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Abstract: The problem of fuzzy robust tracking control is investigated for uncer-
tain nonlinear time-delay systems. The nonlinear time-delay system is modeled as
fuzzy Takagi-Sugeno (T-S) system, and fuzzy logic systems are used to eliminate the
uncertainties of the system. A sufficient condition for the existence of fuzzy controller
is given in terms of linear matrix inequalities (LMIs) and adaptive law. Based on
Lyapunov stability theorem, the fuzzy control scheme guarantees the desired tracking
performance in sense that all the closed-loop signals are uniformly ultimately bounded
(UUB). Simulation results of 2-link manipulator demonstrate the effectiveness of the
developed control scheme.
Keywords: fuzzy T-S model; fuzzy logic systems; nonlinear system; time-delay;
tracking control.

1 Introduction

Fuzzy control approach offers a powerful and systematical control methodology to handle
nonlinear system. Owing to the superior approximation and reasoning abilities of the fuzzy
controller, fuzzy control approach has been applied in different applications. With the extensive
efforts of the researchers working on the fuzzy control discipline, fruitful stability analysis results
have been obtained to aid the design of stable fuzzy controllers. In [1], a fuzzy T-S model
was employed to represent the system dynamics of the nonlinear system. The fuzzy T-S model
represents the nonlinear system as a weighted sum of some linear subsystems. This particular
structure offers a general framework to represent the nonlinear system which is favorable for
system analysis. Fuzzy controllers [2-4] were proposed to handle the nonlinear system represented
by the fuzzy T-S model. To avoid the effect of the uncertainties, a matching condition is assumed
in [5–7], and an upper bound on uncertainties is introduced in [8–10]. The matching condition
and the upper bound in dealing with the uncertainties are effective and feasible. However, there
exists certain conservatism. The matching condition is a very conservative assumption and the
upper bound may be too big or too small, which adds some difficulties to the controller design.
On the other hand, it is well known that fuzzy logic systems can uniformly approximate nonlinear
continuous functions to arbitrary accuracy. Thus, fuzzy logic systems are used to model uncertain
nonlinear systems in [11–13].
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Time delays are frequently encountered in engineering systems. The existence of time delays
usually becomes the source of instability and degrading performance of systems. Therefore,
stability analysis and controller synthesis for nonlinear time-delay systems are important both
in theory and in practice.

By using fuzzy T-S model and fuzzy logic systems, we propose a novel robust tracking con-
trol scheme for a class of uncertain nonlinear time-delay system. Fuzzy T-S model is used to
approximate the nonlinear system, and a fuzzy state feedback controller is designed to guarantee
the stability of the fuzzy system. A compensator based fuzzy logic systems is introduced to
eliminate the uncertainties of the system. The fuzzy control scheme ensures the desired tracking
performance in sense that all the closed-loop signals are uniformly ultimately bounded (UUB).

The rest of the paper is organized as follows. Section 2 provides the problem formulation.
Section 3 develops a procedure of the controller design. Section 4 gives the main result. Section
5 presents simulation examples to illustrate the effectiveness of the proposed method. These are
followed by conclusions in Section 6.

2 Problem formulation

Consider the following uncertain nonlinear time-delay system:

ẋ1 = x2,

· · ·

ẋ(β1−1) = xβ1
,

ẋβ1
= f1(x, x(t− τ1), · · · , x(t− τr), u) + f̃1(x, x(t− τ1), · · · , x(t− τr), u) + d1,

ẋ(β1+1) = x(β1+2),

· · ·

ẋn = fm(x, x(t− τ1), · · · , x(t− τr), u) + f̃m(x, x(t− τ1), · · · , x(t− τr), u) + dm,

(1)

where x = [x1, · · · , x
(β1−1)
1 , · · · , x(n−βm+1), · · · , x

(βm−1)
(n−βm+1)]

T ∈ Rn with β1+β2+· · ·+βm = n and
u ∈ Rm are the system state and control input, respectively. fi (i = 1, · · · ,m) are known smooth
nonlinear functions, f̃i (i = 1, · · · ,m) are unknown nonlinear uncertainties, τi(i = 1, · · · , r) are
time delays, and di (i = 1, · · · ,m) are external bounded disturbances.

