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Abstract: This paper considers optimal rate control and routing schemes for
multipath networks which can be formulated as multipath network utility max-
imization problems. In these schemes, maximizing the aggregated user utility
over the network with multipath routes under the link capacity constraints is
the objective of utility maximization problems. By adopting the Lagrangian
method, sub-problems for users and paths are deduced and interpreted from
an economic point of view. In order to obtain the optimal rate allocation, a
novel distributed primal-dual algorithm is proposed, and the performance is
evaluated through simulations under two different fairness concepts. Moreover,
window-based flow control scheme is also presented since it is more convenient
to realize in practical end-to-end implementation than the rate control scheme.
Keywords: multipath networks, rate control, routing, network utility maxi-
mization, optimization.

1 Introduction

Since the publication of the seminal paper [1], the single path rate control and routing schemes
which can be formulated as network utility maximization problems have been extensively studied
in the past years, mainly in the context of Internet congestion control and flow control (e.g., [2]-
[5], and the reference therein).

Recently, there has been much interest in multipath rate control and routing schemes [6]-
[13]. In a multipath routing scheme, each source-destination pair can have several different
paths along which data packet can be transmitted. In these schemes, maximizing aggregated
user utility over the network with multipath routes under the link capacity constraints is the
objective of the multipath network utility maximization problems. These problems are indeed a
combination of multipath routing and rate control and can be viewed as an example of cross-
layer optimization [5] for network architectures, where additional benefits are obtained by jointly
optimizing at the routing (network layer) and rate control (transport layer).

In order to solve the multipath network utility maximization problems, roughly speaking,
multipath rate control and routing schemes can be classed into three categories: primal algo-
rithms [6], [8], dual algorithms [7], [11], and primal-dual algorithms [9], [10], [12]. The primal
algorithms have a dynamical law for adjusting user rate and a static law for generating link
price, and conversely, the dual algorithms have a dynamical law for adjusting link price and a
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static law for generating user rate. Then, the primal-dual algorithms have dynamical laws for
adjusting both user rate and link price. The primal algorithms are based on a penalty function
approach, i.e., they replace the capacity constraints by a penalty function in the optimization
objective [1], [6], [8]. They always tend to produce biased approximates of the optimal operating
points, due to the fact that penalties are only incurred when the capacity constraints are vio-
lated. (In contrast, the optimal operating point is defined to be one that satisfies the capacity
constraints.) As for the dual algorithms, the advantage is that they are designed to compute
the exact optimal operating points when the step sizes are driven to zero in an appropriate
fashion [7], [11]. Then the primal-dual algorithms combine the advantages of both primal and
dual algorithms, and possess a rapid convergence property to the optimums within reasonable
convergence times [9], [10], [12].

In [1], after studying the single-path network utility maximization problem, the authors
discuss the extension to the multipath case, where the flow between each source-destination
pair can be globally split among multiple paths, and present a distributed rate-based congestion
control algorithm. Then in [6] the utility maximization framework for multipath case is further
studied, and a primal algorithm with round-trip delay is proposed and investigated. Meanwhile, a
decentralized sufficient condition for local stability of the delayed algorithm is obtained. In [8], the
sufficient condition for local stability of the primal algorithm with round-trip delay is improved,
i.e., the gain parameter for each route is restricted by the round-trip delay of that route, but
not by the round-trip delays of other routes, even those other routes serving the same users.
Dual algorithms that can produce exact optimal operating points are developed in [2] for single-
path networks. When extended to the multipath cases, the primal variables (i.e., the resource
allocation) may not be unique although the dual variables (i.e., the price) in the dual algorithms
converge. In order to obtain the unique optimum, some researchers relax the multipath network
optimization problems and make them strictly concave. The authors in [9] address the problem by
adding a quadratic term onto the objective problem and provide rigorous proof of convergence for
the dual algorithm. Then in [11] the author proposes a novel relaxed network utility maximization
problem and derives a new class of controlled splitting multipath dual algorithms. In [12],
by combining the first order Lagrangian method and filtering mechanism, a new primal-dual
algorithm is proposed to eliminate typical oscillation behavior in multipath networks.

