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1 Introduction and preliminaries

GDM is a situation faced when a number of experts work together to find the best
alternative(s) from a set of feasible alternatives. Each expert may have exclusive inspirations
or objectives and a different decision procedure, but has a common interest in approaching to
select the “best” option(s). Preference relation is the most common representation format used
in GDM because it is a valuable tool in modeling decision processes, when we have to combine
experts’ preferences into group preferences [6, 14, 15]. In a preference relation an expert assigns
a numerical value to every pair of alternatives that reflects some degree of preference of the
first alternative over the second alternative. Mainly two types of preference relations have been
used to develop the decision models; multiplicative preference relations (MPRs) [2,14], and fuzzy
preference relations (FPRs) [6, 16].

The popular preference relations, which are being used to express an expert’s preferences
over alternatives, are FPRs. In a decision making procedure, an expert mostly needs to compare
a finite set of alternatives xi (i = 1, 2, ..., n) and construct an FPR [6, 13, 16, 17]. However, an
expert may have imprecise information for the preference degrees of one alternative over another
and it may not always be possible to estimate his/her preference by means of an exact numerical
value. In such a situation, an expert constructs an IVFPR.

In 2004, Z. S. Xu defined the notion of compatibility degree of two IVFPRs and showed
the compatible connection among individual and collective IVFPRs [18]. In 2005, F. Herrera et
al. established an aggregation process for combining IVFPRs with other forms of information
as; numerical preference relation (NPR) and linguistic preference relation (LPR) [7]. In 2007,
Y. Jiang proposed a technique to measure the similarity degree of two IVFPRs and used the
error-propagation rule to find the priority vector of the accumulated IVFPRs [8]. In 2008, Z.
S. Xu and Chen developed some linear programming models to derive the priority weights from
several IVFPRs [20].
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All the above researches focused on the IVFPRs with complete information. However, in
DM problems such situations are unavoidable in which an expert does not have comprehensive
information of the problem because of time constraint, lack of knowledge and the expert’s limited
expertise within the problem domain [1,3,5,10,19,22,24,33]. Consequently, the expert may not
be able to give his/her opinion about specific traits of the problem, and hence an incomplete
preference relation would be constructed. In literature, researches based on incomplete FPRs
have been given, but there are only few researches in GDM related to incomplete IVFPRs [23].

In this paper, a new technique for GDM by using incomplete IVFPRs is developed. Obvi-
ously, the consistent information is more applicable or important than the information having
ambiguities, consistency is linked with definite transitivity properties. Several properties have
been endorsed to model transitivity of FPRs, one of these properties is the max-min transitivity.
In this paper, a procedure, based on min-transitivity property is proposed to determine unknown
interval-valued preferences of one alternative over others and further, it is extended to develop
an algorithm for GDM to select the best alternative.

Definition 1.1. [4] An interval-valued fuzzy set A on a universe X is defined as:

A = {(a, [x−, x+])|a ∈ X, [x−, x+] ∈ L([0, 1])}

where L([0, 1]) = {[x−, x+]|[x−, x+] ⊆ [0, 1] with x− ≤ x+}.

Arithmetic operations can be performed on closed intervals . The following formulae can be
used for all P,Q ∈ L([0, 1]) (P = [p−, p+] and Q = [q−, q+]) [12]:

• P +Q = [p− + q−, p+ + q+],

• P −Q = [p− − q+, p+ − q−],

• P ·Q = [min(p−q−, p−q+, p+q−, p+q+),max(p−q−, p−q+, p+q−, p+q+)],

• P/Q = [p−, p+] · [ 1

q+
, 1

q−
] if 0 /∈ [q−, q+].

Definition 1.2. [4] Let X be a universe and A and B two interval-valued fuzzy sets. The
inclusion of A into B is defined as: A ⊆ B if and only if A(a) ⊆ B(a) for all a ∈ X and the
equality between A and B is defined as: A = B if and only if A(a) = B(a) for all a ∈ X .

Definition 1.3. [9] A triangular norm (t-norm) T is an increasing, associative, commutative and
[0, 1]× [0, 1]→ [0, 1] mapping satisfying: T (1, x) = x for all x ∈ [0, 1].

The t-norm to be used in this paper is T (x, y) = min(x, y). The concept of a t-norm on [0, 1] can
be extended to subintervals of [0, 1].

Definition 1.4. An extended t-norm, Te, is an increasing, commutative, associative and
L([0, 1])× L([0, 1])→ L([0, 1]) mapping that satisfies:

Te([1, 1], [x
−, x+]) = [x−, x+] for all [x−, x+] ∈ L([0, 1]).

Let T be a triangular norm. The mapping Te defined as:

Te([a
−, a+], [b−, b+]) = [T (a−, b−), T (a+, b+)]

for [a−, a+], [b−, b+] ∈ L([0, 1]), is an extended t-norm on (L([0, 1]),⊆), where ⊆ represents the
crisp set inclusion.

The extended interval t-norm corresponding to the minimum-operator can be computed by:

Tmin([a
−, a+], [b−, b+]) = [min(a−, b−),min(a+, b+)]. (1)
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Definition 1.5. [15] A fuzzy preference relation R over a finite set X of alternatives, X =
{x1, x2, x3, ..., xn}, is a fuzzy set on the product set X×X, i.e., it is characterized by a membership
function µR : X ×X → [0, 1].