The control objective of this paper is to find a fuzzy tracking controller such that, while
maintaining all the closed-loop signals UUB, the system states of nonlinear system (1) follow
those of the given stable reference model.

3 Fuzzy model, reference model and fuzzy controller

A fuzzy-model-based control system, formed by a fuzzy model, a reference model, and fuzzy
controller connected in a closed-loop, is introduced.

3.1 Fuzzy model

A fuzzy dynamic model has been proposed by Takagi and Sugeno to represent a nonlinear
system. The fuzzy dynamic model is described by the following fuzzy IF-THEN rules and will
be employed here to deal with the control design problem for the nonlinear system in (1).
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Plant Rule i: IFz1(t) is F i
1 and , · · · , and zs(t) is F i

s ,THEN

ẋ(t) = Aix(t) +

r
∑

l=1

Ailx(t− τl) +Biu(t) + d, i = 1, · · · , L (2)

where z1(t), · · · , zs(t) are the premise variables, F i
j (j = 1, · · · , s) are the fuzzy sets, L is

the number of IF-THEN rules, Ai,Bi and Ail are some constant matrices with compatible
dimensions, Bi=[0, · · · , bTi1, · · · , 0, · · · , b

T
im]T ∈ Rn×m with bi1 ∈ Rm, · · · , bim ∈ Rm , and

d = [0, · · · , d1, · · · , 0, · · · , dm]T .
Then, the final output of the fuzzy system is inferred as follows:

ẋ(t) =

L
∑

i=1

µi[Aix(t) +

r
∑

l=1

Ailx(t− τl)] +

L
∑

i=1

µiBiu(t) + d, (3)

where

µi = vi(z(t))

/

L
∑

i=1

vi(z(t)), vi(z(t)) =

s
∏

j=1

F i
j (zj(t)) (4)

for all t ≥ 0, and F i
j (zj(t)) is the grade of membership of zj(t) in F i

j . It can be seen that
L
∑

i=1
vi(z(t)) > 0, and vi ≥ 0(i = 1, · · · , r) for all t ≥ 0. We have µi ≥ 0(i = 1, · · · , r),

L
∑

i=1
µi = 1.

Hence, the nonlinear system (1) can be rearranged as the following equivalent system :

ẋ(t) =

L
∑

i=1

µi[Aix(t) +

r
∑

l=1

Ailx(t− τl)] +

L
∑

i=1

µiBiu(t) +B∆(x, x(t− τ)) + d, (5)

where B∆(x, x(t−τ)) = B∆(x, x(t−τ1), · · · , x(t−τr)) denotes the uncertainties between the non-
linear system (1) and the fuzzy model (3), and B = diag[B1, · · · , Bm] with Bi = [0, · · · , 0, 1]T ∈
Rβi .

3.2 Reference model

The system states of nonlinear systems (1) are driven to follow those of the following stable
reference model

ẋr(t) = Arxr(t) + r(t), (6)

where xr(t) is a reference state, r(t) is a bounded reference input, and Ar is an asymptotically
stable matrix.

3.3 Fuzzy controller

A fuzzy controller is chosen as

u(t) = ul(t)− uf (t), (7)

where ul(t) denotes the fuzzy state feedback control based on T-S model, and uf (t) is the
adaptive compensator based on fuzzy logic systems. The former is used to stabilize the linear
part of system (11), and the latter is used to compensate the uncertainties. ul(t) and uf (t) are
designed as (8) and (10), respectively.

For the fuzzy model represented by (2) or (3), fuzzy state feedback control ul(t) shares the
same IF parts with the following structure.
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Control Rule i: IF z1(t) is F i
1 and , · · · , and zs(t) is F i

s , THEN

ul(t) = Ki(x(t)− xr(t)), i = 1, · · · , L.