In this paper we investigate the optimal rate control and routing scheme formulated as
multipath network utility maximization problem, decompose the optimization problem into two
sub-problems for users and paths through Lagrangian method, and give the interpretations for the
sub-problems and dual problem from an economic point of view. Furthermore, for each user and
its available paths, we analyze the relationship between the prices charged by paths and that paid
by the user, and on basis of the difference between them we propose a novel distributed primal-
dual algorithm for the optimal rate control and routing, which can converge to the optimum of
the utility maximization problem, and present the practical end-to-end implementation in the
Internet.

The rest of this paper is organized as follows: in Section 2, we analyze the model for jointly
optimal rate control and routing scheme known as multipath network utility maximization;
in Section 3, we present a novel distributed primal-dual algorithm for optimal rate control and
routing; in Section 4, we give some simulation results to illustrate the convergence of the proposed
algorithm; finally, we conclude the paper in Section 5.
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2 Multipath Network Utility Maximization

2.1 Model Description

Consider a network consisting of a set of links L, a set of paths P and a set of users S. Each
link l ∈ L has capacity Cl. Each user identifies a unique source-destination pair. There are
multiple paths between each source-destination pair. Associated with each user s ∈ S is a set of
paths P (s) where each path p ∈ P (s) is a collection of links L(p). Obviously, associated with
a path p ∈ P (s) is a set of paths P (s) which are all associated with the same user s, and with
identical source and destination. In following analysis, if a user s transmits along a path p, then
we write p ∈ P (s); if a path p uses a link l, then we write p ∈ P (l), where P (l) is the set of paths
that use link l.

In this paper we make no assumptions about whether the paths p ∈ P (s) are link-disjointed.
Obviously the ability to generate link-disjointed paths can assist in the construction of highly
robust end-to-end communication for the source-destination pair which is labeled by user s, but
the model also covers the case where some or all of the paths p ∈ P (s) of user s share some
common path segments.

For user s, assume the transmission rate on path p is xsp(t), then the total flow rate of user s
is ys(t) =

∑
p:p∈P (s) xsp(t). Meanwhile, the aggregated rate on link l is zl(t) =

∑
p:p∈P (l) xsp(t).

User s attains a utility Us(ys(t)) when it transmits at rate ys(t). The multipath network utility
maximization is modeled as the following nonlinear optimization problem

max
∑
s:s∈S

Us(ys(t))

subject to
∑

p:p∈P (s)

xsp(t) = ys(t)∑
p:p∈P (l)

xsp(t) ≤ Cl

over xsp(t) ≥ 0.

(1)

Here, maximizing the aggregated utility of the user rate ys(t) over all users with the con-
straints of link capacities is the objective of network. We are interested in the following class of
utility functions proposed in [14]

Us(ys(t)) =


ws log ys(t), if αs = 1,

ws
ys(t)

1−αs

1− αs
, if αs ̸= 1,

(2)

where ws is considered as the willingness to pay of user s, αs is the parameter of fairness concept.
This family of utility functions are known to characterize a large class of fairness concepts and
have been investigated extensively [13], [15], [12]. In particular, if we set αs = 0, the optimization
problem reduces to throughput maximization. If αs = 1, proportional fairness among competing
users is obtained; if αs = 2, then harmonic mean fairness; and if αs = ∞, then max-min
fairness [14]. For example, these utility functions are considered in wireless networks and optimal
network performance and energy efficiency is achieved by jointly optimizing congestion control
and power control [13].

2.2 Model Analysis

The utility maximization problem (1) with utility functions (2) is regarded as the primal
problem with primal variables x = (xsp(t), p ∈ P (s)) and y = (ys(t), s ∈ S). Then we can obtain
the following theorem
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Theorem 1. The rate allocation model (1) with utility functions (2) is a convex programming
problem. The optimal total flow rate of each user, i.e. y∗s , exists and is unique. However, the
optimal flow rate of each user on every path, i.e. xsp(t), may be not unique.

