5 Conclusions

To achieve the continuous update of the coeflicient using adaptive algorithm, an improved
computational model was proposed in this research, the novelty of which is the adoption of
finite impulse response transversal adaptive filter to filter the noise signal from the transmitted
signal. The adaptation process employed the concept of variable partial update least mean
square algorithm. In the update process, only the coefficients with the factors of three and five
are used. The performance of the proposed model was compared with the full update model using
the following parameters convergence rate, memory load, and computational complexity in Mat
lab environment. The simulation results revealed a better performance of the proposed model
over the full update model. The proposed framework will particularly be suitable for wireless
communication environment where the characteristics of the channel changes with time. The
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results obtained in the study will go a long way to reducing the effect of channel time variation,
inter-symbol interference and co channel interference on the transmitted signal.
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