Hence, the overall state feedback controller ul(t) is given by

ul(t) =

L
∑

i=1

µiKi(x(t)− xr(t)), (8)

where Ki(i = 1, 2, · · · , L) are matrices with proper dimensions and satisfy the following inequal-
ities

ĀT
ijP + PĀij +

r
∑

l=1

α−1l PĀilĀ
T
ilP +

r
∑

l=1

αlI +
1

ρ2
PP + Q̄ < 0, i, j = 1, · · · , L, (9)

where Āij =

[

Ai +BiKj −BiKj

0 Ar

]

, Āil =

[

Ail 0

0 0

]

, Q̄ = diag{2Q, 2Q}, P and Q are some

symmetric and positive definite matrices, and αl(l = 1, · · · , r) are positive constants.
The adaptive compensator based on fuzzy logic systems uf (t) are as follows:

uf (t) =

{

E−1û(x, x(t− τ)|Θ), if E is nonsigular

ET (I + EET )−1û(x, x(t− τ)|Θ), if E is sigular
(10)

where Ei = [bTi1, · · · , b
T
im]T ∈ Rm×m,E =

L
∑

i=1
µiEi, and û(x, x(t − τ)|Θ) is constructed by fuzzy

logic systems. The weight Θ is an adaptive parameter, which is adapted by

Θ̇ = η1Ψ
T (x, x(t− τ))B̄TPx̃, (11)

where η1 is a positive constant, Ψ(x, x(t−τ)) is a fuzzy basis-function matrix, and x̃ = [xT , xTr ]
T .

In the following, we explain the solution of the inequalities (9) and the construction of fuzzy
logic systems û(x, u|Θ).

1) By Schur complements, the inequalities (9) are transformed into the LMIs. For the conve-
nience of design, P is chosen as the formP = diag{P1, P2}, where P1, P2 are some symmetric and
positive definite matrices. The inequalities (9) are equivalent to the following matrix inequalities







S11 −P1BiKj 0

−(BiKj)
TP1 S22 P2

0 P2 −ρ2I






< 0, i, j = 1, 2, · · · , L, (12)

Where S11 = P1(Ai +BiKj) + (Ai +BiKj)
TP1 +

r
∑

l=1

α−1l P1AilA
T
ilP1 +

r
∑

l=1

αlI +
1
ρ2
P1P1 + 2Q,

S22 = P2Ar +AT
r P2 +

r
∑

l=1

αlI + 2Q.

The matrix inequalities (12) imply S11 < 0. Let W = P−11 and Yj = KjW . S11 < 0 is
equivalent to the LMIs with prescribed Q and αl(l = 1, · · · , r),





S W

W −(
r
∑

l=1

αlI + 2Q)−1



 < 0, i, j = 1, 2, · · · , L (13)
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where S = AiW +WAT
i +BiYj + (BiYj)

T +
r
∑

l=1

α−1l AilA
T
il + (ρ2)−1I.

By solving the LMIs (13), P1 and Kj(j = 1, 2, · · · , L) could be obtained. And then, by
substituting P1 and Kj(j = 1, 2, · · · , L) into (12), (12) becomes standard LMIs. We can easily
solve P2 from (12). Therefore, the common solution P and Kj(j = 1, 2, · · · , L) could be found.

Remark 1: Either the matching condition or the upper bound is related to a large number
of matrix operations. Without the matching condition and the upper bound, the dimension of
the LMIs of this paper is reduced.