Proof: From the nonlinear programming theory [13], the objective of (1) is concave with respect
to primal variables. The constraints of (1) are linear, and thereby all of them are convex. So the
feasible set is compact. We deduce that (1) is a convex programming problem. Furthermore,
the optimization problem is strictly convex with respect to primal variable y = (ys(t), s ∈ S),
then the optimal flow rate y = (y∗s , s ∈ S) exists and is unique as a consequence of strict
convexity. However, the objective of (1) is not strictly concave with respect to primal variable
x = (xsp(t), s ∈ S, p ∈ P ), thus the optimal flow rate of each user on every path may be not
unique. 2

In order to investigate the optimum of model (1), we firstly give the Lagrangian of this
nonlinear optimization problem

L(x, y;λ, µ) =
∑
s:s∈S

Us(ys(t)) + λs

 ∑
p:p∈P (s)

xsp(t)− ys(t)

+
∑
l:l∈L

µl

Cl −
∑

p:p∈P (l)

xsp(t)− ε2l

,

(3)
where λ = (λs, s ∈ S) is the price vector with element λs ≥ 0, which is the Lagrange multiplier
associated with the equality on user s, and can be considered as the price per unit bandwidth
paid by user s; µ = (µl, l ∈ L) is the price vector with element µl ≥ 0, which is the Lagrange
multiplier associated with the inequality constraint on link l, and can be considered as the price
per unit bandwidth charged by link l; ε2l is the slack variable, which can be considered as the
spare capacity of link l.

Then the Lagrangian (3) can be rewritten as

L(x, y;λ, µ) =
∑
s:s∈S

(Us(ys(t))− λsys(t))+
∑
s:s∈S

∑
p:p∈P (s)

xsp(t)

λs −
∑

l:l∈L(p)

µl

+
∑
l:l∈L

µl

(
Cl − ε2l

)
.

(4)
Notice that the first term in (4) is separable in ys(t), and the second term is separable in

xsp(t). Thus the objective function of the dual problem is

D(λ, µ) = max
x,y

L(x, y;λ, µ) =
∑
s:s∈S

As(λs) +
∑
s:s∈S

∑
p:p∈P (s)

Bsp(λs, γsp) +
∑
l:l∈L

µl

(
Cl − ε2l

)
, (5)

where
As(λs) = max

ys(t)
Us(ys(t))− λsys(t), (6)

Bsp(λs, γsp) = max
xsp(t)

xsp(t)(λs − γsp), γsp =
∑

l:l∈L(p)

µl. (7)

Then, the optimal flow rate can be denoted as

y∗s(λs) = argmax Us(ys(t))− λsys(t),

x∗sp(γsp) = argmax xsp(λs)(λs − γsp),

where
∑

p:p∈P (s) xsp(λs) = y∗s(λs), γsp =
∑

l:l∈L(p) µl.
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Hence, the dual problem is

min D(λ, µ)

over λs ≥ 0, µl ≥ 0, s ∈ S, l ∈ L.
(8)

We can interpret the sub-problems (6)(7) from an economic point of view as follows.
The sub-problem (6) is regarded as the USER problem. In this problem, every user s tries

to maximize its own utility which depends on the total flow rate ys(t). Meanwhile, the user has
to pay a price for its using bandwidth. Since λs is the price per unit bandwidth paid by user
s, then λsys(t) is the total cost that user is willing to pay. Thus, the USER problem (6) is a
nonlinear optimization problem that every user is to maximize its own profit.

The sub-problem (7) is regarded as the PATH problem. In this problem, µl is the price per
unit bandwidth charged by link l, then γsp is the total price associated with the path p of user s.
The product xsp(t)λs is the cost paid by user s for path p, and xsp(t)γsp is the total cost charged
by path p. Hence, the PATH problem (7) is a linear optimization problem that every path is to
maximize its own revenue.

