
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 11(5):645-656, October 2016.

Statistical Automaton for Verifying Temporal Properties
and Computing Information on Traces

A. Ferlin, V. Wiels, P. Bon

Antoine Ferlin*
1. IFSTTAR, 20 rue Élisée Reclus,
BP 70317, 59666 Villeneuve d’Ascq Cedex, France
2. ONERA/DTIM, 2 avenue E. Belin
BP74025, 31055 Toulouse, France
3. AIRBUS OPERATIONS S.A.S.,
316 route de Bayonne, 31060 Toulouse Cedex 09, France
*Corresponding author: antoine.ferlin@ifsttar.fr

Virginie Wiels
ONERA/DTIM, 2 avenue E. Belin
BP74025, 31055 Toulouse, France
virginie.wiels@onera.fr

Philippe Bon
IFSTTAR, 20 rue Élisée Reclus,
BP 70317, 59666 Villeneuve d’Ascq Cedex, France
philippe.bon@ifsttar.fr

Abstract: Verification is decisive for embedded software. The goal of this work is to
verify temporal properties on industrial applications, with the help of formal dynamic
analysis. The approach presented in this paper is composed of three steps: formal-
ization of temporal properties using an adequate language, generation of execution
traces from a given property and verification of this property on execution traces.
This paper focuses on the verification step. Use of a new kind of Büchi automaton
has been proposed to provide an efficient verification taking into account the indus-
trial needs and constraints. A prototype has been developed and used to carry out
experiments on different anonymous real industrial applications.
Keywords: Statistical Büchi Automaton, Information Computation, Runtime Veri-
fication, Dynamic analysis, Linear Temporal Logic.

1 Introduction

Development of critical software is constrained by certification standards. More precisely, DO-
178 concerns avionics software. It defines objectives for each step of the software development
process and, in particular, for the verification phase. Airbus has investigated the use of several
kinds of verification methods. These methods can be classified using two criteria: formal or not,
static or dynamic. Classic verification means are typically not formal: test is dynamic, review
is static. Formal techniques are typically static, but there has been a lot of work recently on
run-time verification which can be classified as formal and dynamic.

The origin of this work is the verification of temporal properties in an industrial context.
These properties cannot easily be verified using the current Airbus verification framework based
on static analysis [18]. Another way consists in using dynamic analysis to perform the verifi-
cation of temporal properties. Testing can be difficult for properties involving timing aspects.
Simulation, which consists in testing a software on a simulated hardware, has been experimented

Copyright © 2006-2016 by CCC Publications

646 A. Ferlin, V. Wiels, P. Bon

and allows the analysis of the program at each step of its execution. However, even if command-
ability and observations are easier with simulation than with testing, considered executions are
very long and manual verification of a property is difficult and costly.

This paper presents a dynamic analysis approach to formally verify temporal properties
on execution traces generated by simulation. The context of the industrial process restricts
the dynamic analysis approach to off-line analysis techniques, i.e. a posteriori verification on
execution traces. Constraints also exist on the generation of traces: values of variables at given
instants are obtained by positioning explicit observation points in the program, and the number of
such observation points must be minimized for efficiency reasons. Execution traces are generated
using existing test cases. Test strategy is not considered in this paper. It is focused on the use of
patterns of temporal properties to compute statistical information. The aim is double. The first
goal is to conciliate the temporal properties which classically have a semantics on infinite traces,
with finite traces. Secondly, when a property is violated, this method can provide additional
information to the client instead of the basic "Ok/Failure" response. When bugs occurs, this
method limits the necessary investigations, hence reduces the debugging cost.

An overview of the proposed approach is detailed in section 2. Section 3 positions our work
according to related work. Section 4 recalls classic definitions and details the verification phase
using automata that compute statistical information. Section 5 provides experiment results in
terms of verification time and statistical information use. Finally, we conclude about our work
and provide future work elements in Conclusions.