2) Fuzzy adaptive systems consist of four main components: fuzzy rule base, fuzzy inference
engine, fuzzifier and defuzzifier [11]. The fuzzy rule base is composed of a collection of IF-THEN
inference rules:

Rl: IF x1 is Al
1, · · · , xn is Al

nŁŹTHEN y is Gl(l = 1, · · · p)
where Al

i(i = 1, · · · , l) and Gl(l = 1, · · · p) are fuzzy sets. The kth element of ∆(x, x(t− τ)) is of
the following form:

∆̂k(x, x(t− τ)|θk) = ξTk (x, x(t− τ))θk,

where θk = (θ1k, · · · , θ
p
k)

T ∈ Rp, ξTk (x, x(t− τ)) = (ξ1k, · · · , ξ
p
k) ∈ Rp,

ξlk =

n
∏

i=1

µF l

i

(xi, xi(t− τ))

/

p
∑

l=1

n
∏

i=1

µF l

i

(xi, xi(t− τ)), µF l

i

(xi, xi(t−τ)) = µF l

i

(xi)

r
∏

j=1

µF l

i

(xi(t− τj)),

and µF l

i

(xi)(i = 1, 2, · · · , n) are the membership functions.

In this paper, fuzzy logic systems are constructed to eliminate the uncertainties ∆(x, x(t−τ)).
The approximation form is given as follows:

∆̂(x, x(t− τ)|Θ) = Ψ(x, x(t− τ))Θ, (14)

where Ψ(x, x(t− τ)) = diag[ξT1 (x, x(t− τ)), · · · , ξTm(x, x(t− τ))],Θ = [θT1 , θ
T
2 , · · · , θ

T
m]T .

Define the optimal the parameter Θ∗ as

Θ∗ = arg min
Θ∈Ω1

[ sup
x∈U1

|û(x, x(t− τ)|Θ)−∆(x, x(t− τ))|], (15)

where U1 = {x ∈ Rn : ‖x‖ ≤ N}, Ω1 = {Θ ∈ Rpm: ‖Θ‖ ≤ M}. U1, Ω1 denote the sets of suitable
bounds on x,Θ respectively, N,Mare upper bounds.

The approximation error for the function ∆(x, x(t− τ))can be expressed as

∆̂(x, x(t− τ)|Θ)−∆(x, x(t− τ)) = Ψ(x, x(t− τ))Θ̃ + w, (16)

where Θ̃ = Θ−Θ∗ the estimation error for Θ, w = [w1, · · · , wm]T is a residual term.
Remark 2: In order to guarantee ‖Θ‖ ≤ M, the adaptive law (11) must be modified by the
projection algorithm [11] as follows:

Θ̇ =

{

η1Ψ
T (x, x(t− τ))B̄TPx̃, if(‖Θ‖<M)or(‖Θ‖=M and x̃TPB̄ Ψ(x, x(t− τ))Θ ≤ 0)

PΘ[.], if ‖Θ‖=M and x̃TPB̄ Ψ(x, x(t− τ))Θ > 0

where PΘ[.]=η1Ψ
T (x, x(t− τ))B̄TPx̃− η1

x̃TPB̄ Ψ(x,x(t−τ))Θ

‖Θ‖2
.
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4 Stability analysis

Substituting (11) into (11) yields

ẋ(t) =

L
∑

i=1

µi[Aix(t) +

r
∑

l=1

Ailx(t− τl)] +

L
∑

i=1

L
∑

j=1

µiµjBiKj(x(t)− xr(t))

−B(û(x, x(t− τ)|Θ)−∆(x, x(t− τ))) + d. (17)

Let x̃(t) = [xT (t), xTr (t)]
T , andB̄ = [ B

T 0 ]T . By using (11) and (17), a new extended closed-
loop system is as follows:

˙̃x(t) =

L
∑

i=1

L
∑

j=1

µiµj [Āij x̃(t)+

r
∑

l=1

Āilx̃(t− τl)]+B̄(−(û(x, x(t−τ)|Θ)−∆(x, x(t−τ)))+d′, (18)

where d′ = [dT , rT (t)]T . When fuzzy logic systems û(x, x(t−τ)|Θ) could eliminate ∆(x, x(t−τ)),
the closed-loop system (18) is stable.

