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Abstract: Granular computing is a new intelligent computing method based on
problem solving, information processing and pattern classification. Granular com-
puting based attribute reduction method is an important application of Granular
computing. These algorithms are mostly based on reduction core. However, some
information systems may have no reduction core, especially in the actual application
data. For this case, those algorithms are powerless. In this paper, an improved reduc-
tion algorithm based on granular computing is proposed. The algorithm is validated
by the experimental result.
Keywords: attribute reduction, granular computing, rough set, attribute signifi-
cance.

1 Introduction

Granular computing is a method for analysis of multi-layer granular structure based on prob-
lem solving, pattern classification and information processing. It’s also a newly cross discipline
among rough set theory, fuzzy set theory, data mining and artificial intelligence. With less than
20 years’ development, granular computing has already made remarkable achievements and great
contribution to the field of computer science [1, 2]. Through rapid development of society and
continuous progress in science and technology, a variety of data is increasing gradually, and then
we entered the so-called "Big Data Time". The main goal of data mining is to find potential,
desired and useful knowledge from those big data. Rough set theory is an efficient mathematical
tool to deal with imprecise, incomplete and inconsistent data. It has already made great strides
in its theory and has been widely used in practical application.

Attribute reduction is the main content of rough set theory. The core task of attribute reduc-
tion is that dimensionality and storage space may be reduced under the condition of maintaining
classification capacity, so as to improve the efficiency of system classification [3, 4]. Therefore,
it is not only the hot spot of intelligence computing, but also the important task of information
processing.

In 1979, professor L.A. Zadeh discussed the theory of fuzzy information granulation in his
paper "Fuzzy Sets and Information Granularity", and first proposed the concept of information
granulation. Then, professor J.R. Hobss of Stanford University introduced granularity theory
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in his paper "Granularity" published on International Joint Conference on Artificial Intelligence
held in Los Angeles [5]. The granularity theory is presented firstly. The idea of granularity
theory is that the bigger, whole, unresolved questions can be broken into several smaller ones
by granulating, and these small questions can be combined into the bigger, whole questions.
In 1990, the Chinese scholar Zhang Bo and Zhang Ling proposed the theory of quotient space
based on problem solving [6]. They thought that human beings can analyze the same problem
from different granulation, and make an easy conversion in different knowledge granularity. If
people can formalize the analysis process to make the computer possess the ability, it will greatly
improve the development of artificial intelligence. Furthermore, professor L.A. Zadeh raised the
theory of Computing with Words in his paper "Fuzzy Logic=Computing with Words", and thus
the fuzzy granularity theory was born [7]. This theory is to do fuzzy reasoning and judgments
by using natural language, so as to realize the fuzzy intelligent control. In the same year, when
Professor L.Y. Lin visited in Professor Zadeh’s Key Laboratory of UC-Berkeley University, he
presented the subject "Granular Computing" and got approval from Zadeh, it marked the birth
of granular computing.

Professor Miao, et al. [8] gave the definition of knowledge granularity and knowledge discerni-
bility in fuzzy set theory model, and pointed out the relationship between knowledge granularity
and knowledge discernibility: the smaller knowledge granularity is, the stronger knowledge dis-
tinguishable ability is; on the contrary, the bigger knowledge granularity is, the weaker knowledge
distinguishable ability is. Reference [9] defined the concept of the difference of granularity and
granularity entropy on the basis of fuzzy set’s algebraic method and information theory approach,
and proposes attribute reduction algorithm based on granular computing. Reference [10] pre-
sented attribute reduction algorithm based on Granular Computing, using the equivalent relation
in rough set to construct granule, and attribute significance is regarded as heuristic information.
Reference [11] put forward attribute reduction method based on model of granular computing
in information systems. Reference [12] proposed an improvement of attribute reduction algo-
rithm based on Granular Computing. This algorithm is to get attribute core using discernibility
matrix, and then make attribute reduction based on attribute significance as heuristic informa-
tion. Reference [13] proposed an incomplete order decision table reduction algorithm based on
granular computing.

These reduction methods based on granular computing are mainly first to calculate reduc-
tion core of system, then get reduction based on core. However, in practical application, some
information systems may have no reduction core. In this case, this paper proposes an improved
reduction algorithm based on attribute significance of granular computing, and numerical exper-
iments show the effectiveness of the algorithm.