Meanwhile, the dual problem (8) can be considered as the NETWORK problem. The ob-
jective is to minimize the total price charged by all links under the constraints that users are
guaranteed with certain levels of satisfaction. Indeed, the price paid by a user and those charged
by its paths is an equilibrium from the game theory point of view.

For model (1) and its Lagrangian (4) we can obtain the following theorem.

Theorem 2. At the positive optimum of model (1), the optimal total prices associated with paths
for a user are all equal to the optimal price paid by the user.

Proof: Indeed, at the optimum of model (1), from the Karush-Kuhn-Tucker condition for opti-
mality of an optimization problem, we can obtain

U ′s(y∗s)− λ∗
s ⇒

{
= 0, if y∗s > 0,

≤ 0, if y∗s = 0,
∀s ∈ S,

λ∗
s − γ∗sp = λ∗

s −
∑

l:l∈L(p)

µ∗
l ⇒

{
= 0, if x∗sp > 0,

≤ 0, if x∗sp = 0,
∀s ∈ S, ∀p ∈ P (s).

Thus, for the multiple paths that a user uses, e.g., p1, p2 ∈ P (s), the optimal total price
associated with each path is∑

l:l∈L(p1)

µ∗
l =

∑
l:l∈L(p2)

µ∗
l = λ∗

s =
ws(∑

p:p∈P (s) x
∗
sp

)αs
. (9)

2

3 Distributed Algorithm

3.1 Rate Control Algorithm

To obtain the optimal flow rate in a decentralized architecture, we present the following
distributed primal-dual algorithm, which depends on locally available information.

Each user s updates its flow rate xsp(t) on path p with the following primal algorithm

dxsp(t)

dt
= (κxsp(t)(λs(t)− γsp(t)))

+
xsp(t)

, (10)



An Optimal Rate Control and Routing Scheme for Multipath Networks 661

λs(t) =
ws(∑

p:p∈P (s) xsp(t)
)αs

, (11)

γsp(t) =
∑

l:l∈L(p)

µl(t), (12)

where κ > 0 is the step size; a = (b)+c means a = b if c > 0 and a = max{0, b} if c = 0.
Each link l updates its price µl(t) with the following dual algorithm

dµl(t)

dt
=

(
υ
zl(t)− Cl

Cl

)+

µl(t)

, (13)

zl(t) =
∑

p:p∈P (l)

xsp(t), (14)

where υ > 0 is the step size.
In the primal-dual algorithm, user s computes the price λs(t) paid for path p according to

(11), obtains the total price γsp(t) charged by the path from (12), and updates its rate xsp(t)
according to (10), which is a fluid model depending on the difference between the price paid by
user s and the price charged by path p. Meanwhile, link l observes the aggregated rate zl(t) on
it, and updates its price µl(t) according to (13), which is identical to the packet loss rate on the
link.

Obviously, the primal-dual algorithm is distributed, which only depends on locally available
information. Obviously, the rule for rate update (10)(11)(12) is a scaled gradient algorithm for
the PATH sub-problem, and can be reduced to the single-path rate control algorithm when only
a single path is available for each user. Meanwhile, the rule for price update (13)(14) is also a
gradient algorithm, and is similar to the single-path price algorithms designed for solving the
dual problems.