By denoting w′ = [w̄T , rT (t)]T , w̄ = [0, · · · , d1 − w1, · · · , 0, · · · , dm − wm]T and using (14),
the closed-loop system (18) could be rewritten as

˙̃x(t) =
L
∑

i=1

L
∑

j=1

µiµj [Āij x̃(t) +
r

∑

l=1

Āilx̃(t− τl)] + B̄(−Ψ(x, x(t− τ))Θ̃) + w′. (19)

From the above analysis, we have the following conclusion.

Theorem 1. Given a matrixQ > 0, scalarsρ > 0,αl(l = 1, · · · , r) > 0, η1 > 0.If there exist
matricesP > 0,Kj(j = 1, 2, · · ·, L) such that the inequalities (9) hold. If the updating law for
fuzzy logic systems is chosen as (11). Then there exists a controller (11) with the fuzzy state
feedback controller (8) and the adaptive compensator (10) such that, while maintaining all the
closed-loop signals UUB, the following tracking performance(20) is achieved

∫ T

0
(x(t)− xr(t))

TQ(x(t)− xr(t))dt ≤ x̃T (0)Px̃(0) +
1

η1
Θ̃T (0)Θ̃(0) + ρ2

∫ T

0
(w′Tw′)dt. (20)

Proof: Consider the following Lyapunov-Krasoviskii candidate

V =
1

2
x̃TPx̃+

1

2

r
∑

l=1

∫ t

t−τl

αlx̃
T (v)x̃(v)dv +

1

2η1
Θ̃T Θ̃, (21)

where V̇ = V̇1 + V̇2, V̇1and V̇2 are given in (22) and (26), respectively.

V̇1 =
1

2
(

L
∑

i=1

L
∑

j=1

µiµj [Āij x̃(t) +
r

∑

l=1

Āilx̃(t− τl)])
TPx̃(t) +

1

2
x̃T (t)P (

L
∑

i=1

L
∑

j=1

µiµj [Āij x̃(t)

+

r
∑

l=1

Āilx̃(t− τl)]) +
1

2
w′TPx(t) +

1

2
xT (t)Pw′+

1

2

r
∑

l=1

αlx̃
T (t)x̃(t)−

1

2

r
∑

l=1

αlx̃
T (t− τl)x̃(t− τl)

≤
1

2
(

L
∑

i=1

L
∑

j=1

µiµj [x̃
T (t)ĀT

ijPx̃(t)+x̃T (t)PĀij x̃(t)+
r

∑

l=1

α−1l x̃T (t)PĀilĀ
T
ilPx̃(t)+

r
∑

l=1

αlx̃
T (t− τl)x̃(t− τl)]
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−
1

2
(
1

ρ
Px(t)− ρw′)T (

1

ρ
Px(t)− ρw′) +

1

2
ρ2w′Tw′+

1

2ρ2
x̃T (t)PPx̃(t) +

1

2

r
∑

l=1

αlx̃
T (t)x̃(t)

−1
2

r
∑

l=1

αlx̃
T (t− τl)x̃(t− τl)

≤
1

2

L
∑

i=1

L
∑

j=1

µiµj x̃
T (t)(ĀT

ijP+PĀij+

r
∑

l=1

α−1l PĀilĀ
T
ilP+

r
∑

l=1

αlI+
1

ρ2
PP )x̃(t)+

1

2
ρ2w′Tw′. (22)

Substituting (9) into (22) yields

V̇1 ≤ −
1

2
x̃T (t)Q̄x̃(t) +

1

2
ρ2w′Tw′. (23)

By using (11),

V2 = [x̃TPB̄(−(Ψ(x, x(t− τ))Θ̃) +
1

η1
Θ̃T Θ̇] = 0. (24)

From (23)-(24),

V̇ ≤ −
1

2
x̃T (t)Q̄x̃(t) +

1

2
ρ2w′Tw′. (25)

When‖x̃(t)‖ > ρ

λmin(Q̄)
‖w′‖,V̇ < 0.Thus, the closed-loop system consisting of (1), (11), (8) and

(10) is UUB . ✷

Note that
∫ T

0
(x(t)− xr(t))

TQ(x(t)− xr(t))dt ≤

∫ T

0
x̃T (t)Q̄x̃(t)dt.

