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Abstract: Fuzzy membrane computing is a newly developed and promising research
direction in the area of membrane computing that aims at exploring the complex in-
teraction between membrane computing and fuzzy theory. This paper provides a
comprehensive survey of theoretical developments and various applications of fuzzy
membrane computing, and sketches future research lines. The theoretical develop-
ments are reviewed from the aspects of uncertainty processing in P systems, fuzzifica-
tion of P systems and fuzzy knowledge representation and reasoning. The applications
of fuzzy membrane computing are mainly focused on fuzzy knowledge representation
and fault diagnosis. An overview of different types of fuzzy P systems, differences
between spiking neural P systems and fuzzy reasoning spiking neural P systems and
newly obtained results on these P systems are presented.
Keywords: fuzzy membrane computing, fuzzy set, multi-fuzzy set, membrane com-
puting, fuzzy reasoning spiking neural P systems, trapezoidal fuzzy number, linguistic
term.

1 Introduction

Membrane computing (MC), introduced by Gh. Păun in [1], is an attractive research field
of computer science aiming at abstracting computing models, called membrane systems or P
systems, from the structures and functioning of living cells, as well as from the way the cells
are organized in tissues or higher order structures. Since then, the MC research has been con-
tinuously and rapidly progressing [2], [3]. There are, basically, three main types of P systems:
cell-like P systems, tissue-like P systems and neural-like P systems [3]. For all cases, a P sys-
tem consists of three basic elements: membrane structure, multisets of objects and evolution
rules. In recent years, the research on neural-like P systems mainly focused on spiking neural
P systems (SN P systems), which were introduced in [4] being a type of P systems inspired by
the neurophysiological behavior of neurons sending electrical impulses (spikes) along axons from
presynaptic neurons to postsynaptic neurons in a distributed and parallel manner. Recently, SN
P systems have become a hot topic in membrane computing [2, 5]- [25].

A fuzzy set is a class of objects with a continuum of grades of membership and is characterized
by a membership (characteristic) function which assigns to each objects a grade of membership
ranging in [0, 1]. The theory of fuzzy sets was proposed by Zadeh in [26] as an extension of the
classical notion of set. Since then fuzzy set theory has been studied extensively over the past
several decades years. Most of the early interests in fuzzy set theory pertained to representing
uncertainty in human cognitive processes [27]. Fuzzy set theory is now combined with other
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methods and applied to problems in engineering, business, medical and related health sciences,
the natural sciences and so on [27]- [34].

P systems are models of computation inspired by the structure and functioning of cells in
living organisms. Since uncertainty is an inherent property of all living systems, an increasing
interest in the development of uncertain mathematical approaches to membrane computing is
emerging due to three main reasons: keeping characteristics of P systems closer to the non-
crisp behavior of real cells; the development of new formal computational models dealing with
fuzzy information; the possibility of applying P systems to model real biological processes, where
handling uncertainty, errors and approximations is necessary. Păun mentioned this in his first
list of open problems in membrane computing for the development of approximate mathematical
approaches in [35] and this topic continued to be discussed in [36]- [38].

A first contribution to this research line was given in [39], by extending the classical model to
several probabilistic ones. Several possible rough set based mathematical models of uncertainty
that could be used in membrane computing were further discussed in [40], [41]. Meanwhile,
several fuzzy approaches based on fuzzy set theory have been introduced [12]- [25] [42]- [48]. The
basic idea of fuzzifying P systems is the substitution of one or all ingredients in a P system with
their fuzzy counterparts to obtain fuzzy P systems. Fuzzy P systems possess the same structure as
crisp P systems but admit the association of numerical fuzzy values to elements in the membranes.
Up to now, several aspects from fuzzy theory has been introduced into cell-like P systems [42]- [48]
and SN P systems [12]- [25]. Fuzzy cell-like P systems mainly focused on theoretical research while
fuzzy reasoning spiking neural P systems (FRSN P systems) concentrated on both theoretical
and application researches. To date, five types of FRSN P systems were proposed for knowledge
representation and reasoning as well as used for fault diagnosis. These FRSN P systems are
fuzzy reasoning spiking neural P systems with real numbers (rFRSN P systems), fuzzy reasoning
spiking neural P systems with linguistic terms (lFRSN P systems), adaptive fuzzy reasoning
spiking neural P systems with real numbers (AFRSN P systems), weighted fuzzy reasoning
spiking neural P systems (WFRSN P systems) and fuzzy reasoning spiking neural P systems
with trapezoidal fuzzy numbers (tFRSN P systems).

Fuzzy membrane computing (FMC) has well established theoretical foundation and real world
applications. To outline the work in the past twelve years on fuzzy membrane computing,
this paper reviews and summarizes theoretical developments and various applications of fuzzy
membrane computing. This comprehensive survey provides an overview of newly developed and
promising research lines in the area of membrane computing as well as lists some promising
research topics. As such, this work will be of interest to advance in the research line of fuzzy
membrane computing, as well as to members of the membrane computing and fuzzy theory
communities, specially newcomers.

The remainder of this paper is organized as follows. Section 2 provides an overview of
theoretical achievements of FMC. The overview of the application development is outlined in
Section 3. Finally, some conclusions and possible further developments are discussed.

2 Theoretical development

This section will present theoretical developments of FMC on the aspects of handling uncer-
tainty in P systems, fuzzification of P systems and fuzzy knowledge representation and reasoning.

2.1 Uncertainty processing in P systems

MC is a formal computational model that rewrites multisets of objects within a spatial
structure inspired by membrane structures and functioning of living cells, as well as from the way
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the cells are organized in tissues or higher order structures and expresses biochemical processes
taking place inside cells by evolution rules. Features of "exact" membrane computing developed
so far are summarized as follows: objects used in computations are exact copies of reactants
involved in biochemical reactions modeled by the rules; an application of a given rule always
yields exact copies of objects that the rule is assumed to produce. However, in real life, cells
do not behave only in this "exact" way. Biochemical reactions may deal with inexact, uncertain
and mutated copies of reactants involved in the cells, and errors may happen accompanying
with a biochemical reaction. This means that since inaccuracy and uncertainty exist in real cells
i.e. real cells show a non-crisp behavior, inaccuracy and uncertainty should be considered when
MC models are established. In this way, actual objects produced when applying rules during
computations, and the actual objects conforming the result of computations themselves, would
not need to be exact copies of the reactants that are assumed to be used when applying the rules
along the computations, but only approximate copies of these reactants.

In [42]- [44], a fuzzy symport/antiport membrane system that uses inexact copies of reac-
tants in the transitions was proposed to handle this kind of inaccuracy and uncertainty. Then,
universality of this fuzzy model of computation was proved. The key ingredients in this model
are the use of fuzzy multisets in configurations, the endowment of evolution rules with threshold
mappings that determine the degree of accuracy of objects to reactants in order to be affected
by the rules, and an appropriate way of evaluating the content of the output membrane at the
end of a halting computation. This is a first step towards the use of fuzzy methods to answer
a question proposed by Păun in the last problem of his first list of open problems in membrane
computing [35]. In [44], a fuzzy model of P systems in which the objects involved in compu-
tations were colored by means of a finite family of fuzzy sets, and several applications of this
model in computational biology were discussed. In [42]- [44], fuzzy methods were used to cope
with the possibility that the objects in the membranes were imperfect, approximate copies of the
reactants involved in the reactions.

Moreover, in [45], a t-norm based approach for handling imprecision was proposed in P
systems. In this work, a P system with vague boundaries in the t-norm approach was proposed
and only string-objects were considered inside the membrane structure.

2.2 Fuzzification of P systems

Uncertainty is an inherent property of all living systems. Curiously enough, computational
models inspired by biological systems do not take, in general, under consideration this essential
aspect of living systems. P systems are computing models inspired by the structure and func-
tioning of cells in living organisms. Thus, it is more than necessary to introduce uncertainty into
P system models to fuzzify them due to the development of new formal computational paradigms
dealing with fuzzy information and the possibility of applying P systems to model real biological
processes, where handling uncertainty, errors and approximations is necessary.

In [46], fuzzy set theory and fuzzy logic were considered in the framework of P systems in
order to deal with imprecise biological information. The motivation of this research was to use
P systems for modeling the functioning of specific cellular structures and phenomena and, as
a final goal, making P systems useful and relevant tools for biologists, and hence motivating
further cooperation among scientists working in the areas of P systems and microbiology.

In [47], two variants of P systems with fuzzy components, P systems with fuzzy data and P
systems with fuzzy multiset rewriting rules, were introduced. The basic idea behind this attempt
to fuzzify P systems was the substitution of one or all ingredients of a P system with their fuzzy
counterparts. In this work, the theory of multi-fuzzy sets was developed and the notion of a
fuzzy multiset rewriting rule was presented to define P systems with the aforementioned fuzzy
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components, fuzzy data and fuzzy multiset rewriting rules. By silently assuming that fuzzy data
were not the result of some fuzzification process, P systems with fuzzy data were shown to be
a step towards real hypercomputation, while P systems with fuzzy multiset rewriting rules were
shown to be equivalent to fuzzy Turing machines. Besides, the idea of P systems with both fuzzy
data and fuzzy multiset rewriting rules was briefly discussed.

In [41], general fuzzy membrane systems with general multi-fuzzy sets and their evolution
rules were introduced by using general multi-fuzzy sets to fuzzification of multisets and P sys-
tems. This kind of fuzzy membrane systems was motivated by some practical applications in
biochemistry and medical science, where weakness causing uncertainty of an occurrence of an
object in a system was determined not only by the number of occurrence copies of that object,
but also by a quality of these copies.