2 Overview of the approach

We are working within the Airbus simulation framework. This framework simulates hard-
ware of the program to be verified. The simulated hardware is instrumented, so the program
executed on this framework is the embedded software. Extraction of execution data consists in
generating a trace with the help of observation points. They can only be defined using a debuggin
interface. Our goal is to verify a temporal property on an execution trace of a given program.
The first step consists in defining an adapted language to formalize a temporal property. The
second step is trace generation. Verification of the property on the trace is the last step (Fig-
ure 1). In this paper, we focus on the last step. However, we give some essential elements of the
first two steps hereafter.

The first step consists in identifying properties to be verified. Currently, the industrial
methodology verifies temporal properties using non-formal static analysis. In other words, the
verification phase is done by engineers using code review. Hence, the goal of this approach is
typically focused on industrial needs. Actually, verification cost and time have to be reduced as
much as possible and safety has to be at least identical with the present verification approach.
In addition, the new equipped approach must be as simple as possible for operators.

Formalisation of temporal properties consists of four steps. Firstly, some properties are
gathered from critical software. Secondly, properties are classified. Then, a dedicated language
is defined from gathered classified properties. This language is based on a combination between
a subset of LTL and regular expressions. Some operators on variables had been defined in order
to have access to some information such as the time of the last modification of a variable. The
language definition is not the purpose of this article and can be found in [9]. Use of a dedicated
language is a consequence of the desire for simplification for operators. Finally, the properties
studied are formalized using our dedicated language.

One issue with a posteriori dynamic analysis is gathering traces. Indeed, trace size quickly
increases with execution time and with the number of collected variables. We use two ways to
minimize traces. Firstly, we only collect, at each step of the program (a step is a C instruction),

Statistical Automaton for Verifying Temporal Properties
and Computing Information on Traces 647

Program

Property

Observation
Points

Execution
trace

Result

Static
Analysis

Simulation
framework

Trace
Verification

Figure 1: Overview of the approach

variables which are necessary to verify a given property. Secondly, we only collect these variables
if their value changes. More details on trace generation can be found in [8].

This last step consists in verifying a formalized property on an execution trace. This step
needs as input an execution trace given by the previous steps. Properties are formalized using
language defined in the first steps and are then transformed into a Büchi automaton which is
executed on the trace to be verified.

3 Related Work

Existing work on run-time verification [1] can be classified in two categories: on-line or a
posteriori. An "on-line" approach means that the verification is done during the execution
of the programme, whereas an "a posteriori" approach is done on execution traces. On-line
verification consists either in adding assertions to the programme to express the properties to
be monitored during the execution, or in executing, parallel to the programme, an automaton
representing the property and taking as inputs data from the programme execution. A lot of
work exists for on-line verification, especially for Java programmes and in the aspect-oriented
programming community [7,12,13,16,19]. We work on C programmes which are either sequential
hard-realtime programmes, or multitask realtime programmes (ARINC 653, POSIX platforms)
and for certification reasons, we are restricted to an "a posteriori" verification. Existing works
are fewer and differentiated by the following criteria.

The first criterion is the nature of the considered execution traces. In several existing works,
complete execution traces can be obtained by listening to all the variables of the programme [3,
17]. This is not the case in our context: traces are obtained by positioning observation points
in given places of the programme and we use static analysis to compute a minimized number of
observation points. Indeed, the bigger the number of observation points, the bigger the size of
the execution trace.

The second issue is the implementation of an efficient verification technique on the traces
obtained that can be very large. Existing works are based on rewriting techniques [12] or specific
techniques, such as translation of LTL formula into state machines [11] [6]. We use an existing

648 A. Ferlin, V. Wiels, P. Bon

tool for LTL properties and propose specific techniques for regular expressions and parametric
properties.

The last criterion is the way to handle finite traces. Classic models in temporal logic are
infinite, while we want to verify properties on finite traces. Existing work proposes different
solutions to this problem. [2] proposes an adaptation of the temporal language semantics. [15]
and [4] propose a multi-valued logic to handle the cases where it is not possible to conclude on
the satisfaction of a formula. In particular, [4] needs to generate two Büchi automata (one for
the LTL3 property φ and one for ¬φ). This method requires time when the property depth is
high. [15] also gives an interesting account of different work dealing with the finite trace issue
and especially work that explores means to decide whether all possible infinite completion of a
finite trace verifies a given property. A simple solution can also be to loop on the last state in
order to render a finite trace infinite, but it modifies the satisfiability of some formulae [13]. We
propose a simple pragmatic approach to this problem in section 4.2.