2 Basic Concepts of Rough Sets

2.1 Rough sets

Let a quadruple S = (U,A, V, f) be an information systems (IS), in which U = {x1, x2, · · · , xn}
is a non-empty finite set called the domain of discourse; A = {a1, a2, · · · , am} is a non-empty
and finite set of attributes; V is a set of attribute values domain, V = ∪

a∈A
Va; f : U ×A→ V is

a mapping, each attribute of the object in the domain of discourse by the mapping has a corre-
sponding information value, i.e. ∀a ∈ A, x ∈ U, f(x, a) ∈ Va. If the attributes set A is composed
of condition attributes set C and decision attributes set D, the quadruple S = (U,A, V, f) is also
called decision information system (DIS). The information system, also known as knowledge
representation system, is the main expression of knowledge of rough sets. It is simply expressed
in (U,A). If P is a subset of attributes set A , each subset P ⊆ A determines a binary indistin-
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guishable relation IND(P ), IND(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v)}. A set X ⊆ U
represent a concept and partition included by IND(P ) is called a knowledge base and denoted
by U/IND(P ). In particular, the partition U/IND(P ) = {Y1, Y2, · · · , Yk} is the knowledge base
of decision classes.

A knowledge base (U,R) is also called an approximation space, where U is the domain of
discourse and R is an equivalence relation on U . Let X ⊆ UandR ⊆ A, the sets R(X) = {x ∈
U | [x]R ⊆ X} and R̄(X) = {x ∈ U | [x]R∩X 6= φ} are respectively called lower approximation set
and upper approximation set. Where [x]R refers to an equivalence class of IND(P ) = ∩IND(R)
determined by element x. If R(x) = R̄(x), then X is called a definable set on U ; If R(x) 6= R̄(x),
then X is called a rough set on U .

If IND(R) 6= IND(R− |a|), then a is indispensable in the set R, otherwise a is dispensable.
If every a ∈ R is indispensable, then R is called independent. Let Q ⊆ P , that is, Q is a subset
of P , if Q is independent and IND(Q) = IND(P ), then Q is a reduction of P , denoted as
Q = red(P ). The union set of indispensable attribute in the set A is called a core set, denoted
as core(P ), core(P ) = ∩ red(P ).

2.2 Knowledge granulation and partition

Definition 1[8]. Let (U,R) be an approximation space, P ∈ R is an equivalence relation on
U , called knowledge. The approximation space is also called knowledge base. The equivalence
class [x]P = {x ∈ U, (xi, xj) ∈ P} is called knowledge granule. The quotient set U/P =
{[x ]P |x ∈ U} is called a P − granularity partition. The granularity of knowledge is defined as
GD(P ),

GD(P ) =
|P |

|U × U |
=
|P |

|U |2
(1)

Where |P | denotes the cardinality of the set P ⊆ U × U .
The granularity of knowledge P can express its distinguishable ability. For ∀u, v ∈ U , if

(u, v) ∈ P , then they belong to the same equivalence class, i.e. they are indistinguishable. The
knowledge P ’s discernibility could be defined as Dis(P ), Dis(P ) = 1−GD(P ). In general, the
greater the granularity is, the weaker the distinguishable ability will be, vice versa.
Theorem 1[8]. Let P ∈ R be a knowledge of knowledge base K = (U,R), if U/P = {X1, X2, · · · ,
Xn}, then

GD(P ) =

(

n
∑

i=1

|Xi|
2

)/

|U |2. (2)

Property 1. Let P,Q ∈ R be an equivalence relations on U , U/P = {X1, X2, · · · , Xn},
U/Q = {Y1, Y2, · · · , Yn}, if P = Q, then GD(P ) = GD(Q) and Dis(P ) = Dis(Q); if P ≺ Q,
GD(P ) < GD(Q) and Dis(Q) < Dis(P ).
proof. (a) If P = Q, then m = n, Xi = Yi, so GD(P ) = GD(Q), Dis(Q) = Dis(P ).