In [48], an orthogonal approach for the fuzzification of both multisets and hybrid sets was
presented. In this work, L-multi-fuzzy and L-fuzzy hybrid sets were introduced to P systems
and a general fuzzy P system with L-multi-fuzzy sets was proposed. Although replacing the
multi-fuzzy sets from [41] with L-multi-fuzzy sets did not improve the computational power of
the resulted P systems, P systems with L-multi-fuzzy sets might be quite useful in modeling
living organisms.

2.3 Fuzzy knowledge representation

Fuzzy reasoning spiking neural P systems (FRSN P systems) are proposed to handle fuzzy
knowledge [12]- [25]. Until now, five classes of FRSN P systems, rFRSN P systems, lFRSN P
systems, AFRSN P systems, WFRSN P systems and tFRSN P systems, have been proposed to
represent fuzzy knowledge. In what follows, we first summarize fuzzy production rules used for
fuzzy knowledge representation. Subsequently, we survey these FRSN P systems with respect to
their development and definitions, providing for each of them the corresponding models for the
considered fuzzy production rules.

Fuzzy production rules

Fuzzy production rules are widely used in fuzzy knowledge representation [29]- [30]. Fuzzy
production rules consist of five types: simple fuzzy production rules, composite fuzzy conjunctive
rules in the antecedent, composite fuzzy conjunctive rules in the consequent, composite fuzzy
disjunctive rules in the antecedent and composite fuzzy disjunctive rules in the consequent. Rules
are discussed below:

A simple fuzzy production rule is of the form

Type 1 Ri: IF pj THEN pk (CF=τi) (1)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty factor; pj
and pk represents two propositions, each of which has a fuzzy truth value in [0, 1]. If fuzzy truth
values of propositions pj and pk are αj and αk, respectively, then αk = αj ∗ τi.

A composite fuzzy conjunctive rule in the antecedent is of the form

Type 2 Ri: IF p1 and · · · and pk−1 THEN pk (CF=τi) (2)

where k ≥ 3, Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty
factor; p1, · · · , pk−1 are propositions in the antecedent part of the rule; pk is a proposition in
the consequent part of the rule. If fuzzy truth values of propositions p1, · · · , pk are α1, · · · , αk,
respectively, then αk = min(α1, . . . , αk−1) ∗ τi.
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A composite fuzzy conjunctive rule in the consequent is of the form

Type 3 Ri: IF p1 THEN p2 and · · · and pk (CF=τi) (3)

where k ≥ 3, Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty
factor; p1 is a proposition in the antecedent part of the rule; p2, · · · , pk are propositions in the
consequent part of the rule. If fuzzy truth values of proposition p1, · · · , pk is α1, · · · , αk, then
α2 = α1 ∗ τi, . . . , αk = α1 ∗ τi.

A composite fuzzy disjunctive rules in the antecedent is of the form

Type 4 Ri: IF p1 or · · · or pk−1 THEN pk (CF=τi) (4)

where k ≥ 3, Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty
factor; p1, · · · , pk−1 are propositions in the antecedent part of the rule; pk is a proposition in
the consequent part of the rule. If fuzzy truth values of propositions p1, · · · , pk are α1, · · · , αk,
respectively, then αk = max(α1, . . . , αk−1) ∗ τi.

A composite fuzzy disjunctive rule in the consequent is of the form

Type 5 Ri: IF p1 THEN p2 or · · · or pk (CF=τi) (5)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty factor; p1 is a
proposition in the antecedent part of the rule; p2, · · · , pk are propositions in the consequent part
of the rule. This type of rules is unsuitable for knowledge representation due to the fact that it
does not make any specific implication [29]. Thus, this type of rules is not discussed here and
will not be considered in the following sections.

rFRSN P systems

Fuzzy reasoning spiking neural P systems with real numbers (rFRSN P systems) were first
introduced in [12] and further investigated in [13]- [15]. The definition of an rFRSN P system is
described in Definition 1.

Definition 1. An rFRSN P system of degree m ≥ 1 is a tuple Π = (A, σ1, . . . , σm, syn, I, O),
where:

1. A={a} is the singleton alphabet (the object a is called spike);

2. σ1, . . . , σm are neurons, of the form σi=(αi, τi, ri) with i ∈ {1, . . . ,m}, where

(a) αi ∈ [0, 1] is a real number representing the (potential) value of spike contained in
neuron σi (also called pulse value);

(b) τi ∈ [0, 1] is a real number representing the truth value associated with neuron σi;

(c) ri is a firing/spiking rule contained in neuron σi, of the form E/aα → aβ , where
α,β ∈ [0, 1], E = an is the firing condition and n represents the number of input
synapses from other neurons to this neuron. The firing condition E = an indicates
that if the neuron receives n spikes, the spiking rule can be applied; otherwise the rule
cannot be enabled until n spikes are received. When the number of spikes received by
a neuron is less than n, value of the spikes received will be updated according to logical
AND or OR operations. For neuron σi, if its firing rule E/aα → aβ can be applied,
then the neuron fires. This means its pulse value α > 0 is consumed (removed) and
it produces a spike with value β;
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3 syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

4 I and O are nonempty sets that represent input neuron set and output neuron set, respec-
tively.

In order to use fuzzy production rules for fuzzy knowledge representation, we need map them
into rFRSN P systems. In the following, we summarize rFRSN P systems for fuzzy production
rules, where value τi of each rule neuron is assigned to the certainty factor of the fuzzy production
rule associated with it.

A simple fuzzy production rule can be modeled by an rFRSN P system Π1, as shown in Figure
1(a), being Π1 = (A, σi, σj , σk, syn, I, O), where

(1) A = {a}

(2) σi is a rule neuron associated with rule Ri with confidence factor τi. Its spiking rule is of
the form E/aα → aβ , where β = α ∗ τi.

(3) σj and σk are two proposition neurons associated with propositions pj and pk with truth
values αj and αk, respectively. Their spiking rules are of the form E/aα → aα.

(4) syn = {(j, i), (i, k)}, I = {σj}, O = {σk}.

A composite fuzzy conjunctive rule in the antecedent can be modeled by an rFRSN P system
Π2, as shown in Figure 1(b), being Π2 = (A, σ1, σ2, . . . , σk, σk+1, syn, I, O), where

(1) A = {a}

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions pj(j = 1, 2, . . . , k)
with truth values αj(j = 1, 2, . . . , k), respectively. Their spiking rules are of the form
E/aα → aα.

(3) σk+1 is an “AND”-type rule neuron associated with rule Ri with confidence factor τi. Its
spiking rule is of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.

(5) I = {σ1, σ2, . . . , σk−1}, O = {σk}.

A composite fuzzy conjunctive rule in the consequent can be modeled by an rFRSN P system
Π3, as shown in Figure 1(c), being Π3 = (A, σ1, σ2, . . . , σk, σk+1, syn, I, O), where

(1) A = {a}

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions pj(j = 1, 2, . . . , k)
with truth values αj(j = 1, 2, . . . , k), respectively. Their spiking rules are of the form
E/aα → aα.

(3) σk+1 is a rule neuron associated with rule Ri with confidence factor τi. Its spiking rule is
of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (k + 1, 2), (k + 1, 3), . . . , (k + 1, k)}.

(5) I = {σ1}, O = {σ2, σ3, . . . , σk}.
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A composite fuzzy disjunctive rule in the antecedent can be modeled by an rFRSN P system
Π4, as shown in Figure 1(d), being Π4 = (A, σ1, σ2, . . . , σk, σk+1, syn, I, O), where

(1) A = {a}

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions pj(j = 1, 2, . . . , k)
with truth values αj(j = 1, 2, . . . , k) respectively. Their spiking rules are of the form
E/aα → aα.

(3) σk+1 is an “OR”-type rule neuron associated with rule Ri with confidence factor τi. Its
spiking rule is of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.

(5) I = {σ1, σ2, . . . , σk−1}, O = {σk}.
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(b) Π2 for composite fuzzy con-
junctive rules in the antecedent

(c) Π3 for composite fuzzy conjunctive
rules in the consequent

(d) Π4 for composite fuzzy dis-
junctive rules in the antecedent

Figure 1: rFRSN P systems for fuzzy production rules

lFRSN P systems

The first version of fuzzy reasoning spiking neural P systems with linguistic terms (lFRSN
P systems) was introduced in [16] and further expanded in [17]. The definition of a lFRSN P
system is described in Definition 2.