4 Verification of properties on execution traces

The last step of our approach consists in verifying a formalised property on an execution
trace. This step needs as input the formalised property and a corresponding trace. The property
is formalized and the trace is generated according to the method proposed in 2. The temporal
property is translated into a Büchi automaton using Ltl2ba [10]. Hence, it is executed on the
trace to perform the evaluation of the mapping formula.

In order to explain our approach, let us recall the definition of a Büchi automaton, which is
based on the definition of the classic automaton.

4.1 Definitions

[14] defines an automaton as follows:

Definition 1 (Automaton). An automaton is a 5-uplet A = (Q,Σ,→, q0, F such that:

• Q is a set of states

• Σ is an alphabet

• →∈ Q× Σ×Q is a transition relation

• q0 is an initial state

• F ⊆ Q a set of final states.

Definition 2 (Accepting condition). A word w ∈ Σ∗ n length sized is a word of L(A) [14] where
A is an automaton, if and only if there is a sequence (q)i,i∈[|0,n]| which begins at q0, such that
∀i ∈ [|0, n− 1]|, (qi, wi, qi+1) ∈→ and q − n ∈ F .

An automaton A recognises the regular language L(A) defined on the Σ alphabet. All words
of L(A) are finites words.

The Büchi automaton definition can now be expressed using the automaton definition [5]:

Definition 3 (Büchi Automaton). A Büchi automaton is an automaton such that the accepting
condition of a word is modified, in order to accept infinite words.

Definition 4 (Accepting condition). A word w ∈ Σω is a word of L(B), where B is a Büchi
automaton, if and only if there is a sequence (q)i,i∈N which begins at q0 and such that ∀i ∈
[|0, n− 1]|, (qi, wi, qi+1) ∈→ and ∀j ∈ N, ∃k ∈ N, k > j and qk ∈ F .

Statistical Automaton for Verifying Temporal Properties
and Computing Information on Traces 649

After the recall of these definitions, the next step consists in handling finite trace with a
Büchi automaton which only accepts infinite words or traces.

4.2 The finite trace problem

Let us assume that φ is a temporal property and σ∞ an infinite trace. The property is
transformed into a Büchi automaton Bφ. Hence, σ∞ � φ if and only if σ∞ is recognized by Bφ.

We deal with finite trace, whereas the semantics of LTL is on infinite ones. A classic solution
consists in transforming the finite trace into an infinite one by looping over the last element. But
this solution introduces border effects which have to be controlled. Hence, if we have a result
on the trace σ∞, what will we able to conclude about the finite trace σ which derives from σ∞?
This is how we propose to respond to this question.

A specific algorithm has then been defined to handle the execution of the Büchi automaton
at the end of the trace. This algorithm answers the following question: is there an infinitely
often accessible final state? This algorithm performs:

1. Computing the strongly connected components of the Büchi automaton, by only taking
into account transitions where the formula is true.

2. Defining a direct acyclic graph (dag), equivalent to the Büchi automaton, from the strongly
connected components computation.

3. Browsing the direct acyclic graph for each element of the current state.

4. Determining for each state of the dag accessed from an element of the current state if it is
a final state of the Büchi automaton.

We have thus implemented a verification algorithm for the property on the trace. But the
transformation of a finite trace into an infinite one modifies the satisfiability of some formulae.

The satisfiability of a property may change according to the nature of a trace, as presented
in the following instances.

Example 5. The formula 3(2A ∨ 2¬A) (which means: eventually we always have A or we
always have not A) is true with a finite trace which loops at the end, because the last state is
A or non-A (Figure 2,b)). With an infinite trace, this formula may be false (Figure 2,a)). For
instance, if the trace alternates A and non-A at each state, the formula will be false.

a)

A ¬ A A ¬ A A ¬ A A ¬ A A

b)

A ¬ A A ¬ A A ¬ A A ¬ A A

Figure 2: Two traces

In the considered context, the satisfaction of a formula may depend on the place where the
execution is stopped in the program.