(b) If P ≺ Q, then |P | < |Q|, so GD(P ) < GD(Q). Since Dis(P ) = 1 − GD(P ), we could
observe that Dis(Q) < Dis(P ).
Property 2. Let P ∈ R be an equivalence relation on U , U/P = {X1, X2, · · · , Xn}, if the equiv-
alence relation P divides from knowledge granules in U/R, then GD(P ) ≤ GD(R), Dis(R) ≤
Dis(P ).
Proof. We suppose that the knowledge granule Xi from U/R is divided into two knowledge gran-
ules Xi1 and Xi2, that is Xi = Xi1∪Xi2 and Xi1∩Xi2 = ∅, U/P = {X1, X2, · · · , Xi−1, Xi1, Xi2,
Xi+1, · · · , Xn}, so

GD(R) =

(

n
∑

j=1
|Xj |

2

)/

|U |2
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=

(

i−1
∑

j=1
|Xj |

2

)/

|U |2 + |Xi|
2
/

|U |2 +

(

n
∑

j=i+1
|Xj |

2

)/

|U |2

=

(

i−1
∑

j=1
|Xj |

2

)/

|U |2 + [|Xi1|+ |Xi2|]
2
/

|U |2 +

(

n
∑

j=i+1
|Xj |

2

)/

|U |2

≥

(

i−1
∑

j=1
|Xj |

2

)/

|U |2 +
[

|Xi1|
2 + |Xi2|

2
]/

|U |2 +

(

n
∑

j=i+1
|Xj |

2

)/

|U |2

= GD(P ),

Dis(R) = 1−GD(R) ≤ 1−GD(P ) = Dis(P ).
Property 3. Let (U,R) be a knowledge base and P ∈ R be an equivalence relation on U ,
U/R = {X1, X2, · · · , Xn}, Q is the union of knowledge granules in U/R, then GD(R) ≤ GD(Q),
Dis(Q) ≤ Dis(R).
Proof. We suppose that the knowledge granule Xk is the union of Xi and Xi + 1, then
U/Q = {X1, X2, · · · , Xi−1, Xk, Xi+2, · · · , Xn}, so

GD(R) =

(

n
∑

j=1
|Xj |

2

)/

|U |2

=

(

i−1
∑

j=1
|Xj |

2

)/

|U |2 + |Xi|
2
/

|U |2 + |Xi+1|
2
/

|U |2 +

(

n
∑

j=i+2
|Xj |

2

)/

|U |2

≤

(

i−1
∑

j=1
|Xj |

2

)/

|U |2 + [|Xi|+ |Xi+1|]
2
/

|U |2 +

(

n
∑

j=i+2
|Xj |

2

)/

|U |2

=

(

i−1
∑

j=1
|Xj |

2

)/

|U |2 + |Xk|
2
/

|U |2 +

(

n
∑

j=i+2
|Xj |

2

)/

|U |2

= GD(Q),

Dis(Q) ≤ Dis(R).

Property 4. Let S = (U,A, V, f) be an information system,P,Q ⊆ A,
(1) If P ⇒ Q, then GD(P ) ≤ GD(Q);
(2) If P ⇔ Q, then GD(P )=GD(Q).

Proof. (1) If P ⇒ Q, then IND(P ) ⊆ IND(Q), this is |IND(P )| ≤ |IND(Q)|. On the

other hand, GD(P ) = GD(IND(P )) = |IND(P )|
/

|U |2, and GD(Q) = GD(IND(Q)) =

|IND(Q)|
/

|U |2, so GD(P ) ≤ GD(Q).

(2) If P ⇔ Q, then P ⇒ Q and Q ⇒ P . By (1), we could see that GD(P ) ≤ GD(Q) and
GD(Q) ≤ GD(P ), soGD(P )=GD(Q).
Property 5. Let S = (U,A, V, f) be an information system,P,Q ⊆ A,

(1) If P ⇒ Q, then Dis(P ) ≥ Dis(Q);
(2) If P ⇔ Q, then Dis(P )=Dis(Q).

Proof. It follows immediately from Definition 1 and Property 4.
Deduction 1. Let S = (U,A, V, f) be an information system, if P ⊆ Q ⊆ A, then GD(Q) ≤
GD(P ) and Dis(Q) ≥ Dis(P ).
Remark. Deduction 1 illustrates that for the subset of A, when the attribute number increased,
the knowledge granularity is reduced, thus, the discernibility is increased.