Definition 2. An lFRSN P system of degree m ≥ 1 is a tuple Π = (O,P,R,Q, syn, in, out),
where:

1. O={a} is the singleton alphabet (the object a is called spike);

2. P = {p1, . . . , pk} is a finite set of fuzzy propositions, where pi represents the ith fuzzy
proposition, 1 ≤ i ≤ k;

3. R = {R1, . . . , Rn} is a finite set of fuzzy productions rules, where Ri represents the ith
fuzzy production rule, 1 ≤ i ≤ n;
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4. Q = {σ1, . . . , σm} is a finite set of neurons, where Q = Q1 ∪ Q2, Q1 ∩ Q2 = ∅. Q1 =
{σ1, . . . , σk} is a set of fuzzy proposition neurons and each proposition neuron i in Q1

corresponds to a fuzzy proposition pi in P , where 1 ≤ i ≤ k. Q2 = {σk+1, . . . , σk+n} is a
set of rule neurons and each rule neuron k+ i in Q2 corresponds to a fuzzy production rule
Ri in R, where 1 ≤ i ≤ n, m = k + n. Each neuron in Q has the form of σi = (Ai, Ci, ri),
1 ≤ i ≤ m, where:

(a) Ai is a linguistic term representing potential value contained in σi;

(b) For proposition neurons in Q1, Ci is ignored; for rule neurons in Q2, Ci is a linguistic
term representing the certainty factor of the corresponding fuzzy production rule of
ith neuron;

(c) ri is a firing/spiking rule contained in neuron σi, of the form aµ → aν , where µ and
ν are linguistic terms representing potential values of neurons. For rule neurons, µ
is logical “and" (denoted by ⊗) or “or" (denoted by ⊕) of all inputs received by this
neuron, and ν = µ⊗ Ci;

5. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

6. in and out are input neuron set and output neuron set, respectively.

In what follows, we summarize lFRSN P system models for rules Type 1 to Type 4, as shown
in Figure 2.

Figure 2: lFRSN P system models for fuzzy production rules. (a) Type 1 ; (b) Type 2 ; (c) Type
3 ; (d) Type 4.

Type 1 Ri: IF pj THEN pk (CF=C). The fuzzy truth value of proposition pk is B = A⊗C,

where Aα = [aα1 , a
α
2 ], Cα = [cα1 , c

α
2 ], α ∈ [0, 1], i.e., B =

∫ 1
0 α[aα1 ∧ cα1 , a

α
2 ∧ cα2 ].

Type 2 Ri: IF p1 and · · · and pk−1 THEN pk (CF=C). The fuzzy truth value of proposition
pk is Ak = A1 ⊗ . . .⊗Ak−1 ⊗ C, where [aαi1, a

α
i2] is α-cut of Ai, 1 ≤ i ≤ k − 1, α ∈ [0, 1], i.e., Ak

=
∫ 1
0 α[aα11 ∧ aα(k−1)1 ∧ . . . ∧ cα1 , a

α
12 ∧ . . . ∧ aα(k−1)2 ∧ cα2 ].

Type 3 Ri: IF p1 THEN p3 and · · · and pk (CF=C). The fuzzy truth value of propositions
p2, . . . , pk are identical, i.e., Ai = A1 ⊗ C, 2 ≤ i ≤ k, where [aα1 , a

α
2 ] is α-cut of A1, α ∈ [0, 1],

i.e., Ai =
∫ 1
0 α[aα1 ∧ cα1 , a

α
2 ∧ cα2 ], 2 ≤ i ≤ k.



912 T. Wang, G. Zhang, M.J. Pérez-Jiménez

Type 4 Ri: IF p1 or p2 or · · · or pk−1 THEN pk (CF=C). The fuzzy truth value of proposi-
tion pk is Ak = (A1 ⊗ . . . ⊕ Ak−1) ⊗ C, where [aαi1, a

α
i2] is α-cut of Ai, 1 ≤ i ≤ k − 1, α ∈ [0, 1],

i.e., Ak =
∫ 1
0 α[(aα11 ∨ . . . ∨ aα(k−1)1) ∧ cα1 , (a

α
12 ∨ . . . ∨ aα(k−1)2) ∧ cα2 ].

AFRSN P systems

Adaptive fuzzy reasoning spiking neural P systems (AFRSN P systems) were first introduced
in [20] and further investigated in [21]. The definition of an AFRSN P system is described in
Definition 3 [21].

Definition 3. An AFRSN P system (of degree m ≥ 1) is a tuple Π = (A,Np, Nr, syn, I, O),
where

• A={a} is the singleton alphabet (the object a is called spike);

• Np = {σp1, . . . , σpm} is proposition neuron set, where proposition neuron σpi expresses the
ith proposition of weighted fuzzy production rules, 1 ≤ i ≤ m. σpi = (αi, ωi, λi, ri), where

– αi ∈ [0, 1] is the pulse value contained in proposition neuron σpi. αi is used to express
fuzzy truth value of the proposition associated with proposition neuron σpi;

– ωi = (ωi1, . . . , ωisi) expresses the output weight vector of neuron σpi, where ωij ∈ [0, 1]
is the weight on jth output synapse of the neuron, 1 ≤ j ≤ si, and si is the number
of all output synapses of the neuron;

– ri is a firing/spiking rule, of the form E/aα → aα, α ∈ [0, 1]. E = {α ≥ λi} is the
firing condition, i.e., if α ≥ λi, then the firing rule will be enabled, where λi ∈ [0, 1)
is called the firing threshold;

• Nr = {σr1, . . . , σrn} is rule neuron set, where rule neuron σri expresses the ith weighted
fuzzy production rule, 1 ≤ i ≤ n. σri = (αi, γi, τi, ri), where

– αi ∈ [0, 1] is the potential value (spike) contained in rule neuron σri;

– γi ∈ [0, 1] is the certain factor, which represents the strength of belief of the weighted
fuzzy production rule associated with rule neuron σri. αi is also the weight on output
synapse (arc) of the neuron;

– ri is a firing/spiking rule, of the form E/aα → aβ , where α, β ∈ [0, 1]. E = {α ≥ τi} is
the firing condition, i.e., if α ≥ τi, then the firing rule will be enabled, where τi ∈ [0, 1)
is called the firing threshold;

• syn ⊆ (Np × Nr)
⋃

(Nr × Np) indicates synapses between proposition neurons and rule
neurons. Note that there are no synapse connections between any two proposition neurons
or between any two rule neurons;

• I,O ⊆ Np are input neuron set and output neuron set, respectively.

The motivation of proposing AFRSN P systems is to model weighted fuzzy production rules
and the following three types are concerned. AFRSN P systems models for weighted fuzzy
production rules are summarized as follows, as shown in Figure 3.

Type 1 Ri: IF p1 THEN p2 (CF = γ), τ , ω;

Type 2 Ri: IF p1 AND p2 AND · · · AND pn THEN pn+1 (CF = γ), τ , ω1, . . . , ωn;

Type 3 Ri: IF p1 OR p2 OR · · · OR pn THEN pn+1 (CF = γ), τ , ω1, . . . , ωn.
According to dynamic firing mechanism of AFRSN P systems, the computing ways of spikes

for AFRSN P systems of these fuzzy production rules are described as follows [20].
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Figure 3: AFRSN P systems of weighted fuzzy production rules of three types (a) type 1. (b)
type 2. (c) type 3.

• Type 1: α2 =

{

α1 · γ, if α1 ≥ τ

0, if α1 < τ

• Type 2: αn+1 =















( n
∑

i=1
αi · ωi

)

· γ, if
( n
∑

i=1
αi · ωi

)

≥ τ

0, if
( n
∑

i=1
αi · ωi

)

< τ

• Type 3: αn+1 =

{

max(αj · γj), if αj ≥ τj , j ∈ J

0, if αj < τj , j = 1, 2 . . . , n

WFRSN P systems

Weighted fuzzy reasoning spiking neural P systems (WFRSN P systems) were first introduced
in [18] and further investigated in [19]. The definition of a WFRSN P system is described in
Definition 4.

Definition 4. A WFRSN P system of degree m ≥ 1 is a tuple Π = (O, σ1, . . . , σm, syn, in, out),
where:

1. O = {a} is a singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form σi = (θi, ci,
−→ωi, λi, ri), 1 ≤ i ≤ m, where:

(a) θi is a real number in [0, 1] representing the potential value of spikes (i.e. value of
electrical impulses) contained in neuron σi;

(b) ci is a real number in [0, 1] representing the truth value associated with neuron σi;

(c) −→ωi = (ωi1, . . . , ωiNi
) is a real number vector in (0, 1] representing the output weight

vector of neuron σi, where ωij (1 ≤ j ≤ Ni) represents the weight on jth output
arc (synapse) of neuron σi and Ni is a natural number representing the number of
synapses starting from neuron σi.

(d) λi is a real number in [0, 1) representing the firing threshold of neuron σi;

(e) ri represents a firing (spiking) rule contained in neuron σi with the form E/aθ → aβ ,
where θ and β are real numbers in [0, 1], E = {an, θ ≥ λi} is the firing condition. The
firing condition means that if and only if neuron σi receives at least n spikes and the
potential value of spikes is with θ ≥ λi, then the firing rule contained in the neuron
can be applied, otherwise, the firing rule cannot be applied;

3. syn ⊆ {1, . . . ,m} × {1, . . . ,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m; that is, syn
provides a (weighted) directed graph whose set of nodes is {1, . . . ,m};
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4. in, out ⊆ {1, . . . ,m} indicate the input neuron set and the output neuron set of Π, respec-
tively.

In what follows, we describe fault diagnosis production rules and their WFRSN P system
models, as shown in Figure 4 [19], [49].

�

�

�

฀

�

�

Figure 4: WFRSN P system models for fault diagnosis production rules in TPSSs. (a) Type 1 ;
(b) Type 2 ; (c) Type 3 ; (d) Type4.

Type 1 (Simple Rules) Ri: IF pj(θj) THEN pk(θk) (CF = ci), where pj and pk are propo-
sitions, ci is a real number in [0, 1] representing the certainty factor of rule Ri, θj and θk are
real numbers in [0, 1] representing the truth values of pj and pk, respectively. The weight of
proposition pj is ωj , where ωj = 1 because there is only one proposition in the antecedent of this
kind of rules. The truth values of pk is θk = θj ∗ ωj ∗ ci = θj ∗ ci.