Example 6. In the following example, the first trace is a theoretical trace corresponding to an
infinite execution of the program. The other two traces are prefixes of the infinite trace where
execution has been stopped at different execution times. The property 2(P ⇒ 3Q) is false on
the first prefix, but the same property is true on the second prefix.

650 A. Ferlin, V. Wiels, P. Bon

P Q P P Q

P Q P

P Q P P Q

Figure 3: Satisfiability depends on the end of trace

In order to evaluate the interpretation of a property, we propose the following algorithmic
method. φ is a property to be verified on an execution trace σ. Aφ refers to the Büchi automaton
associated to φ. σi is a trace state which is not the last trace state. Hence, there are two possible
cases:

• if the set of reachable states of Aφ is the empty set, then the property will be violated;

• When the last state of σ is reached, there is a loop over this one. Aφ is then considered as
a graph. Transitions with the formula evaluated to false are deleted. The mapping direct
acyclic graph is computed and is browsed in order to determine if an accepting state is
reachable infinitely often. Two sub-cases are possible:

– An accepting state of Aφ is reachable infinitely often. Hence the property is satisfied
until the end of trace. However, it could be violated after this point of the programme
execution. This is the case of safety and liveness properties.

– Any accepting state of Aφ is infinitely often reachable. The property is not satisfied.
However, it would be satisfied after this point of the programme execution. This is
the case of liveness property.

4.3 Statistical Büchi automaton, a pragmatic approach

We propose a pragmatic approach to handle "end of trace". We provide the user with
statistical information on the satisfaction of the property. Two kinds of information are provided:

• Additional information for all properties which have not been verified. When the property
is not verified, the last state where the property is true is provided. This information helps
targeting where the potential problem is inside the code.

• Additional information for properties which comply with a pattern. This second aspect
allows the giving of a set of information which is richer than the other one, because infor-
mation is given even if the property is evaluated to true.

Statistical information depends on the pattern and is computed using an automaton which
is executed instead of the Büchi automaton.

The definition of the statistical Büchi automaton is split into two parts hereafter. The first
part consists of the statistical counters. The second part consists of their integration into a
classic Büchi automaton.

Definition 7. C is a set of integer variables called counters. ΛC : (C → Z) → (C → Z) is a set
of actions on C, depending on current value of all variables. Operations are characterized by the
following grammar:

〈 operations 〉 ::=
| 〈 operations 〉 〈 operation 〉

Statistical Automaton for Verifying Temporal Properties
and Computing Information on Traces 651

This rule defines a list of operations. The list can be empty or not.

〈 operation 〉 ::= 〈 counter 〉 = 〈 expression 〉

This rule defines an operation. An operation always modifies a counter.

〈 expression 〉 ::= 〈 ZConst 〉
| 〈 counter 〉
| 〈 expression 〉 + 〈 expression 〉
| - 〈 expression 〉
| 〈 expression 〉 × 〈 expression 〉
| 〈 expression 〉 ÷ 〈 expression 〉
| 〈 expression 〉 % 〈 expression 〉
| Min(〈 expressions 〉)
| Max(〈 expressions 〉)

This rule defines an expression. Integer constants (ZConst) and counter can be used inside
operations. Authorized operations are addition, opposite, *plication, euclidean division, modulo,
minimum and maximum.

〈 expressions 〉 ::= 〈 expression 〉,〈 expression 〉
| 〈 expression 〉,〈 expressions 〉

This rule is used for Min and Max operations. The list has at least two expressions.

Hence, a statistical Büchi automaton is :

Definition 8. A statistical automaton is a five-uplet A = (Q,Σ,→, q0, F, C0) where:

• Q is a set of states

• Σ an alphabet

• →⊆ Q× Σ× ΛC ×Q a transition relation

• q0 ∈ Q is the initial state;

• F ⊆ Q a set of accepting states;

• C0 : C → Z¿, is a function which returns the initial value of each element of C

Statistical information depends on the pattern and is computed using an automaton which
is executed in parallel with the Büchi automaton.