3 Attribute reduction algorithm based on attribute significance

Definition 2[8]. Let S = (U,A, V, f) be an information system, the attribute significance
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could be defined as SigA−{a}(a),

SigA−{a}(a) = GD(A− {a})−GD(A). (3)

Remark. In an information system S = (U,A, V, f), the attribute significance of each attribute
a ∈ A could be measured by knowledge granularity.
Definition 3[8]. Let S = (U,A, V, f) be an information system, C is a subset of A, C ⊆ A, for
∀a ∈ A−C, the attribute significance of attribute a relative to attribute set C could be defined
as SigC(a),

SigC(a) = GD(C)−GD(C ∪ {a}). (4)

Remark. Definition 3 illustrates that the attribute significance of attribute a relative to attribute
set C could be measured by change of the knowledge granularity. When a attribute is added to
attribute set C, C’s knowledge granularity may change. If C’s knowledge granularity change,
then attribute a is indispensable.
Definition 4[8]. Let S = (U,A, V, f) be an information system, a ∈ A, if GD(A − {a}) =
GD(A), then attribute a is dispensable, otherwise, attribute a is indispensable. If every a ∈ A
is indispensable, then A is called independent.
Definition 5[8]. Let S = (U,A, V, f) be an information system, P ⊆ A, if P is independent and
GD(P ) = GD(A), then P is a reduction of A, denoted as red(A). The union set of indispensable
attribute in the set A is called a core set, denoted as core(P ), core(P ) = ∩ red(P ).
Property 6. Attribute a is indispensable, if and only if

SigA−{a}(a) > 0. (5)

Proof. ⇒ If attribute a is indispensable, then GD(A − {a}) 6= GD(A). As we know that
GD(A− {a}) ≥ GD(A), so SigA−{a}(a) = GD(A− {a})−GD(A) > 0.
⇐ Obviously.

Property 7. Core(A) = ∪
{

a ∈ A|SigA−{a}(a) > 0
}

.
Proof: It follows immediately from Definition 3 and Property 6.
Remark. The attribute significance from the perspective of knowledge granularity provides
a method of attribute reduction: We could judge the significance of attribute a by discussing
whether GD(A − {a}) is equal to GD(A). If GD(A − {a}) = GD(A)ŁŹthen a is dispens-
able, otherwise a is indispensable. Thus we could obtain the reduction core Core(A). Next
calculate the significance of the rest attribute relative to Core(A). If GD(Core(A) ∪ a) =
GD(A), then the set Core(A) ∪ a is the reduction of the information system, where a =
{

a ∈ A− Core(A )|maxSigCore(A)(a)
}

.
Algorithm 1:

Input: An information system S = (U,A, V, f), where U = {x1, x2, · · · , xn}, A = {a1, a2, · · · ,
am}.

Output: red(A) and Core(A) // the sets of reductions and core.
Step 1: For i = 1, i ≤ n, ++ i; j = 1, j ≤ m, ++ j begin, calculate GD(A)// the knowledge

granularity of attribute set A.
Step 2: Calculate SigA−{a}(a) // the significance of attribute a ∈ A.
Step 3: Calculate Core(A), Core(A) =

{

a ∈ A|SigA−{a}(a) > 0
}

.
Step 4: If GD(Core(A)) = GD(A), output red(A) = Core(A), end.
If GD(Core(A)) > GD(A), turn next.
Step 5: Calculate max

b∈B
SigCore(A)(b ), B = A − Core(A) // the significance of attribute

b ∈ B = A− Core(A) for Core(A).
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Step 6: If GD(Core(A) ∪ a′) = GD(A), output red(A) = Core(A) ∪ b and Core(A), end.
If GD(Core(A) ∪ b) > GD(A), repeat step 5,
Step 7: Calculate max

c∈C
SigCore(A)∪b(b ) ∪ (Core(A) ∪ b) // the significance of attribute c ∈

C = A− Core(A) ∪ b for Core(A) ∪ b,
Step 8: For j = 1 to |C|, repeat step 7 until the knowledge granularity is equal to GD(A)
Step 9: Output red(A) = Core(A) ∪ b ∪ c ∪ · · · and Core(A).
Example 1. Let S = (U,A, V, f) be an information system (Table 1). There are 6 objects

and 4 attributes, where U = {x1, x2, x3, x4, x5}, A = {a1, a2, a3, a4}. Calculate the reduction of
the system.