Type 2 (Compound And Rules) Ri: IF p1(θ1) and . . . and pk−1(θk−1) THEN pk (θk) (CF
= ci), where p1, . . . , pk are propositions, ci is a real number in [0, 1] representing the certainty
factor of rule Ri, θ1, . . . , θk are real numbers in [0, 1] representing the truth values of p1, . . . , pk,
respectively. The weights of propositions p1, . . . , pk−1 are ω1, . . . , ωk−1, respectively. The truth
values of pk is θk = [(θ1 ∗ ω1 + . . .+ θk−1 ∗ ωk−1)/(ω1 + . . .+ ωk−1)] ∗ ci.

Type 3 (Compound Or Rules) Ri: IF p1(θ1) or . . . or pk−1(θk−1) THEN pk (θk) (CF =
ci), where p1, . . . , pk are propositions, ci is a real number in [0, 1] representing the certainty
factor of rule Ri, θ1, . . . , θk are real numbers in [0, 1] representing the truth values of p1, . . . , pk,
respectively. The weights of propositions p1, . . . , pk−1 are ω1, . . . , ωk−1, respectively. The truth
values of pk is θk = max{θ1 ∗ ω1, . . . , θk−1 ∗ ωk−1} ∗ ci.

Type 4 (Conditional And Rules) Ri: WHEN p0(θ0) is true, IF p1(θ1) and . . . and pk−1(θk−1)
THEN pk(θk) (CF = ci), where p0, . . . , pk are propositions, ci is a real number in [0, 1] repre-
senting the certainty factor of rule Ri, θ0, . . . , θk are real numbers in [0, 1] representing the truth
values of p0, . . . , pk, respectively. The proposition p0 is used to judge whether the reasoning condi-
tion of rule Ri is satisfied and its truth value θ0 is not used in reasoning process. Thus, the weight
of θ0 is not considered in the model. The weights of propositions p1, . . . , pk−1 are ω1, . . . , ωk−1,
respectively. The truth values of pk is θk = [(θ1 ∗ ω1 + . . .+ θk−1 ∗ ωk−1)/(ω1 + . . .+ ωk−1)] ∗ ci.
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tFRSN P systems

The first version of fuzzy reasoning spiking neural P systems with trapezoidal fuzzy numbers
(tFRSN P systems) was introduced in [22] and further expanded in [23]- [25]. The definition of
a tFRSN P system is described in Definition 5.

Definition 5. A tFRSN P system with trapezoidal fuzzy numbers of degree m ≥ 1 is a tuple
Π = (O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is a singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons of the form σi = (θi, ci, ri), 1 ≤ i ≤ m, where

(a) θi is a trapezoidal fuzzy number in [0, 1] representing the potential value of spikes
(i.e., the value of electrical impulses) contained in neuron σi;

(b) ci is a trapezoidal fuzzy number in [0, 1] representing the fuzzy truth value corre-
sponding to neuron σi;

(c) ri represents a firing (spiking) rule associated with neuron σi of the form E/aθ → aβ ,
where θ and β are trapezoidal fuzzy numbers in [0, 1], E = as is the firing condition,
it means that the spiking rule contained in neuron σi, can be applied if and only if
neuron σi contains at least s spikes, otherwise, the firing rule cannot be applied;

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m, is a directed
graph of synapses between the linked neurons;

4. in, out ∈ {1, 2, . . . ,m} indicate the input neuron set and the output neuron set of Π,
respectively.

A trapezoidal fuzzy number can be parameterized by a 4-tuple Ã=(a1, a2, a3, a4), as shown
in Fig. 5, where a1, a2, a3 and a4 are real numbers such that a1 < a2 < a3 < a4, which are the
four horizontal axis values of the trapezoid. The membership function µÃ(x) of the trapezoidal

fuzzy number Ã is defined as follows.

µÃ(x) =































0, x ≤ a1
x−a1
a2−a1

, a1 < x ≤ a2

1, a2 < x ≤ a3
a4−x
a4−a3

, a3 < x ≤ a4

0, x > a4

(6)

)(~ x
A

a1 a2 a3 a4
0 x

1.0
A
~

Figure 5: A trapezoidal fuzzy number.
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Let Ã and B̃ be two trapezoidal fuzzy numbers, Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4).
The arithmetic operations of the trapezoidal fuzzy numbers Ã and B̃ are listed as follows. More
operations can be seen in [25], [29].

1. Addition ⊕: Ã⊕ B̃ = (a1, a2, a3, a4)⊕ (b1, b2, b3, b4)=(a1 + b1, a2 + b2, a3 + b3, a4 + b4);

2. Subtraction ⊖: Ã⊖ B̃ = (a1, a2, a3, a4)⊖ (b1, b2, b3, b4)=(a1 − b1, a2 − b2, a3 − b3, a4 − b4);

3. Multiplication ⊗: Ã⊗ B̃ = (a1, a2, a3, a4)⊗ (b1, b2, b3, b4)=(a1× b1, a2× b2, a3× b3, a4× b4);

4. Division ⊘: Ã⊘ B̃ = (a1, a2, a3, a4)⊘ (b1, b2, b3, b4)=(a1/b1, a2/b2, a3/b3, a4/b4).

Four logic operations are list as follows, where A and B are trapezoidal fuzzy numbers, and
a, b are real numbers [25].

1. Minimum operator ∧: a ∧ b = min(a, b);

2. Maximum operator ∨: a ∨ b = max(a, b);

3. and ∧○: A ∧○B = (a1, a2, a3, a4) ∧○(b1, b2, b3, b4) =((a1 ∧ b1), (a2 ∧ b2), (a3 ∧ b3), (a4 ∧ b4));

4. or ∨○: A ∨○B = (a1, a2, a3, a4) ∨○(b1, b2, b3, b4)=((a1 ∨ b1), (a2 ∨ b2), (a3 ∨ b3), (a4 ∨ b4)).

In addition, a scalar multiplication operation is list as follows, where A is a trapezoidal fuzzy
number and b is a real number [25].

Scalar Multiplication: bA = b(a1, a2, a3, a4) = (ba1, ba2, ba3, ba4).

In what follows, we summarize tFRSN P system models for rules Type 1 to Type 4, as shown
in Figure 6. In the following description, Ri (i = 1, . . . , Nr) is the ith fuzzy production rule,
Nr represents the number of fuzzy production rules, ci is a trapezoidal fuzzy number in [0, 1]
representing the certainty factor of Ri, pj (1 ≤ j ≤ Np) is the jth proposition appearing in
the antecedent or consequent part of Ri, Np represents the number of proportions, and θj is a
trapezoidal fuzzy number in [0, 1] representing the fuzzy truth value of proposition pj .

Figure 6: tFRSN P system models for fuzzy production rules. (a) Type 1 ; (b) Type 2 ; (c) Type
3 ; (d) Type 4.

Type 1 : Ri(ci) : pj(θj) → pk(θk) (1 ≤ j, k ≤ Np). The fuzzy truth value of the proposition
pk is θk = θj ⊗ ci.
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Type 2 : Ri(ci) : p1(θ1) ∧○ . . . ∧○ pk−1 (θk−1) → pk (θk). The fuzzy truth value of the
proposition pk is θk = (θ1 ∧○ . . . ∧○θk−1) ⊗ci.

Type 3 : Ri(ci) : p1(θ1)→ p2(θ2) ∧○ . . . ∧○ pk (θk). The fuzzy truth values of the propositions
p2, p3, . . ., pk are identical, i.e., θ2 = θ3 = . . . = θk = θ1 ⊗ ci.

Type 4 : Ri(ci) : p1(θ1) ∨○ . . . ∨○ pk−1 (θk−1) → pk(θk). The fuzzy truth value of the
proposition pk is θk = (θ1 ∨○. . . ∨○θk−1)⊗ ci.

The fuzzy truth values of these propositions appearing in the fuzzy production rules and the
certainty factor of each fuzzy production rule can also be described by using linguistic terms,
which are represented by the trapezoidal fuzzy numbers shown in Table 1.

Linguistic Terms Trapezoidal Fuzzy Numbers

absolutely-false (AF) (0, 0, 0, 0)

very-low (VL) (0, 0, 0.02, 0.07)

low (L) (0.04, 0.1, 0.18, 0.23)

medium-low (ML) (0.17, 0.22, 0.36, 0.42)

medium (M) (0.32, 0.41, 0.58, 0.65)

medium-high (MH) (0.58, 0.63, 0.80, 0.86)

high (H) (0.72, 0.78, 0.92, 0.97)

very-high (VH) (0.975, 0.98, 1, 1)

absolutely-high (AH) (1, 1, 1, 1)

Table 1: Linguistic terms and their corresponding trapezoidal fuzzy numbers

2.4 Fuzzy knowledge reasoning

Fuzzy reasoning spiking neural P systems (FRSN P systems) are proposed to handle fuzzy
knowledge. In what follows, we will summarize fuzzy reasoning algorithms for the following
FRSN P systems classes: rFRSN P systems, AFRSN P systems, WFRSN P systems and tFRSN
P systems.