Example 9. The automaton of the pattern 23p allows the computing of the number of states
where p is true (Figure 4). Each time p is true, the nb_p counter is incremented. At the end of
trace execution, we know how many times p was true.

In this pragmatic approach, the statistical automaton replaces the classic Büchi automaton.
Each time a transition is true, the mapping list of operations is applied to the counters. Cur-
rently, three patterns are recognized (these patterns have often been encountered in the studied
industrial applications). The past version of each pattern is recognized to

652 A. Ferlin, V. Wiels, P. Bon

start

¬ p

p{nb p++}

Figure 4: Automaton of the pattern 23p

• 23p

• 2(p⇒ q)

• 2(p⇒ 3q)

Adding a new pattern with this approach is facilitated. Actually, each pattern is described
inside a file (formula, statistical automaton, printing system of statistical information). Hence, if
an agent wants to collect additional information for a new pattern, he can define the automaton
attached to that pattern to compute his own information.

The next step of this work consists in testing our approach on real industrial cases.

5 Implementation and Experiments

In this section, we detail some elements of the implementation of the prototype AnTarES, and
propose experiments on real industrial cases. Let us recall, AnTarES is an industrial proprietary
prototype.

5.1 AnTarES, a tools for Analyse of Trace of Execution of Software

AnTarES implements our approach from the transformation of the temporal property into
a Büchi automaton to the verification of this property on an execution trace. AnTarES uses
Ltl2ba for the transformation. The major steps are summarized in figure 1

AnTarES is written in OCaml with around 16, 300 lines of code. The verifier is split into
three applications:

• a reader module, which reads the trace. This task can be done by several readers dispatched
on several networked computers. This fact allows the distribution of the calculus load on
available resources. In addition, two trace formats are currently handled by the tool: the
standard VCD format (Value Change Dump - ASCII based format for dump files), and a
data base format. Because these trace formats are transformed into a generic format which
is used for verification, adding a new format is easy. The stored trace σ is a sequence of
states σj . A state is a list of pairs (variable, value);

• a central server module, which will be able to ask the appropriate reader module, if the
reading task is dispatched on several computers;

• a client module, which does the verification.

In order to evaluate our prototype, experiments have been done on traces which come from dif-
ferent avionics software. The goal of these experiments was to check that identified requirements
can be formalized using our specification language and to assess the efficiency of our approach,
for all kinds of properties. As a reminder, verification of temporal properties with non-formal
static analysis (code reviewing) needs several days. We aim to decrease the verification time.

Statistical Automaton for Verifying Temporal Properties
and Computing Information on Traces 653

Our approach has been tested on programs in order to evaluate the different aspects of this
one. The first program is an embedded software, whereas the last one is a hardware model
of the dynamic-analysis framework we use to generate execution trace for the first program.
The experiments conditions are identical for all experiments : the used machine is an octo-core
machine with a 2Ghz-and-512ko-cache processor.

5.2 Experiments on a first software

This experiment evaluates three aspects of our approach: reverse reading, parametric prop-
erties, and computation of additional information for a specific pattern. This software is based
on the Arinc 653 standard. The verified part of this software is around 550 lines of C code. The
Arinc 653 library is around 2,600 lines of C code. It is a multi-task software which is stopped
after a finite number of loops. The software communicates with other applications using dy-
namically created ports. The property consists in ensuring that each port has been initialised
before being used. The size of the trace is relatively small (about 129 states). The property is
verified for all possible values of used_port which are 1,2, and 5 in the trace. The formalized
properties are the shape of �(used_port = x ⇒ 3·(created_port = x)), where x ∈ {1, 2, 5}.
The recognized pattern is �(P ⇒ 3·Q). Then, the mapping statistical automaton computes the
number of occurrences of P (used_port = 1 for example) before Q occurs (created_port = 1).
Table 1: Additional information: Occurrence of
used port

Port Occurrence
1 107
2 2
5 20

Table 2: Computation time
Module Time (s)
Reader 0.015
Server 0.024
Client 0.07

Execution times of each module are displayed in Table 2. Because of the small size of the
trace, only one reader module is used here. This is in charge of the trace reading, the server
makes the link between the reader and the client, and the client is responsible for the verification
itself. Verification time of the client includes transformation of the LTL formula into a Büchi
automaton, duplication of the Büchi automaton and verification of the formula. Verification
of this property on a trace with 129 states is efficient, considering that four properties are
simultaneously verified: one for each value of used_port.