Integrating the above equation (25) from t = 0 to Tyields (20).

5 Simulation example

In this section, we provide an example to verify the effectiveness of the proposed control
scheme.

Example: Consider the following 2-link manipulator system in [14]

q̈(t) + C(q, q̇)q̇(t) + g(q) = B(q)u(t) +

r
∑

i=1

ξi(t)q(t− τi) + d′, (26)

where C(q, q̇) = H−1(q)C′(q, q̇), g(q) = H−1(q)g′(q), B(q) = H−1(q),d′ = H−1(q)d,q = [q1, q2]
T ,

ξi(t)(i = 1, · · · , r)are uncertain and bounded, and dis the external bounded disturbance.
The reference model is as follows:

ẋr(t) = Arxr(t) + r(t), (27)

whereAr = diag{Ar1, Ar2},Ar1 = Ar2 =

[

0 1

−6 −5

]

, r(t) = [0, r1(t), 0, r2(t)]
T , r1(t) = r2(t) =

3 sin(2t).
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Step1: Denote x1 = q1, x2 = q̇1, x3 = q2, and x4 = q̇2. Then, (26) can be written as a fourth-
dimension system. A nine-rule fuzzy T-S model is used to approximate the nonlinear 2-link
manipulator system at x1 = −

π
2 , 0,

π
2 and x3 = −

π
2 , 0,

π
2 , where

A1 =













0 1 0 0

5.927 −0.001 −0.315 −0.0000084

0 0 0 1

−6.859 0.002 3.155 0.0000062













, A2 =













0 1 0 0

3.0428 −0.0011 −0.1791 −0.0002

0 0 0 1

−3.5436 0.0313 2.5611 0.0000114













,

A3 =













0 1 0 0

6.2728 0.003 0.4339 −0.0001

0 0 0 1

−9.1041 0.0158 −1.0574 −0.000032













, A4 =













0 1 0 0

6.4535 0.0017 1.2427 −0.0002

0 0 0 1

−3.1873 0.0306 −5.1911 −0.000018













,

A5 =













0 1 0 0

11.1336 0 −1.8145 0

0 0 0 1

−9.0918 0 9.1638 0













, A6 =













0 1 0 0

6.1702 −0.001 1.687 −0.0002

0 0 0 1

−2.3559 0.0314 4.5298 −0.000011













,

A7 =













0 1 0 0

6.1206 0.0041 0.6205 0.0001

0 0 0 1

8.8794 0.0193 −1.0119 0.000044













, A8 =













0 1 0 0

3.6421 −0.0018 0.0721 0.0002

0 0 0 1

2.429 −0.0305 2.9832 −0.000019













,

A9 =













0 1 0 0

6.2933 −0.0009 0.2188 −0.000012

0 0 0 1

−7.4649 0.0024 3.2693 −0.0000092













,

A11 = A21 = A31 = A41 = A51 = A61 = A71 = A81 = A91 =













0 0 0 0

0.01 0 0 0

0 0 0 0

0 0 0 0













,

A12 = A22 = A32 = A42 = A52 = A62 = A72 = A82 = A92 =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0.01 0













,

B1 =

[

0 1 0 −1

0 −1 0 2

]T

, B2 =

[

0 0.5 0 0

0 0 0 1

]T

, B3 =

[

0 1 0 1

0 1 0 2

]T

,

B4 =

[

0 0.5 0 0

0 0 0 1

]T

, B5 =

[

0 1 0 −1

0 −1 0 2

]T

, B6 =

[

0 0.5 0 0

0 0 0 1

]T

,
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B7 =

[

0 1 0 1

0 1 0 2

]T

, B8 =

[

0 0.5 0 0

0 0 0 1

]T

, B9 =

[

0 1 0 −1

0 −1 0 2

]T

.