3.2 End-to-End Implementation

In practical end-to-end implementation, window-based flow control where the window size
is increased or decreased upon receipt of acks (positive acknowledgments) or nacks (negative
acknowledgments) is more convenient to implement than rate-based flow control mechanism
since the former is inherently self-clocking. In order to obtain a window flow control scheme, we
discretize the system (10)(11)(12) and obtain

xsp(t+ δ)− xsp(t)

δ
=

κxsp(t)(∑
p:p∈P (s) xsp(t)

)αs

wr −

 ∑
p:p∈P (s)

xsp(t)

αs ∑
l:l∈L(p)

µl(t)

 . (15)

Here, we assume xsp(t) > 0.
Let Wsp(t) be the window size of user s on its path p at time t. We follow the approximation

relating data transmission rate and window size [14]

xsp(t) ≈
Wsp(t)

RTTp
,

where RTTp is the round trip time of path p.
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Let Ap(t, t+ δ) and Np(t, t+ δ) denote the numbers of acks and nacks received by user s on
path p in the time interval [t, t+ δ), respectively. Then

Ap(t, t+ δ)

δ
≈ xsp(t) ≈

Wsp(t)

RTTp
,

and
Np(t, t+ δ)

δ
≈ xsp(t)

∑
l:l∈L(p)

µl(t).

Thus,

xsp(t+ δ)− xsp(t)

δ
=

Wsp(t+ δ)−Wsp(t)

Ap(t, t+ δ)

Ap(t, t+ δ)

RTTpδ
=

Wsp(t+ δ)−Wsp(t)

Ap(t, t+ δ)

Wsp(t)

RTT 2
p

.

Using the approximations above, the window-based flow control mechanism becomes

Wsp(t+ δ)−Wsp(t) =
κwsRTTp

(
∑

p:p∈P (s)Wsp(t)/RTTp)αs
Ap(t, t+ δ)− κRTTpNp(t, t+ δ). (16)

In order to damp the oscillation when window size is too small, we modify (16) into

Wsp(t+ δ)−Wsp(t) = κwsRTTpAp(t, t+ δ)− κRTTp

 ∑
p:p∈P (s)

Wsp(t)

RTTp

αs

Np(t, t+ δ). (17)

The window-based flow control mechanism (17) can be interpreted as follows: when each ack
is received, the window size is increased by a fixed amount which is in proportion to RTTp; when
each nack is received, the window size is decreased by a fixed amount which is in proportion to
RTTp(

∑
p:p∈P (s)Wsp(t)/RTTp)

αs . Hence, the window flow control scheme realizes the adaptive
increase/multiplicative decrease (AIMD) principle which is used in the original TCP version and
other variants.

For the total price associated with each path in practical end-to-end implementation, we
present a way to communicate path prices to users implicitly, i.e., a user deduces the aggregated
price on each path from observed round trip time.

Notice that queuing length bl(t) evolves according to

dbl(t)

dt
= (zl(t)− Cl)

+. (18)

Comparing (18) with (13), we can observe that the link price µl(t) at time t is proportional
to the current queuing delay ql(t), i.e.,

µl(t) = υ
bl(t)

Cl
= υql(t).

Then the price on path p is proportional to the end-to-end queuing delay at time t

γsp(t) =
∑

l:l∈L(p)

µl(t) = υ
∑

l:l∈L(p)

ql(t).

Given the end-to-end propagation delay Dp, the price associated with path p can be deduced
from the round trip time RTTp observed at the user s

γsp(t) = υ
∑

l:l∈L(p)

ql(t) = υ(RTTp −Dp).

In practical implementation, Dp can be estimated by the minimum RTTp observed so far.
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4 Simulation

In this section, we investigate the performance of the proposed primal-dual algorithm and
give simulation results to illustrate the convergence of our algorithm.

We make no assumption that the paths for a user are link-disjointed and consider the general
multipath communication where some of the paths for a user can share some path segments in
common, just as shown in Figure 1. There are two users in this simple network. Two paths are
available for each user, i.e., paths A→B→C and D→E→F→G for user 1 (pair of S1 and D1), and
paths D→E→F→G and H→I→F→G for user 2 (pair of S2 and D2). Obviously, the two paths
for user 2 share a common link which is labeled by L5. There are seven unidirectional links with
capacities C = (C1, C2, C3, C4, C5, C6, C7) = (3, 2, 3, 4, 4, 2, 3)Mbps. In the proposed algorithm,
we choose w = (w1, w2) = (2, 3), and κ = υ = 0.05.