According to table 1, which gather the results of the verification of the properties on the
trace, we can see the usage of each port. Relative to the number of elements, port 1 is used for
82, 9% of the cases, whereas port 2 is used for 1, 6% of the cases.

This experiment shows that statistical information can be used to check orthogonal properties,
such as the number of uses of a port. Indeed, with this statistical information, the used port and
their frequency of use are known.

5.3 Experiments on a second software

This experiment has been done on a model of the Airbus simulation framework. This model
consists of a processor, an interruption control system, an EEPROM, an emitter, and a watchdog.
This model represents 675 lines of C. This is a mono-task software which loops infinitely. The
aim of this study consists in verifying the behaviour of the watchdog. It checks time between
two writing actions on the EEPROM. If the difference between the two writing actions is more
than T0, then an interruption signal is sent to the calculator and the emitter.

In this experiment, we want to verify that a variable must be written in the EPPROM at lest
every T0 seconds. If time is more than T0, a watchdog raises a signal to the controller, otherwise

654 A. Ferlin, V. Wiels, P. Bon

nothing happens.
The property can be split into two sub-properties which are:

• 2((τ − last_write_time > T0) ⇒ signal), means when the delta between the last write
time and the current time (τ) is upper than T0, then signal will be raised (overflow case).

• 2((τ − last_write_time 6 T0) ⇒ ¬(signal)) means when the delta is lower or equal to
T0, then signal will not be raised (nominal case) .

The properties have been verified on a trace with 1, 848, 633 states. In addition, the equations
follow the pattern 2(p⇒ q). Hence, we have information about how much the overflow case and
the nominal case happen. We cut trace reading in 5 reader modules.

Table 3: Second software, time results
Module Nominal Time(s) overflow Time(s)

Reader(min-max) 9.21-10.09 9.21-10.09
Server 3.04 3.04
Client 25.84 35.84

Pattern information says that the nominal case happens 1, 848, 629 times (more than 99, 99%
of the cases) and overflow case happens only 4 times (2.16 × 10−4%). This information is
essential, because it shows that overflow is not frequent. If overflow appears more frequently,
then the software will probably have a bug. The acceptable maximal level of appearance of this
second property depends on the size of the trace and on the software. This kind of problem could
not be detected without statistical information.

Finally, this experiment shows that verification of temporal properties on big traces including
computation of statistical information is efficient (less than 50 seconds, trace reading included).
In addition, use of patterns can help to detect bugs which are complex to find.

5.4 Discussions around the experiments

The experiments have been processed on embedded avionics software and on models of the
dynamic-analysis framework. It shows that the defined approach is efficient on big traces. In-
deed, the order of magnitude of time verification is several hundred seconds in comparison with
several days with a non-formal verification method (code reviewing). Use of patterns to compute
statistical information is useful to help decide if a property is true or false when the entire trace
has been analysed. In addition, this statistical information allows the treatment of orthogonal
properties such as "how much time a port has been used?" (first software).

Conclusions

This paper has presented an approach for the verification of temporal properties on execution
traces of avionics software. This approach was needed because these kinds of properties are
difficult to verify using existing techniques. The definition of the solution was guided by industrial
needs and constraints. This approach proceeds in three steps: definition of a dedicated property
language, generation of trace executions using static analysis, and verification of the property
on the trace. The verification step is built in order to handle finite traces, whereas temporal
properties have a semantics on infinite traces. To do this, additional statistical information
about the trace are provided to help the verifier to conclude about the verification result. This
statistical information depends on the property pattern. Frequently encountered patterns are
implemented in AnTarES. Other patterns can easily be added with the definition of a new
statistical automaton.

