Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VI (2011), No. 4 (December), pp. 615-621

Floating License Management - Automation Using Web
Technologies

A. Doloca, O. Tanculescu

Adrian Doloca

Gr.T. Popa University of Medicine and Pharmacy,
Department of Mathematics and Informatics
Romania, Universitatii 16, 700115 Iasgi

E-mail: ad@umlfiasi.ro

Oana Tanculescu

Gr.T. Popa University of Medicine and Pharmacy,
Department of Fixed Prosthodontics

Romania, Universitatii 16, 700115 Iasi

E-mail: otanculescu@eprpru.umfiasi.ro

Abstract: This paper examines the use of distributed computing based on
web services with application to floating license management. The main goal is
to automate the processes pertaining to the management activities and ensure
at the same time that the security and flexibility requirements are met. We
present the challenges posed by these requirements, propose a design and some
implementation aspects using the latest .NET development platform.
Keywords: floating license management, distributed system, web service,
multithreading, .NET development.

1 Introduction

Software is a vital component of today’s businesses. The fast development of the software
industry has produced applications for automating virtually every task, thus saving time and
finances. At the same time protecting software from unauthorized usage became a strong ne-
cessity. Except the public domain that contains material not owned or controlled by anyone,
all other software products are subject to the copyright law which gives the author of an orig-
inal work exclusive right regarding its distribution, publication and modification. The software
license is for that matter a legal instrument governing the usage and redistribution of software
applications protected by copyright, but at the same time a technical means which will prevent
the application from running when no authorization is available. This allows a better control of
the product’s distribution and ensures that illegal use will be kept to a minimum allowing the
producer to economically benefit from the investment and to prevent revenue loss [1].

Concerning the method of protection, two main categories of software licensing systems are
most popular: node-locked and floating licenses. Other license types and a method of optimiza-
tion are presented in [2].

Node-locked licenses allow an application to be used on only one machine. This is achieved
by making the license machine dependant. Therefore the license will include some unique IDs of
hardware components like hard drives, CPU ID, network card ID, which will be checked as part
of the license verification process.

Floating licenses (roaming licenses) allow multiple users to share access to a software
product. Usually the number of users simultaneously running the application is limited, this
limit being embedded in the license itself. This provides a higher degree of flexibility since users
are not restricted to using the application from a designated workstation. The software can be

Copyright (© 2006-2011 by CCC Publications

616 A. Doloca, O. Tanculescu

installed on any number of client computers but if the limit is reached a new user whishing to
start it is put on hold and will be able to start its session as soon as an existing session is finished.

FlexNet and the older version FlexLM |3| are the de facto standards in electronic licensing
being a partner of major software producing companies. These products support a large variety
of license management scenarios focusing at maintaining a high degree of flexibility in choosing
feature and pricing configurations. Using FlexNet software producers can generate, transfer and
activate licenses and can also protect their products against piracy. [4] and [5] deliver an insight
into the challenges that floating license management poses and shows how FlexLLM finds solutions
to these challenges.

This paper presents an original software system that provides flexibility in the management
of floating licenses in enterprise environments, attaining a high degree of automation by using
the latest Internet development technologies. It also discusses details of implementation and
benefits of this system. The presentation is structured as follows. Chapter 2 looks into the
features that an advanced floating license management system is required to have. Chapter 3
shows the structural aspects and communication between system components. Security issues
generated by exchanging information over public networks are addressed in chapter 4. Some
implementation aspects and recommendations can be found in chapter 5. Final conclusions are
presented in chapter 6.

2 System Features and Functions

The floating license management system should have at least some features to ensure that
the terms of the license contract are enforced and that this is done in a secure manner, with
minimum effort by automating the necessary tasks. Below we present these features in detail.

A. Limit the number of simultaneously running application instances according
to the license contract

At startup the application will connect to the license server in order to check if it has the
authorization to run. If the maximum number of running instances has already been reached,
the requesting application is denied the right to start and will close. When an ongoing working
session is finished, the corresponding seat on the license server is freed and another application
can start. Of course, some requirements exist for this feature:

- the license information must be centralized on a license server;

- the license server must be accessible in a network by all client computers which have the
application installed.