A

D E

I

GS2

H

BS1 D1

D2F

L1
C

L2

L3
L4

L5

L6

L7

Figure 1: Multipath network topology

4.1 Proportional Fairness

We firstly consider the proportional fairness among competing users, thus the fairness pa-
rameter is α1 = α2 = 1. Without loss of generality, assume the initial rate of each user on every
available path is 1Mbps. The optimum obtained by the proposed algorithm is listed in Table 1.
The optimal solution solved by nonlinear programming software LINGO is also presented in the
table.

variable x∗11 x∗12 x∗21 x∗22 y∗1 y∗2
algorithm 2.0000 0.4000 1.6440 1.9560 2.4000 3.6000
LINGO 2.0000 0.4000 1.7360 1.8640 2.4000 3.6000

Table 1. The optimum under multipath network topology: proportional fairness

Obviously, the algorithm is convergent and efficient to solve the optimum of multipath net-
work utility maximization problem under the general multipath network topology. Also as shown
in Table 1, the optimal rate of user 2 on its paths is not unique, which has been proved in The-
orem 1. However, the total optimal rate for each user is unique since the optimization problem
is strictly convex with respect to primal variable y = (ys(t), s ∈ S).

The simulation results for proportional fairness in this general multipath network topology
are shown in Figure 2, where (a) and (b) are the optimal prices for users 1 and 2, respectively,
and (c) and (d) are the optimal rates of users 1 and 2, respectively. Obviously, both the prices for
users and rates of users converge to the optimum. It can also be observed that at the optimum
the optimal total price associated with each path that a user uses is equal to the optimal price
paid by the user.
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Figure 2: Performance of the algorithm: proportional fairness

4.2 Harmonic Mean Fairness

Now we consider the harmonic mean fairness among competing users, thus the fairness pa-
rameter is α1 = α2 = 2. The optimums obtained by the proposed algorithm and LINGO are
both listed in Table 2. Obviously, the algorithm is convergent and efficient to solve the optimum
of utility maximization problem. Also, the optimal rate of user 2 on its paths is not unique,
however, the total optimal rate for each user is unique since the optimization problem is strictly
convex with respect to y = (ys(t), s ∈ S).

variable x∗11 x∗12 x∗21 x∗22 y∗1 y∗2
algorithm 2.0000 0.6969 1.5748 1.7283 2.6969 3.3031
LINGO 2.0000 0.6969 1.6070 1.6961 2.6969 3.3031

Table 2. The optimum under multipath network topology: harmonic mean fairness

The simulation results for harmonic mean fairness in this general multipath network topology
are shown in Figure 3, where (a) and (b) are the optimal prices for users 1 and 2, respectively,
and (c) and (d) are the optimal rates of users 1 and 2, respectively. Obviously, the algorithm is
convergent to the optimum of multipath network utility maximization problem. Meanwhile, at
the optimum the optimal total price associated with each path of a user is equal to the optimal
price paid by the user.
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Figure 3: Performance of the algorithm: harmonic mean fairness

5 Conclusions

In this paper, we have studied the optimal rate control and routing schemes in communication
networks with multipath routing, which are formulated as multipath network utility maximiza-
tion problems. We decompose the utility optimization problem into two sub-problems, deduce
the dual problem through the Lagrangian method, and give the interpretation for them from
an economic point of view. In order to obtain the optimum, we propose a novel primal-dual
algorithm for jointly optimizing rate control and routing, and give the window-based flow con-
trol scheme in practical end-to-end implementation. We don’t assume that whether the paths
of a user are node-disjoint, thus the algorithm also covers the case where the paths for a user
are node-disjoint in parallel, which is regarded as concurrent multipath communication. Then,
we evaluate the performance of the proposed algorithm through simulations under two different
fairness concepts. Simulation results confirm that the algorithm can achieve the optimum within
reasonable convergence times.
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