Table1. An information system

U a1 a2 a3 a4

x1 1 0 2 2

x2 0 1 1 1

x3 2 0 0 1

x4 1 1 0 2

x5 2 2 0 0

x6 2 1 1 1

It is easy to calculate that

U/A = {x1, x2, x3, x4, x5, x6}, GD(A) =

(

n
∑

i=1
|Xi|

2

)/

|U |2 = 6
36 = 1

6 ,

U/A− {a1} = {x1, {x2, x6}, x3, x4, x5}, GD(A− {a1}) =
8
36 ,

SigA−{a1}(a1) = GD(A− {a1})−GD(A) = 8
36 −

6
36 = 2

36 ,

U/A− {a2} = {x1, x2, x3, x4, x5, x6}, GD(A− {a2}) =
6
36 ,

SigA−{a2}(a2) = GD(A− {a2})−GD(A) = 6
36 −

6
36 = 0,

U/A− {a3} = {x1, x2, x3, x4, x5, x6}, GD(A− {a3}) =
6
36 ,

SigA−{a3}(a3) = GD(A− {a3})−GD(A) = 6
36 −

6
36 = 0,

U/A− {a4} = {x1, x2, x3, x4, x5, x6}, GD(A− {a4}) =
6
36 ,

SigA−{a4}(a4) = GD(A− {a4})−GD(A) = 6
36 −

6
36 = 0.

Based on the result above, we can see that the core of the system is
Core(A) =

{

a ∈ A|SigA−{a}(a) > 0
}

= {a1}, GD(Core(A)) = 14
36 > 6

36 = GD(A).
Let a set B = A − Core(A) = {a2, a3, a4}, calculate the significance of the rest attribute

relative to Core(A):
SigCore(A)(a2) = GD(Core(A))−GD(Core(A) ∪ a2) =

14
36 −

6
36 = 8

36 ,
SigCore(A)(a3) = GD(Core(A))−GD(Core(A) ∪ a3) =

14
36 −

8
36 = 6

36 ,
SigCore(A)(a4) = GD(Core(A))−GD(Core(A) ∪ a4) =

14
36 −

10
36 = 4

36 .
Since max

b∈B
SigCore(A)(b ) = 8

36 , U/Core(A) ∪ a2 = {x1, x2, x3, x4, x5, x6}, GD(Core(A) ∪

a2) = GD(A), we can see that Core(A)∪a2 = {a1, a2} is the reduction, that is red(A) = {a1, a2},
Core(A) = {a1}.

4 An improved reduction algorithm

The reduction of an information system is not the only, some may have more than one
reductions. But the reduction results may not be able to get reduction core, especially in the
actual application data. For this case, Algorithm 1 is powerless. Now we will improve the
algorithm, which can deal with the system with reduction core and no reduction core.
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In an information system S = (U,A, V, f), if SigA−{a}(a) = 0, then then a is dispensable.
For ∀a ∈ A, if SigA−{a}(a) = 0, then the system has no reduction core.
Definition 6. Let S = (U,A, V, f) be an information system, P is a subset of A, P ⊆ A, the
attribute significance of P relative to A could be defined as SigA−P (P ),

SigA−{P}(P ) = GD(A− P )−GD(A). (6)

Particularly, if P = A, Sig∅(P ) is represented as Sig(P ), and Sig(P ) = Sig∅(P ) = GD(∅)−
GD(A) = 1−GD(P ) = Dis(P ). Where GD(∅) = 1 (since U/IND(∅) = {U}).

Algorithm 2:
Input: An information system S = (U,A, V, f), where U = {x1, x2, · · · , xn}, A = {a1, a2, · · · ,

am}.
Output: red(A) and Core(A) // the sets of reductions and core.
Step 1: For i = 1, i ≤ n, ++ i; j = 1, j ≤ m, ++ j begin, calculate GD(A).// the knowledge

granularity of attribute set A
Step 2: Calculate SigA−{a}(a). // the significance of attribute a ∈ A
If SigA−{a}(a) 6= 0 // the system has reduction core, turn step 8;
If SigA−{a}(a) = 0 // the system has no reduction core, next;
Step 3: Calculate SigA−{ai,aj}(ai, aj), 1 ≤ i 6= j ≤ m // the significance of the combination

of any two attributes in A,
Step 4: For i = 1, i ≤ n, ++ i; j = 1, j ≤ m, ++ j, find out

red′(A) =

{

(ai, aj)| max
1≤i 6=j≤m

SigA−{ai,aj}(ai, aj)

}

. // the suboptimal reduction of the system

Step 5: If GD(red′(A)) = GD(A), then output the reduction red(A) = red′(A), end. If
GD(red′(A)) > GD(A), turn next;