B. Ensure security of the license content and prevent fraud attempts

The license content resides on the license server usually in the form of a text or a binary
file which contains information pertaining to the company that acquired the license and the
maximum number of simultaneously running application instances. In the proposed system the
following set of parameters are used:

a) License-I1D: uniquely identifies the license in the license database residing at the producer
of the software. It contains a random number and possibly the creation date and time.
This will block, for example, any attempt to use older licenses that have been issued to the
same company, for the same software.

b) Company-ID: short identifier of the company that purchased this license. It prevents license
usage across companies by simply copying the license content.

Floating License Management - Automation Using Web Technologies 617

c) Application-ID: identifies the application the license refers to. Different software can use
the same license management system by using different Application-IDs. It prevents illegal
use of licenses issued for other software.

d) Configuration-ID: this piece of information specifies the configuration/version of the soft-
ware which will be running (demo version, full version, light version, professional version,
enterprise version, etc.). It ensures that only the authorized version of the software will be
used.

e) Hardware-ID: uses one or a combination of multiple serial numbers of certain hardware
pieces to ensure that the license is used only on a certain machine that was authorized
for license management purposes. The most popular hardware related serials are: the
hard drive ID (volume serial number), network card physical address (MAC), CPU ID.
This prevents installing the license on several machines and using them simultaneously for
increasing the number of running software instances over the authorized limit.

f) MNRI (Maximum number of simultaneously running application instances): specifies how
many instances of the software can run at the same time on client computers that use the
license server. If this limit is reached, additional instances are prevented from running until
an existing session is terminated.

The above listed information is combined into a unique string — the license content, which is
encrypted using a strong encryption algorithm and stored in the license file. The encryption
protects the license from any attempts to adjust the contained parameters for using it in other
environments than the one it was issued for.

C. Provide flexibility for license configuration and installation

For maximum configuration and installation flexibility the license file will be regularly syn-
chronized with a remote server controlled by the software producer. The first time the license
server is started it will contact the remote server for the first synchronization. As a result, the
license file is created and subsequently used until the next synchronization takes place. During
each license synchronization, any modifications in the license parameters on the remote server
are automatically transmitted to the license server. In this way no manual updating process of
the license is required. This process is depicted in figure 1, in chapter 3. The synchronization
ensures that the license used by the client is up-to-date and it hasn’t been tampered with. At
the same time all contract amendments that are made at one time are quickly and automatically
implemented on the client’s server.

D. Provide flexibility of working with multiple application types and multiple
configurations of a software product

Due to the Application-ID and Configuration-ID parameters the license is linked to a specific
software product and a version/configuration. The same license structure can be used with other
software products just by adapting these two parameters accordingly. On the client side, one
license server will be able to handle multiple licenses for multiple applications and configurations.

E. Offer flexible administrative functions for the client company as well as for
the producer of the software
Regarding the used licenses, the client company is able to perform the following tasks:

- install license during the first synchronization;

618 A. Doloca, O. Tanculescu

- update license information during subsequent synchronizations;
- monitor and manage active users and licenses;
- configure intranet and internet network settings, etc.
The software producer has also an administration tool that enables them to:

- create new licenses according to specifications given in section B of this chapter;

modify existing licenses (upgrade or downgrade);

monitor the synchronization state of each client;

block or activate a license, etc.

3 System Architecture

The architecture of the floating license management system is based on a distributed structure
(figure 1) comprising three major components:

1) Client workstations running the licensed software;

2) In-house license server which authorizes software utilization on client workstations on
one hand, and performs license synchronization with the remote server on the other hand;

3) Remote License Server controlled by the software producer, hosts the license database
and performs automatically synchronizations over the Internet with the clients, acting as
a web service.

The distributed structure using an in-house license server and a remote license server ensures
centralized administration of the licenses both at the client and at the software manufacturer.
Also the license installation and update are done automatically with a minimum of intervention
from human operators. This accomplishes two main goals: ease of administration and security
of the license content. Other advantages include use of public networks (Internet) and flexibility
in case of software upgrade [6].

The client computer sends a message to the in-house license server during startup requesting
authorization for software utilization. At the server, a service (e.g. Windows service) receives
the message and based on the content of the license residing in the license file and on the current
number of running application instances sends back a response message authorizing or denying
software utilization. Using a web service client, the license server checks periodically with the
remote license server if there are any modifications and, if necessary it updates the license file.
If this communication fails, then a warning is issued on the in-house license server but the
functionality is not affected. Checking with the remote license server is attempted again and if it
fails repeatedly, after a specific amount of time, the license on the in-house license server expires,
which results in blocking all software utilization on client workstations. Normal functionality is
resumed after a successful communication between the in-house and the remote license servers.
This mechanism ensures that the license is up-to-date at all times and that fraud attempts are
avoided.