Fuzzy reasoning based on rFRSN P systems

A fuzzy reasoning algorithm (FRA) based on rFRSN P systems was proposed in [12]. The
goal of FRA is to reason out the fuzzy truth values of unknown fuzzy propositions (proposition
neurons) from known fuzzy propositions (input neurons). These unknown fuzzy propositions
are associated with output neurons. Suppose all fuzzy production rules in a fuzzy diagnosis
knowledge base have been modeled by an rFRSN P system model Π. The model Π consists of
m neurons consisting of n proposition neurons and k rule neurons (AND type neurons and OR
type neurons), where m = n+ k.

A description of an FRA for an rFRSN P system is shown below. For details about the
involved parameter vectors, matrices and multiplication operations, please see [12].

INPUT: parameter matrixes U , V , Λ, H1, H2, λp, λr, and initial inputs α0
p, a

0
p.

OUTPUT: The fuzzy truth values of propositions associated with the neurons in O.
Step 1) Let α0

r = (0, 0, . . . , 0)T , a0r = (0, 0, . . . , 0)T .
Step 2) Let t = 0.
Step 3)

(1) Process the firing of proposition neurons.
βt
p=fire(αt

p, a
t
p, λp), b

t
p=fire(1, atp, λp), α

t
p=update(αt

p, a
t
p, λp),

atp=update(atp, a
t
p, λp), B

t
p=diag(btp).
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(2) Compute the truth values of rule neurons and the number of received spikes.
αt+1
r = αt

r ⊕ [(H1 · ((B
t
p · U)T ⊙ βt

p)) + (H2 · ((B
t
p · U)T ⊗ βt

p)],

at+1
r = atr + [(Bt

p · U)T · btp].

(3) Process the firing of rule neurons.
βt+1
r =fire(Λ · αt+1

r , at+1
r , λr), b

t+1
r =fire(1, at+1

r , λr),
αt+1
r =update(αt+1

r , at+1
r , λr), a

t+1
r =update(at+1

r , at+1
r , λr), B

t+1
r =diag(bt+1

r ).

(4) Compute the truth values of proposition neurons and the number of received spikes.
αt+1
p = αt

p ⊕ [(V ·Bt+1
r )⊗ βt+1

r ], at+1
p = atp + [(V ·Bt+1

r ) · bt+1
r ].

Step 4) If at+1
p = (0, 0, . . . , 0)T and at+1

r = (0, 0, . . . , 0)T (computation halts), the reasoning
results are obtained; otherwise, t = t+ 1, go to Step 3).

Fuzzy reasoning based on AFRSN P systems

The fuzzy reasoning algorithm for AFRSN P systems is about the fuzzy reasoning pro-
cess of above weighted fuzzy production rules. Let Pcurrent = {σpi|σpi ∈ Np, αi > 0} be
a set of current enabled proposition neurons. If a neuron σpi ∈ Pcurrent, then it fires. Let
Rcurrent = {σrj |σrj ∈ Nr, αi > τj} be a set of current enabled rule neurons. Likewise, if a
neuron σrj ∈ Rcurrent, then it fires. A fuzzy reasoning algorithm for AFRSN P systems can be
summarized as follows.

INPUT: Certainty factors of a set of antecedent propositions, which correspond to I of an AFSN
P system.
OUTPUT: The fuzzy truth values of propositions associated with the neurons in O.
Step 1) Pcurrent := I, Rcurrent := {}, P := Np, R := Nr;
Step 2) Let t =0, where t represents the reasoning step;
Step 3) Compute the outputs of current enabled proposition neurons in Pcurrent;
Step 4) Find current enabled rule neurons Rcurrent form R;
Step 5) Compute the outputs of current enabled proposition neurons in Rcurrent;
Step 6) P := P − Pcurrent, R := R−Rcurrent;
Step 7) Find current enabled proposition neurons Pcurrent form P ;
Step 8) If P = {} or R = {} (computation halts), the reasoning
results are obtained; otherwise, t = t+ 1, go to Step 3).

A weight learning algorithm for AFRSN P systems is summarized as follows.

INPUT: Training data set D, m = |D|, learning rate delta.
OUTPUT: Weights (w1, w2, ..., wn), where n is the number of weights.
Step 1) Select a set of initial weights;
Step 2) Let t =1, where t represents the reasoning step;
Step 3) Update the weights (w1, w2, ..., wn), using Widrow-Hoff learning law with learning rate
delta;
Step 4) If t > m (computation halts) and m represents the number of proposition neurons, the
reasoning results are obtained; otherwise, t = t+ 1, go to Step 3).

Fuzzy reasoning based on WFRSN P systems

A weighted matrix fuzzy reasoning algorithm (WMFRA) for WFRSN P systems can be
summarized as follows [19]. For details about the involved parameter vectors, matrices and mul-
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tiplication operations, please see [19].

INPUT: The fuzzy truth values of the propositions corresponding to the input proposition neu-
rons.
OUTPUT: The fuzzy truth values of the propositions corresponding to the output proposition
neurons.
Step 1) Let g = 0 be the reasoning step;
Step 2) Set initial values of W r1, W r2,W r3, W p, λp, λr, C, and the termination condition 01

= (0, (t). . ., 0)T . The initial values of θ and δ are set to θg = (θ1g, θ2g, . . . , θsg) and δg = (δ1g, δ2g,
. . . , δtg), respectively;
Step 3) g is increased by one;
Step 4) The firing condition of each input neuron (g = 1) or each proposition neuron (g > 1) is
evaluated. If the condition E = {an, θi ≥ λpi, 1 ≤ i ≤ s} is satisfied and there is a postsynaptic
rule neuron, the neuron fires and transmits a spike to the next rule neuron;
Step 5) Compute the fuzzy truth value vector δg according to (7);

δg+1 = (WT
r1 ⊗ θg) + (WT

r2 ⊕ θg) + (WT
r3 ⊙ θg) (7)

Step 6) If δg = 01, the algorithm stops and outputs the reasoning results ;

Step 7) Evaluate the firing condition of each rule neuron. If the condition E = {an, δj ≥
λrj , 1 ≤ j ≤ t } holds, the rule neuron fires and transmits a spike to the next proposition neuron;
Step 8) Compute the fuzzy truth value vector θg according to (8). Go to Step 3).

θg+1 = WT
p ⊙ (C⊗ δg+1) (8)

Fuzzy reasoning based on tFRSN P systems

A matrix-based fuzzy reasoning algorithm (MBFRA) for tFRSN P systems can be summa-
rized as follows [25]. For details about the involved parameter vectors, matrices and multiplica-
tion operations, please see [25].

INPUT: The fuzzy truth values of the propositions corresponding to the input proposition neu-
rons.
OUTPUT: The fuzzy truth values of the propositions corresponding to the output proposition
neurons.
Step 1) Let g = 0 be the reasoning step;

Step 2) Set initial values of D1, D2, D3, E, C and the termination condition 01 = (unknown, (t). . .
, unknown)T . The initial values of θ and δ are set to θg = (θ1g, θ2g, . . . , θsg) and δg = (δ1g, δ2g,
. . . , δtg), respectively;
Step 3) g is increased by one;
Step 4) The firing condition of each input neuron (g = 1) or each proposition neuron (g > 1)
is evaluated. If the condition E = as is satisfied and there is a postsynaptic rule neuron, the
neuron fires and transmits a spike to the next rule neuron;
Step 5) Compute the fuzzy truth value vector δg according to (9);

δg = (DT
1 ◦○θg−1)⊕ (DT

2 ⊙ θg−1)⊕ (DT
3 ∗○θg−1) (9)

Step 6) If δg = 01, the algorithm halts and outputs the reasoning results;
Step 7) Evaluate the firing condition of each rule neuron. If the condition E = as is satisfied,
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the rule neuron fires and transmits a spike to the next proposition neuron;
Step 8) Compute the fuzzy truth value vector θg according to (10). Go to Step 3).

θg = E
T
∗○(C ◦○δg) (10)

2.5 Comparisons between SN P systems and FRSN P systems

rFRSN P systems, lFRSN P systems, AFRSN P systems, WFRSN P systems and tFRSN
P systems are collectively called FRSN P systems in this paper. FRSN P systems are novel
graphical models for representing and reasoning fuzzy knowledge and information. How FRSN
P systems are extended from SN P systems is described as follows and comparisons about neurons
and spiking rules between SN P systems and FRSN P systems are shown in Table 2. It is worth
pointing out that the spiking rule is collectively described with the form E/aα → aβ in FRSN P
systems for convenient representation.