Step 6: Calculate max
b∈B

Sigred′(A)(b ), B = A − red′(A). // the significance of attribute

b ∈ B = A− red′(A) for red′(A)
Step 7: If GD(red′(A) ∪ b) = GD(A), then output red(A) = red′(A) ∪ b, end.
If GD(red′(A)∪ b) > GD(A), repeat step 6 until GD(red′(A)∪ b) = GD(A), output red(A),

end.
Step 8: Calculate Core(A) =

{

a ∈ A|SigA−{a}(a) > 0
}

.
Step 9: If GD(Core(A)) = GD(A), output red(A) = Core(A), end.
If GD(Core(A)) > GD(A), turn next;
Step10: Calculate max

b∈B
SigCore(A)(b ), B = A − Core(A) // the significance of attribute

b ∈ B = A− Core(A) for Core(A)
Step11: If GD(Core(A) ∪ b) = GD(A), output red(A) = Core(A) ∪ b and Core(A), end.
If GD(Core(A) ∪ b) > GD(A), repeat step 10.
Step12: Calculate max

c∈C
SigCore(A)∪b(b ) ∪ (Core(A) ∪ b) // the significance of attribute c ∈

C = A− Core(A) ∪ b for Core(A) ∪ b.
Step13: Output red(A) = Core(A) ∪ b ∪ c ∪ · · · and Core(A), end.
Example 2. Let S = (U,A, V, f) be an information system (Table 2). There are 5 objects

and 4 attributes, where U = {x1, x2, x3, x4, x5}, A = {a1, a2, a3, a4}. Calculate the reduction of
the system.
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Table2. An information system

U a1 a2 a3 a4

x1 1 0 2 1

x2 2 1 2 1

x3 0 1 2 0

x4 2 0 1 1

x5 1 2 2 0

It is easy to calculate that

U/A = {x1, x2, x3, x4, x5}, GD(A) =

(

n
∑

i=1
|Xi|

2

)/

|U |2 = 5
25 = 1

5 ,

U/A− {a1} = {x1, x2, x3, x4, x5}, GD(A− {a1}) =
1
5 ,

SigA−{a1}(a1) = GD(A− {a1})−GD(A) = 0;
U/A− {a2} = {x1, x2, x3, x4, x5}, GD(A− {a2}) =

1
5 ,

SigA−{a2}(a2) = GD(A− {a2})−GD(A) = 0;
U/A− {a3} = {x1, x2, x3, x4, x5}, GD(A− {a3}) =

1
5 ,

SigA−{a3}(a3) = GD(A− {a3})−GD(A) = 0;
U/A− {a4} = {x1, x2, x3, x4, x5}, GD(A− {a4}) =

1
5 ,

SigA−{a4}(a4) = GD(A− {a4})−GD(A) = 0.
Based on the result above, we can see that the system has no core. Next we calculate the

significance of attribute combination SigA−{ai,aj}(ai, aj), 1 ≤ i 6= j ≤ 4:
GD(A− {a1, a2}) =

9
25 , SigA−{a1,a2}(a1, a2) = GD(A− {a1, a2})−GD(A) = 4

25 ;
GD(A− {a1, a3}) =

7
25 , SigA−{a1,a3}(a1, a3) = GD(A− {a1, a3})−GD(A) = 2

25 ;
GD(A− {a1, a4}) =

7
25 , SigA−{a1,a4}(a1, a4) = GD(A− {a1, a4})−GD(A) = 2

25 ;
GD(A− {a2, a3}) =

5
25 , SigA−{a2,a3}(a2, a3) = GD(A− {a2, a3})−GD(A) = 0;

GD(A− {a2, a4}) =
7
25 , SigA−{a2,a4}(a2, a4) = GD(A− {a2, a4})−GD(A) = 2

25 ;
GD(A− {a3, a4}) =

5
25 , SigA−{a3,a4}(a3, a4) = GD(A− {a3, a4})−GD(A) = 0.

We can see that GD(a1, a2) = GD(A), so red(A) = {a1, a2} is the reduction of the system.

5 Results and Discussion

The idea of Algorithm 1 is listed as follow: At first, work out the reduction core Core(A)
by finding out the set

{

a ∈ A|SigA−{a}(a) > 0
}

. Then calculate the significance of the rest
attribute relative to Core(A). If GD(Core(A) ∪ a) = GD(A), then the set Core(A) ∪ a is the
reduction of the information system. The time complexity of the algorithm is T ≈ O(|C|3 · |U |2).
The precondition of Algorithm 1 is working out reduction core. However, some information
systems may have no reduction core. In this case, Algorithm 1 is powerless. In this paper, an
improved algorithm is proposed. In an information system with no reduction core, the suboptimal
reduction red′(A) replaces the reduction core. The improved algorithm does not increase in time
complexity. It can deal with the system with reduction core and no reduction core.
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