Floating License Management - Automation Using Web Technologies

619

Client

computer 1

Client

computer 2 computer n

Client Workstations
(with licensed
[=1 [=]

software)

A

v

License Service

i N
—_— License i = !‘ License File
In-house License Manager I
Server Desktop App. T
(Client Side)
Client for
License Web Service
|4

Remote License Server
(Software Producer Side)

l ‘ SSL channel

’TSSL channel
vl

License Web Service

License
Database

License
Manager

Web App.

Application
authorization

License
synchronization

Figure 1: Floating License Management System Architecture

620 A. Doloca, O. Tanculescu

4 Security issues

Being a system that relies on exchanging information over public computer networks and
also working with private information (i.e. the license content) in an environment that is not
controlled by the software manufacturer, security has an important role. There are two aspects
of this problem: securing the data transfer during the synchronization process and protecting
the license content.

An effective method for dealing with the first aspect is to create an encrypted communication
channel using Secure Socket Layer Connections (SSL). Thus, not only the data sent to the remote
license server but also the license content received back, are protected from possible outside
attacks. The subject of using SSL for Windows web services is covered in [7].

The information contained by the license file (see chapter 2, section B) must also be protected
as it contains sensitive information established by the license contract. Because the information
is combined into a unique string, this can be encrypted using an advanced encryption algorithm
like Rijndael [8] and stored as a string representation in the license file. The license service will
read and decrypt internally this information at startup.

5 Implementation aspects

The overview architecture of the license server is presented in figure 2. As the application
has to be able to communicate at all times, it was implemented as a Windows service which
works in the background and spawns two additional execution threads. One is the TCP Port
Listener thread which receives all the requests from the local network for application start-up
authorization and keeps track of the machines and active users that use the licenses. The other
thread is responsible for synchronizing the license file content with the remote license server.
This structure allows timely responses through both communication channels by keeping the
two activities as independent as possible.

_ B License Service
= <+—Pr
Settings File y
< » Worker Object
= E)
License File I
v v
P | Thread 1 Thread 2 —
- i TCP Listener License Synchronizer
TCP
Port Y
User list

Figure 2: License Server Implementation Structure

We chose for implementation the Microsoft .NET Framework platform using the Visual Studio
.NET 2008 development environment. Among the reasons:

Floating License Management - Automation Using Web Technologies 621

6

- development support for a wide range of technologies like Web service, Windows service,
Web applications and desktop applications;

- support for programming of TCP Ports;

- very good documentation.

Conclusions

This paper discusses the aspects of floating license management and proposes a specific

system architecture that meets the flexibility requirements and offers at the same time, a high
degree of automation for most of the license management activities. Using the Web service
technology, license installation, activation and synchronization can be performed automatically
by the system. Details of implementation using the latest .NET development framework are
presented.

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

R. Addy, Software License Management, Effective IT Service Management, pp.263-273,
Springer Berlin Heidelberg, 2007.

D. Gull, A. Wehrmann, Optimized Software Licensing — Combining License Types in a License
Portfolio, Gabler Verlag, Vol.1, N0.4, pp. 277-288, August, 2009.

FlexNet Producer Suite for Software Vendors, http://www.flexerasoftware.com/products/flexnet-
producer-suite-software-vendors.htm.

S. Sultan, Floating License Management — A Review of FlexLLM, http://wob.iai.uni-
bonn.de/Wob /images/36311141.pdf.

FLEXIm End Users Guide, http://web.njit.edu/topics/Prog_Lang Docs/html/flexlm/all.htm.

H. Wang et al ,Web services: problems and future directions, Web Semantics: Science,
Services and Agents on the World Wide Web, Vol.1, Issue 3, pp. 309-320, Elsevier, April
2004.

HOW TO: Secure XML Web Services with Secure Socket Layer in Windows 2000,
http://support.microsoft.com /kb/307267.

Advanced Encryption Standard, http://en.wikipedia.org/wiki/Advanced Encryption Standard.