1. The content of a neuron is the potential value of spikes contained in this neuron instead of
the number of spikes in SN P systems;

2. Each neuron in an FRSN P system associates with either a fuzzy proposition or a fuzzy
production rule;

3. Each neuron contains only one spiking (firing) rule, with the form E/aα → aβ , where
E = an is the firing condition and n represents the number of input synapses from other
neurons to this neuron. The firing condition E = an indicates that if the neuron receives n
spikes, the spiking rule can be applied; otherwise the rule cannot be enabled until n spikes
are received;

4. The firing mechanism of neurons in FRSN P systems is described as follows. For the neuron
σi, if its firing rule E/aα → aβ can be applied, then the neuron fires. This means its pulse
value α > 0 is consumed (removed) and it produces a spike with value β. Once a spike
with value β is excited from neuron σi, all neurons σj with (i, j) ∈ syn immediately receive
the spike;

5. Different types of neurons are defined with different ways to handle spikes;

6. Time delay is ignored in an FRSN P system, thus all neurons are always open;

7. For AFRSN P systems and WFRSN P systems, their synapses have output weights.

3 Applications

This section will outline the application developments of fuzzy membrane computing includ-
ing fuzzy knowledge representation and fault diagnosis of transformers, traction power supply
systems and power transmission networks based on FRSN P systems. The description of the
essentials of electrical power system fault diagnosis, please see [25] and principles of model-based
fault diagnosis methods, please see [19].
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P systems
Neurons

Spiking rules
Type Content Expression

SN P systems one number of spikes computing space E/ac → ap; d

rFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aα → aβ

rule neuron: and, or (real numbers) production rules

lFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aµ → aν

rule neuron (linguistic terms) production rules

AFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aα → aβ

rule neuron (real numbers) production rules

WFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aα → aβ

rule neuron: general, and, or (real numbers) production rules

tFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aθ → aβ

rule neuron: general, and, or (trapezoidal fuzzy numbers) production rules

Table 2: Comparisons about neurons and spiking rules between SN P systems and FRSN P
systems

3.1 Fuzzy knowledge representation

Several kinds of FRSN P systems were proposed for fuzzy knowledge representation and
reasoning. In this subsection, an example of fuzzy knowledge representation based on lFRSN
P systems is summarized to show the effectiveness of FRSN P systems in representing fuzzy
knowledge. Assume that there are seven fuzzy production rules in a rule set seven propositions
represented by p1, p2, p3, p4, p5, p6, p7 [16].

R1 : IF p1 THEN p2 (CF = almost certain)
R2 : IF p2 THEN p3 (CF = pretty true)
R3 : IF p2 THEN p4 (CF = rather true)
R4 : IF p1 THEN p6 (CF = pretty true)
R5 : IF p6 THEN p4 and p5 (CF = very true)
R6 : IF p1 THEN p7 (CF = almost certain)
R7 : IF p7 THEN p4 (CF = sort of true)

The fuzzy truth value very true of proposition p1 given by a user, and he wants to know
the truth value of proposition p4. The lFRSN P system model of these fuzzy production rules is
constructed, as shown in Figure 7, to find the truth value of proposition p4 which is the potential
value of σ4.

From Figure 7, there are three paths from neuron σ1 to neuron σ4 and are described as follows:

path (1) : σ1 → σ8 → σ7 → σ11 → σ4
path (2) : σ1 → σ9 → σ2 → σ12 → σ4
path (3) : σ1 → σ10 → σ6 → σ14 → σ4

According to computing mechanism of neurons in lFRSN P systems, we get results described
as follows: from path (1), potential value of σ4 is: very true ⊗ almost certain ⊗ sort of true =
sort of true; from path (2), potential value of σ4 is: very true ⊗ almost certain ⊗ rather true
= rather true; from path (3), potential value of σ4 is: very true ⊗ pretty true ⊗ very true =
pretty true. Therefore, potential value of σ4 is: sort of true ⊕ rather true ⊕ pretty true =



922 T. Wang, G. Zhang, M.J. Pérez-Jiménez

Figure 7: An lFRSN P system model for seven fuzzy production rules.

pretty true. Thus, truth value of proposition is pretty true.

3.2 Transformers

In this subsection, an application example is used to demonstrate the effectiveness of rFRSN
P systems and their FRA in fault diagnosis of a transformer. The following fuzzy production
rules are obtained from the knowledge base of a transformer fault diagnosis system [12].

Rule 1 (CF=0.8)

Symptom:

1) Total hydrocarbon is little high (p1);

2) C2H2 is low (p2);

Anticipated Fault: General overheating fault occurs (p11).

Rule 2 (CF=0.8)

(1) Total hydrocarbon is rather high (p3);

(2) C2H2 is too high (p4);

(3) H2 is high (p5);

(4) C2H2 in total hydrocarbon occupies a too low proportion (p6);

Anticipated Fault: Serious overheating fault occurs (p11).

Rule 3 (CF=0.8)

(1) Total hydrocarbon is little low (p7);

(2) H2 is high (p5);

(3) CH4 in total hydrocarbon occupies a large proportion (p8);

(4) CH4 in total hydrocarbon occupies a higher proportion than C2H2 (p9);

Anticipated Fault: The partial discharge occurs (p13).

Rule 4 (CF=0.8)

(1) Total hydrocarbon is rather low (p10);

(2) C2H2 is too high (p4);

(3) H2 is high (p5);

Anticipated Fault: The spark discharge occurs (p14).

These fuzzy production rules can be modeled by the following rFRSN P system Π5, as shown
in Figure 8.

Π5 = (A, σ1, . . . , σ14, σ15, . . . , σ18, syn, I, O), where

(1) A = {a}.
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(2) σ1, . . . , σ14 are proposition neurons associated with propositions p1, . . . , p14 respectively.

(3) σ15, . . . , σ18 are AND-type rule neurons associated with production rules R1, . . . , R4 re-
spectively.

(4) syn = {(1, 15), (2, 15), (3, 16), (4, 16), (4, 18), (5, 16), (5, 17), (5, 18), (6, 18),
(7, 17), (8, 17), (9, 17), (10, 18), (15, 11), (16, 12), (17, 13), (18, 14)}.

(5) I = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10}, O = {σ11, σ12, σ13, σ14}.

According to the definition of parameter vectors and matrices given in [12], U , V , Λ, H1 and
H2 are follows:

U =













1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 1 0 0 0 0













T

H1 =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













V =













0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1













T

H2 =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0













Λ =













0.8 0 0 0

0 0.8 0 0

0 0 0.8 0

0 0 0 0.8













λp = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T λr = (2, 4, 4, 3)T

 
!"#$% 

& !"#&% 

   

 $ 
 ' 

 ( 
 ) 

*!"#$% 
+ !"#$% ' !"#,% 

( !"#$% $ !"#,% 
,
!"# % 

) !"#&%  "
!"#&% 

  & * + ' ( ) $ ,  " 

 &  *  + 

   
 &  *  + 

 
!"#$%! & !"#$%!

*
!"#$%! +

!"#$%!

" " " "" " " " " "

Figure 8: An example of a transformer fault diagnosis modeled by an rFRSN P system model
Π5.

In on-scene information detection of transformer, total hydrocarbon content is high (CF=0.8),
C2H2 content is high (CF=0.8), H2 content is high (CF=0.9), C2H2 content in total hydrocarbon
content is little (CF=0.8), CH4 content in total hydrocarbon content is little (CF=0.1). Thus,
initial truth value vector α0

p = (0.8, 0.2, 0.8, 0.8, 0.9, 0.8, 0.2, 0.9, 0.1, 0.2, 0, 0, 0, 0)T and initial

spike vector a0p = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)T . Let α0
r = (0, 0, 0, 0)T and a0r = (0, 0, 0, 0)T .
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According to reasoning algorithm described subsection 2.4, we get

(1) α1
p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , α1

r = (0.16, 0.64, 0.08, 0.16)T ,

a1p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , a1r = (2, 4, 4, 3)T ;

(2) α2
p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.16, 0.64, 0.08, 0.16)T , α2

r = (0, 0, 0, 0)T ,

a2p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)T , a2r = (0, 0, 0, 0)T ;

(3) a3p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , a3r = (0, 0, 0, 0)T .

Since the system reaches halting computation (a3p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and

a3r = (0, 0, 0, 0)T ), system exports its reasoning results, i.e., the truth values of propositions p11,
p12, p13 and p14 are 0.16, 0.64, 0.08 and 0.16, respectively. These reasoning results indicate
the following possible faults: general overheating fault (CF=0.16), serious overheating fault
(CF=0.64), partial discharge (CF=0.08) and spark discharge (CF=0.16). In the fault diagnosis
system, the threshold value of fault occurrence is set to be 0.6. Thus, we can conclude that the
transformer shows a serious overheating fault, which is consistent with the actual situation.

3.3 Traction power supply systems

In [19], three cases from the local system of a TPSS chosen in [49], as shown in Figure 9,
are considered as examples to manifest the effectiveness of WFRSN P systems in fault diagnosis,
where the external transmission lines in a power system which supplies the TPSS are hypothet-
ical, S and R represent the sending end and receiving end of transmission lines, L represents
transmission lines. The first two cases are in normal power supply and the third case is in over
zone feeding. It is worth pointing out that, the complete line connection of FS1, ATP1, SP1,
FS3, ATP3 and TPS-02 is the same as that of TSS-01, FS2, SP2 and ATP2 in Figure 9.
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Figure 9: A local single line sketch map of a TPSS.

Case 1: normal power supply. FS21 up and AT1 have faults.

Status information from the SCADA system (in time order): AT1m operated, CB31 tripped,
AT3 auto switched over; FS2m operated, CB23 and CB24 tripped; feeder lines auto reclosed,
FS2up m operated quickly, CB23 tripped again. When faults occur, current directions of I34 and
I35 are positive, and current is not detected in SP2.
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A WFRSN P system for FS2up is Π6 and its corresponding WFRSN P system fault diagnosis
model is shown in Figure 10.

Π6 = (O, σ1, . . . , σ16, syn, in, out), where:

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σ1, . . . , σ9 are proposition neurons corresponding to the propositions with truth values
θ1, . . . , θ9; that is, s = 9;

(3) σ10, . . . , σ13 are rule neurons, where σ10, σ11 and σ12 are and rule neurons, σ14 is an or
rule neuron; that is, t = 4;

(4) syn = {(1, 10) , (2, 10), (2, 11), (3, 11),(4, 12), (5, 12), (6, 13), (7, 13), (8, 13), (10, 6), (11, 7),
(12, 8), (13, 9)};

(5) in = {σ1, . . . , σ5}, out = {σ9}.
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Figure 10: A WFRSN P system fault diagnosis model for FS2up.