Statistical Automaton for Verifying Temporal Properties
and Computing Information on Traces 655

A prototype AnTarES has been developed (18, 500 lines of OCaml code) and integrated into
the Airbus simulation framework. Experiments conducted on industrial applications allowed
us to assess the efficiency of our approach on different kinds of properties and different sizes of
trace. An industrial deployment of the tool would require adding a graphical user interface to
display results and to provide user-friendly ways to write properties. In addition, in order to
simply the specification of properties we aim to improve the language with parametric variable
handling. We hope to improve the handling of past formulae by reverse reading the trace during
the automaton execution. These are parts of future work.

This approach is a contribution to the overall industrial strategy, which consists in reducing
the part of testing in the verification process of avionics software by developing and integrating
static and dynamic analyses techniques [18]. Future work will target means to better combine
static and dynamic analysis.

Acknowledgment

The work is funded by the French national research agency (ANR) in the context of the
Perfect and Re(H)STRAIN Projects.

Bibliography

[1] Runtime verification, 2001-2009.

[2] H. Barringer, A. Goldberg, K. Havelund, and K. Sen (2004); Rule-based runtime verification.
In B. Steffen and G. Levi, eds., Verification, Model Checking, and Abstract Interpretation,
vol. 2937 of LNCS. Springer.

[3] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen (2003); Eagle does
space efficient ltl monitoring. Technical report, Nasa.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart (2011); Runtime verification for
ltl and tltl. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64.

[5] J.Richard Büchi (1990); On a decision method in restricted second order arithmetic. In
Saunders Mac Lane and Dirk Siefkes, editors, The Collected Works of J. Richard Büchi,
Springer New York., 425–435.

[6] Marcelo d’Amorim and Grigore Rosu (2005); Efficient monitoring of omega-languages. In
CAV’05, 364–378.

[7] Doron Drusinsky. The temporal rover and the atg rover. In K. Havelund, J. Penix, and
W. Visser, editors, SPIN Model Checking and Software Verification, volume 1885 of Lecture
Notes in Computer Science. Springer, 2000.

[8] A. Ferlin and V. Wiels (2012); Combination of static and dynamic analyses for the certifi-
cation of avionics software. In Software Reliability Engineering Workshops (ISSREW), 2012
IEEE 23rd International Symposium on, 331–336.

[9] Antoine Ferlin (2013); Verification de propriétés temporelles sur des logiciels avioniques par
analyse dynamique formelle. PhD thesis, Thèe de doctorat dirigée par Wiels, Virginie Sureté
de logiciel et calcul de haute performance Toulouse, ISAE 2013.

656 A. Ferlin, V. Wiels, P. Bon

[10] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proceedings of the
13th International Conference on Computer Aided Verification (CAV’01), vol. 2102 of LNCS.
Springer, 2001.

[11] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal properties
on running programs. In Automated Software Engineering, 2001.

[12] K. Havelund and G. Rosu (2001), Monitoring programs using rewriting. In Automated
Software Engineering, 135 – 143.

[13] Klaus Havelund, Grigore Rosu (2002), A rewriting-based approach to trace analysis. Auto-
mated Software Engineering, 1-21.

[14] S C Kleene (1956), Representation of events in nerve nets and finite automata. In In
Automata Studies. Princeton University Press: Princeton.

[15] Martin Leucker, Christian Schallhart (2009), A brief account of runtime verification. The
Journal of Logic and Algebraic Programming, 78(5):293 – 303, The 1st Workshop on Formal
Languages and Analysis of Contract-Oriented Software (FLACOS07).

[16] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, Grigore Rosu (2012),
An overview of the mop runtime verification framework. International Journal on Software
Tools for Technology Transfer, 14:249–289.

[17] A. Pnueli, A. Zaks (2006), Psl model checking and run-time verification via testers. In FM
2006: Formal Methods, vol. 4085 of LNCS. Springer.

[18] Jean Souyris, Virginie Wiels, David Delmas, Hervé Delseny (2009), Formal verification of
avionics software products. In Formal Methods, Lecture Notes in Computer Science, 5850:
32-546.

[19] Volker Stolz and Eric Bodden (2006), Temporal assertions using aspectJ, Proceedings of
the Fifth Workshop on Runtime Verification (RV 2005), Electronic Notes in Theoretical
Computer Science, 144(4):109 –124.