The membership functions are adopted as the triangle type.
Step 2: On the basis of Theorem1, withα1 = 0.005, α2 = 0.005, andρ = 1,we have

K1 =

[

-76.9685 -42.9566 -19.6919 -8.9116

6.0025 -0.4619 -51.4252 -25.0336

]

,

K2 =

[

-77.7828 -42.8754 -13.6211 -5.9413

8.7179 1.2251 -50.6614 -24.6859

]

,

K3 =

[

-76.8347 -42.9089 -19.8204 -8.9785

5.8595 -0.5257 -51.3739 -25.0109

]

,

K4 =

[

-77.7828 -42.8754 -13.6211 -5.9413

8.7179 1.2251 -50.6614 -24.6859

]

,

K5 =

[

-77.7828 -42.8754 -13.6211 -5.9413

8.7179 1.2251 -50.6614 -24.6859

]

,

K6 =

[

-77.7828 -42.8754 -13.6211 -5.9413

8.7179 1.2251 -50.6614 -24.6859

]

,

K7 =

[

-79.8424 -43.4072 -6.0780 -2.2626

12.7745 3.6898 -50.2150 -24.4989

]

,

K8 =

[

-77.7828 -42.8754 -13.6211 -5.9413

8.7179 1.2251 -50.6614 -24.6859

]

,

K9 =

[

-80.1162 -43.5088 -5.8152 -2.1328

13.0509 3.8147 -50.3242 -24.5472

]

.

Step 3: In fuzzy adaptive compensator, the membership functions are selected as

µF 1

i

(xi) =
1

1 + exp[5(xi + 0.8)]
, µF 2

i

(xi) = exp[−(xi + 0.6)2], µF 3

i

(xi) = exp[−(xi + 0.4)2],

µF 4

i

(xi) = exp[−(xi)
2], µF 5

i

(xi) = exp[−(xi − 0.4)2], µF 6

i

(xi) = exp[−(xi − 0.6)2],

µF 7

i

(xi) =
1

1 + exp[5(xi − 0.8)]
, i = 1, 2, · · · , 4.

Step 4: Some parameters are choose as
η1 = 10, r = 2, τ1 = 0.5, τ2 = 1, ξ1(t) = 5 + 20sin(5t), andξ1(t) = 1 + 15cos(5t),

Θ(0) = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2],

(x1(0), x2(0), x3(0), x4(0), xr1(0), xr2(0), xr3(0), xr4(0)) = (0.4, 0,−0.4, 0, 0, 0, 0, 0).

By using the method in Theorem 1, the tracking performances of x1(t), x2(t), x3(t), x4(t) are
shown in Fig.1,and the control efforts u1(t) and u2(t) are given in Fig.2,respectively.
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Figure 1: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4
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Figure 2: The control inputs u1,u2
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Figure 3: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4
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Figure 4: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4
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Figure 5: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4

0 2 4 6 8 10
−15

−10

−5

0

5

t(Sec.)

C
o
n
tr
o
l1

0 2 4 6 8 10
−5

0

5

10

15

t(Sec.)

C
o
n
tr
o
l2

u
1

u
2

Figure 6: The control inputs u1,u2



Fuzzy Robust Tracking Control for Uncertain Nonlinear Time-Delay System 823

Whenτ1 = 1,τ2 = 1, simulation results are shown in Fig.3.Whenτ1 = 1,τ2 = 2, simulation
results are shown in Fig.4.

When r1(t)andr2(t) are square waves having an amplitude ±0.2 with a period of 2π, the
tracking performances of x1(t), x2(t), x3(t), x4(t) are shown in Fig. 5, and the control efforts
u1(t) and u2(t) are given in Fig.6.

Simulation results illustrate that the proposed controller design is effective and feasible.

6 Conclusion

Based on fuzzy technique, a novel tracking control scheme is presented for uncertain non-
linear time-delay system. As main contribution of this paper, we design a novel fuzzy tracking
controller, which is independent of the matching condition or the upper bound for the uncer-
tainties. Furthermore, the tracking control design for discrete nonlinear systems is also developed.
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