The synaptic weight matrices of Π2 are shown in Figure 11 and other parameter matri-
ces associated with the model in Figure 10 are described as follows: θ0 = (0.9913 0.9833
0.8 0.4 0.2 0 0 0 0)T , δ0 = (0 0 0 0)T , C = diag(0.975 0.95 0.9 0.975). In order to suc-
cinctly describe the matrices, let us denote Ol = (x1, . . . , xl)

T , where xi = 0, 1 ≤ i ≤ l. When
g = 0, we get the results: δ1 = (0.9873 0.8917 0.3 0)T , θ1 = (0 0 0 0 0 0.9626 0.8471 0.27 0)T .
When g = 1, we get the results: δ2 = (0 0 0 0.9626)T , θ2 = (0 0 0 0 0 0 0 0 0.9385)T . When
g = 2, we get the results: δ3 = (0 0 0 0)T . Thus, the termination condition is satisfied and
the reasoning process ends. We obtain the reasoning results, i.e., the truth value 0.9385 of the
output neuron σ9. The feeding section FS2up has a fault with a fault confidence level 0.9385.
The fault region of FS2up can be further identified according to the fault current detected and
the WFRSN P system fault diagnosis model for fault region identification in Figure 12, and then
we get the result that FS21 up has a fault with a fault confidence level 0.9385.

For AT1, a WFRSN P system can be constructed in a similar way and its corresponding
WFRSN P system fault diagnosis model is shown in Figure 13. The diagnosis process of AT1
is similar. According to the SCADA data and Table 3, the parameter matrices of WFRSN P
system fault diagnosis model for AT1 is established to perform WMBRA. After the reasoning,
the fault confidence level of AT1 is obtained, i.e., 0.8361. So the autotransformer AT1 has a
fault with a fault confidence level 0.8361.

Case 2: normal power supply. FS21 up has faults.
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Wr1 =
[

O
]

9×4
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
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Figure 11: Synaptic weight matrices of WFRSN P system fault diagnosis model for FS2up.
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Figure 12: A WFRSN P system fault diagnosis model for fault region identification of a feeding
section.
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Figure 13: A WFRSN P system fault diagnosis model for AT1.

Sections

Protective devices (operated) Protective devices (non-operated)

Main
Primary Remote

Main
Primary Remote

backup backup backup backup

Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs

FL 0.9913 0.9833 0.8 0.85 0.7 0.75 0.2 0.2 0.2 0.2 0.2 0.2

B 0.8564 0.9833 - - 0.7 0.75 0.4 0.2 - - 0.4 0.2

T 0.7756 0.9833 0.75 0.8 0.7 0.75 0.4 0.2 0.4 0.2 0.4 0.2

Table 3: Operation and non-operation confidence levels of the protective devices

Status information from the SCADA system (in time order): FS2m operated, CB24 tripped;
T1r operated, CB11 and CB12 tripped. When faults occur, current directions of I34 and I35 are
positive, and current is not detected in SP2. In this case, CB23 refused operation.

According to the SCADA data and Table 3, the WFRSN P system fault diagnosis model for
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FS21 and its parameter matrices are established to perform WMBRA. After the reasoning, the
fault confidence level of FS2up is obtained, i.e., 0.7439. The fault region of FS2up can be further
identified according to the fault current detected and the WFRSN P system fault diagnosis model
for fault region identification in Figure 12, and then we get the result that FS21 up has a fault.
So the feeding section FS21 up has a fault with a fault confidence level 0.7439.

Case 3: FS2 is over zone fed by TPS-02. AT7 and FS22 up have faults.
Status information from the SCADA system (in time order): primary backup protections of

feeder lines in SP2 operated, CB42 tripped; meanwhile, CB51 tripped, AT9 auto switched over;
remote backup protection FS3s of feeder lines in TSS-02 operated, CB63 and CB64 tripped.
When faults occur, current directions of I34 and I35 are positive, and current is detected only in
SP2 and ATP2. In this case, main protection of feeder lines in SP2, CB43 and main protection
of AT7 refused operation, and status information of primary backup protection of AT7 lost.

According to the SCADA data and Table 3, the WFRSN P system fault diagnosis models for
AT7 and FS22 and their parameter matrices are established to perform WMBRA, respectively.
After the reasoning, the fault confidence levels AT7 and FS2up are obtained, i.e., 0.6946 and
0.6123. The fault region of FS2up can be further identified according to the fault current detected
and the WFRSN P system fault diagnosis model for fault region identification in Figure 12, and
then we get the result that FS22 up has a fault. So the autotransformer AT2 has a fault with a
fault confidence level 0.6946 and the feeding section FS22 up has a fault with a fault confidence
level 0.6123.

The results of Cases 1-3 give evidence of that the proposed fault diagnosis approach can
obtain satisfying results both in the situation in normal power supply and over zone feeding with
complete/incomplete alarm information. In addition, the proposed method can provide results
comparable with those in [49] by using only one simple reasoning while the method in [49] needs
a second reasoning.

3.4 Power transmission networks

AFRSN P systems

In this section, four cases of the local system in an EPS shown in Figure 14 are considered
as examples to show the effectiveness and superiority of AFRSN P systems for fault diagnosis of
power transmission networks. These cases include a single and multiple fault situations [21]. The
status information (with/without incompleteness and uncertainty) about protective relays and
CBs, and diagnosis results based on AFRSN P systems are shown in Table 4, where ” ∗ ” means
that this case includes incomplete or uncertain status information from the SCADA system.
According to Table 4, we know that the fault diagnosis models based on AFSN P systems can
deal with the uncertainty of action messages about protective relays and breakers. Furthermore,
fault element is diagnosed properly while the information is incomplete because of the well fault
tolerance. Therefore, this method is effective in fault diagnosis.

tFRSN P systems

Fault diagnosis method based on tFRSN P systems is called FDSNP for short [25]. This
subsection summarizes the FDSNP method, whose flowchart is shown in Figure 15, as follows.

Step 1 Read operation messages about protective relays and/or CBs in a power transmission
network from the SCADA system.

Step 2 Search for outage areas. We suggest network topology analysis because it decreases the
number of candidate diagnosing areas and reduce the subsequent computational workload [50].
The search process is described as follows:
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Figure 14: A local sketch map of the protection system of an EPS.

Cases
Status information Diagnosis results

Operated relays Tripped CBs Fault section Fuzzy truth value

1 B1m CB4, CB5, CB7, C9, CB12, CB27 B1 0.87386

2 B1m, L2Rs, L4Rs CB4, CB5, CB7, C9, CB12, CB27 B1 0.78044

3 B1m, L1Sp, L1Rm CB4, CB5, CB6, CB7, CB9, CB11 B1, L1 0.87386, 0.86085

4∗ L2Rs, L4Rs CB4, CB5, CB7, CB9, CB12, CB27 B1 0.56363

Table 4: Status information and diagnosis results based on AFRSN P systems

(i) Let the search iteration t = 1;
(ii) Construct a set Qt of section numbers : assign a number to each section in the power

transmission network. The numbers of all sections constitute the set Qt;
(iii) Construct a subset Mt of section numbers : put the number of a randomly chosen section

from Qt into the subset Mt. If there is a closed CB connecting this chosen section, find all the
closed CBs connecting it, otherwise, go to (vi). Find all the other sections linking with each of
the closed CBs and put their numbers from Qt into Mt. Continue to find the closed CBs and
sections according to those in Mt;

(iv) t is increased by one;
(v) Construct the set Qt: remove the numbers of the sections in Mt from Qt−1 and obtain

Qt. If Qt is not empty, the search process goes to (iii);
(vi) Find passive networks, i.e., outage areas, from M1,M2, . . . ,MNs , where Ns is the maxi-

mum number of all numbers referring to section subsets. The search process stops.

Step 3 If there is only one section in the passive networks found in Step 2, this section is
the faulty one and the algorithm stops, otherwise, a fault diagnosis model based on an tFRSN
P system is built for each section. The model-building process is described as follows. A section
in the passive network is chosen randomly. According to the relay protections of the section, we
design fault fuzzy production rules and then determine proposition and rule neurons and create
their linking relationship to obtain the tFRSN P system. The certainty factor of each rule is
empirically set. According to Tables 5 and 6, we set confidence levels for main protections, first
backup protections, second backup protections and their CBs. Then a one-to-one relationship
between the fuzzy truth value of each input neuron and the confidence level of each protection
is established to obtain the initial values of the model.



Fuzzy Membrane Computing: Theory and Applications 929

Sections

Protective devices

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

L VH VH H H MH MH

B VH VH - - MH MH

T VH VH H H MH MH

Table 5: Confidence levels of the operated protective devices

Sections

Protective devices

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

L L L L L L L

B ML L - - ML L

T ML L ML L L L

Table 6: Confidence levels of the non-operate protective devices

Step 4 The algebraic fuzzy reasoning algorithm is used to acquire the fault confidence level
of each section.

Step 5 If the confidence level θ of a section satisfies the condition θ ≥ (0.58, 0.63, 0.80, 0.86),
the section is faulty, otherwise, if θ satisfies the condition θ ≤ (0.17, 0.22, 0.36, 0.42), the section
is not faulty, otherwise, the section may be faulty.

!"#$%&'"(#)*&+%,"--#."- /(&,%

)0"%12343%-5-)",

6-)*,#)"%7#+$*$#)"%&8)#."%#("#-%

98*:$%#%/#8:)%$*#.+&-*-%,&$": /&( "#70

-"7)*&+%*+%"#70%&8)#."%#("#

;"(/&(,%/8<<5%("#-&+*+.%#:.&(*)0,%

4")"(,*+"%/#8:)%-"7)*&+-

1)#()

6+$

Figure 15: The flowchart of FDSNP.

In [25], seven cases of the local system in an EPS shown in Figure 14 are considered as
examples to test the effectiveness and superiority of FDSNP. These cases include single and
multiple fault situations. The status information (with/without incompleteness and uncertainty)
about protective relays and CBs is shown in Table 7, where ” ∗ ” means that this case includes
incomplete or uncertain status information from the SCADA system.

FDSNP is used to diagnose faults for the seven cases, and the diagnosis results are shown
in Table 8, which contains the faulty sections and their fault confidence levels. Table 8 lists the
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Cases
Status information

Operated relays Tripped CBs

1 B1m, L2Rs, L4Rs CB4, CB5, CB7, CB9, CB12, CB27

2∗ L2Rs, L4Rs CB4, CB5, CB7, CB9, CB12, CB27

3 B1m, L1Sp, L1Rm CB4, CB5, CB6, CB7, CB9, CB11

4 B1m, L1Sm, L1Rp, B2m, L2Sp, L2Rm CB4, CB5, CB6, CB7, CB8, CB9, CB10, CB11, CB12

5 T3p, L7Sp, L7Rp CB14, CB16, CB29, CB39

6
L1Sm, L1Rp, L2Sp, L2Rp CB7, CB8, CB11, CB12

L7Sp, L7Rm, L8Sm, L8Rm CB29, CB30, CB39, CB40

7∗
T7m, T8P , B7m, B8m, L5Sm CB19, CB20, CB29, CB30, CB32

L5Rp, L6Ss, L7Sp, L7Rm, L8Ss CB33, CB34, CB35, CB36, CB37, CB39

Table 7: Status information about protective relays and CBs

Cases

Diagnosis results of FDSNP

Fault sections
Fault confidence levels

Trapezoidal fuzzy numbers Linguistic terms

1 B1 (0.975, 0.98, 1, 1) VH

2 B1 (0.5655, 0.6174, 0.80, 0.86) [M, MH]

3 B1, L1 (0.975, 0.98, 1, 1), (0.9506, 0.9604, 1, 1) VH, [H, VH]

4

B1 (0.975, 0.98, 1, 1) VH

B2 (0.975, 0.98, 1, 1) VH

L1 (0.9506, 0.9604, 1, 1) [H, VH]

L2 (0.9506, 0.9604, 1, 1) [H, VH]

5
T3 (0.72, 0.78, 0.92, 0.97) H

L7 (0.9506, 0.9604, 1, 1) [H, VH]

6

L1 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L2 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L7 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L8 (0.9506, 0.9604, 1, 1) [H, VH]

7

L5 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L7 (0.702, 0.7644, 0.92, 0.97) [H, VH]

B7 (0.975, 0.98, 1, 1) [H, VH]

B8 (0.975, 0.98, 1, 1) [H, VH]

T7 (0.975, 0.98, 1, 1) [H, VH]

T8 (0.72, 0.78, 0.92, 0.97) H

Table 8: Fault sections and their fault confidence levels obtained by using FDSNP

fault confidence levels of only faulty sections. Four diagnosis methods, fuzzy logic (FL) [51],
fuzzy Petri nets (FPN) [32], genetic algorithm-tabu search (GATS) [52] and genetic algorithm
(GA) [53], are used as benchmarks to perform comparative experiments. The diagnosis results
of the five methods are shown in Table 9, where ” − ” means that this case was not considered
in the corresponding reference.

From Table 8, we can see that the fault confidence levels represented by trapezoidal fuzzy
numbers provide a quantitative description for the faulty sections which makes these results
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Cases
Diagnosis results

FDSNP FL [51] FPN [32] GATS [52] GA [53]

1 B1 B1 B1 - B1

2 B1 - - - -

3 B1, L1 B1, L1 B1, L1 - B1, L1

4 B1, B2, L1, L2 B1, B2, L1, L2 B1, B2, L1, L2 - B1, B2, L1, L2

5 T3, T7 T3, T7 T3, T7 T3, T7

(1)T3, L7; (2)T3

(3)L7; (4)No

6
L1, L2 L1, L2 L1, L2 L1, L2 (1)L1, L2, L7, L8

L7, L8 L7, L8 L7, L8 L7, L8 (2)L1, L7, L8

7
L5, L7, B7 L5, L7, B8 L5, L7, B7 L5, L7, B7 (1)L5, L7, B7, B8, T7, T8

B8, T7, T8 T7, T8 B8, T7, T8, L8 B8, T7, T8 (2)L5, L7, T7, B8

Table 9: Comparisons between FDSNP and four fault diagnosis methods

more reliable. The linguistic terms corresponding to these trapezoidal fuzzy numbers provide a
more intuitive and flexible way for experts and dispatchers than probability values, since their
knowledge usually contain linguistic terms with a certain degree of uncertainty.

From Table 9, we can see that the diagnosis results of FDSNP, in Case 1 and Cases 3-6,
are the same as those in [32, 51], in other words, FDSNP is effective in fault diagnosis of power
transmission networks in power systems. Table 9 also shows that, in some cases, FDSNP is
superior to FL, FPN and GA on correctly identifying fault sections. For instance, in Case 7, the
fault diagnosis result of FDSNP is different from those in [32, 51, 53]. In this case, for section
L8, only its second backup protective relay SL8Ss operated and actually, SL8Ss operated as the
second backup protective relay of section B8. So in fact, L8 is not a faulty section. For section
B7, its main protective relay B7m operated and tripped its corresponding CBs, CB33, CB34

and CB35. So B7 is a faulty section. Thus, for Case 7, the diagnosis result of FDSNP and
GATS is better than those in [32,51,53]. In Cases 5-7, comparisons of diagnosis results between
FDSNP and the methods in [53] show that FDSNP can solve the nonuniqueness problem of the
diagnosis solution, which proves the correctness of FDSNP in diagnosing faulty sections. Besides,
the diagnosis results in Cases 2 and 7 show that FDSNP can obtain satisfying results in the
situations with incomplete or uncertain alarm information. Therefore, from the seven typical
cases, FDSNP is effective with a good accuracy in fault diagnosis of power transmission networks.

4 Conclusions and future research lines

Fuzzy membrane computing is an important research branch of membrane computing. Until
now there have been two main fuzzy P systems: fuzzy cell-like P systems and fuzzy reasoning
spiking neural P systems. In this survey, the theoretical developments and applications about
fuzzy membrane computing are summarized. To advance this research direction, we list some
promising topics as follows:

(1) Extensions and applications of fuzzy cell-like P systems. From the survey in Sections
2.1 and 2.2 one can see that only a limited work about considering fuzzy approaches in the
framework of cell-like P systems, but a broad variety of fuzzy cell-like P systems can be further
investigated.

- For simplicity, only symport/antiport P systems whose rules only move reactants through
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membranes were considered to deal with uncertainty in [43], but it is straightforward that this
fuzzy approach can be extended to other variants of cell-like P systems.

- Fuzzy mathematics have been used to handle the uncertainty in the number of copies of the
reactants, imperfectness of objects in membranes and approximate copies of reactants involved
in reactions. These fuzzy mathematics now involve t-norm approach (Triangular norms), fuzzy
sets, (general) multi-fuzzy sets, L-multi fuzzy sets, L-fuzzy hybrid sets and so on. Other fuzzy
mathematics can also be considered.

- Feasibility of applying fuzzy cell-like P systems in computational biology was discussed in
[44], but until now no real application case appears in research literature. So the real application
of fuzzy cell-like P systems in computational biology and other fields is a promising research line.

(2) Introducing fuzzy approach into tissue-like P systems. Uncertainty in an inherent property
in all living systems and tissue-like P systems are models inspired by the way the tissue cells
lives and functions. So uncertainty also should be considered in tissue-like P systems due to the
real behavior of tissue cells.

(3) Fault diagnosis method based on FRSN P systems (FDM-FRSNP, for short) is summa-
rized in this paper. However, up to now, the work focuses on the effectiveness and correctness
of FDM-FRSNP and the results of application examples are obtained by manual computation.

-To test the speed, convergence and accuracy of the fuzzy reasoning algorithms of FRSN P
systems, and to explore automatical generation of FRSN P systems in fault diagnosis, our future
work will simulate them on MATLAB [54], P-Lingua [55] or MeCoSim [56]. Meanwhile, how
to verify and realize the parallelism of FRSN P systems and their fuzzy reasoning algorithm on
hardware such as FPGA and CUDA is also our further task.

-Valuable research interests refer to extend models, algorithms and application areas. For
models and algorithms, one promising topic is to design new variants of SN P systems and their
reasoning algorithms according to requirements of different fault diagnosis problems, such as
on-line diagnosis, fast fault diagnosis, high-precision diagnosis. Another promising interest is to
propose FRSN P systems with learning ability. For application areas, FRSN P systems can be
used to more different systems, such as power supply systems for urban rail transit, mechanical
fault diagnosis and power systems with new energies.
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