According to Definition 1.5, a fuzzy preference relation R on X can be conveniently expressed
by an n × n matrix R = (rij)n×n, where rij denotes the degree of preference of alternative xi
over the alternative xj with rij ∈ [0, 1], rii = 0.5, rij+rji = 1 (additive reciprocity) for 1 ≤ i ≤ n
and 1 ≤ j ≤ n. If rij = 0.5, then there is no difference between the alternatives xi and xj . If
rij > 0.5, then alternative xi is preferred over the alternative xj . If rij = 1, then the alternative
xi is definitely preferred over the alternative xj .
Definition 1.6. [18] Let R = (rij)n×n be a fuzzy preference relation over the set of alternatives

X = {x1, x2, x3, ..., xn} where rij = [r−ij , r
+

ij ], 0 ≤ r−ij ≤ r+ij ≤ 1, rij = [1, 1]−rji and rii = [0.5, 0.5]

for all i, j ∈ N , then R is called an interval-valued fuzzy preference relation.

Definition 1.7. An IVFPR R is said to be min-consistent, if for all i, j and k belonging to
{1, 2, 3, ..., n} it holds:

rik ≥ Tmin(rij , rjk) (min -transitivity).

Definition 1.8. An IVFPR relation R = (rij)n×n is said to be incomplete if it contains at least
one unknown preference value rij for which the expert has no idea about the degree of preference
of alternative xi over the alternative xj .

2 Method to repair an incomplete IVFPR

This section presents a new technique to estimate missing values in an incomplete
IVFPR. Further, the algorithm is used to construct a min-consistent matrix. In order to de-
termine unknown values in an incomplete IVFPR R = (rij)n×n, the pairs of alternatives for
known and unknown preference values are represented by the following sets:

KP = {(i, j)|rij is known}, (2)

UP = {(i, j)|rij is unknown}, (3)

where the preference value of alternative xi over xj belongs to the family of closed subintervals
of [0, 1] (i.e., rij ∈ L([0, 1])). Since rij = [1, 1]− rji, rii = [0.5, 0.5] for 1 ≤ i ≤ n and 1 ≤ j ≤ n,
therefore, the min-transitivity of definition 1.7 can be written as:

rik ≥ Tmin(rij , rjk); rik ≥ Tmin(1− rji, rjk); rik ≥ Tmin(rij , 1− rkj). (4)

Hence, the following sets can be defined to determine the unknown preference value rik of alter-
native xi over alternative xk:

S1
ik = {j|(i, j) ∈ KP , (j, k) ∈ KP and (i, k) ∈ UP }, (5)

S2
ik = {j|(j, i) ∈ KP , (j, k) ∈ KP and (i, k) ∈ UP }, (6)

S3
ik = {j|(i, j) ∈ KP , (k, j) ∈ KP and (i, k) ∈ UP }, (7)

for i = {1, 2, 3, ..., n}, j = {1, 2, 3, ..., n} and k = {1, 2, 3, ..., n}. Based on (5),(6) and (7), we can
determine the unknown preference value rik for xi over xk as follows:

rik =
r1ik + r2ik + r3ik

3
, (8)
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where

r1ik =





1

|S1
ik
|

∑
j∈S1

ik

Tmin(rij , rjk), if |S1
ik| 6= 0

[0.5, 0.5], otherwise
(9)

r2ik =





1

|S2
ik
|

∑
j∈S2

ik

Tmin([1, 1]− rji, rjk), if |S2
ik| 6= 0

[0.5, 0.5], otherwise
(10)

r3ik =





1

|S3
ik
|

∑
j∈S3

ik

Tmin(rij , [1, 1]− rkj), if |S3
ik| 6= 0

[0.5, 0.5], otherwise
(11)

where |S1
ik|, |S

2
ik| and |S3

ik| are the cardinalities of the sets S1
ik, S

2
ik and S3

ik respectively.

K
′

P = KP ∪ {(i, k)}, (12)

U
′

P = UP − {(i, k)}. (13)

To achieve min-consistency of the IVFPR R, following scaling conditions will be used:

(i) If r−ij + r+ji < 1 and r+ij + r−ji < 1, then

rij =

[
r−ij +

1− (r−ij + r+ji)

2
, r+ij +

1− (r+ij + r−ji)

2

]
(14)

and

rji =

[
r−ji +

1− (r+ij + r−ji)

2
, r+ji +

1− (r−ij + r+ji)

2

]
. (15)

(ii) If r−ij + r+ji < 1 and r+ij + r−ji > 1, then

rij =

[
r−ij +

1− (r−ij + r+ji)

2
, r+ij −

r+ij + r−ji − 1

2

]
(16)

and

rji =

[
r−ji −

r+ij + r−ji − 1

2
, r+ji +

1− (r−ij + r+ji)

2

]
. (17)

(iii) If r−ij + r+ji > 1 and r+ij + r−ji < 1, then

rij =

[
r−ij −

r−ij + r+ji − 1

2
, r+ij +

1− (r+ij + r−ji)

2

]
(18)

and

rji =

[
r−ji +

1− (r+ij + r−ji)

2
, r+ji −

r−ij + r+ji − 1

2

]
. (19)

(iv) If r−ij + r+ji > 1 and r+ij + r−ji > 1, then

rij =

[
r−ij −

r−ij + r+ji − 1

2
, r+ij −

r+ij + r−ji − 1

2

]
(20)



Group Decision Making with Incomplete Interval-valued
Fuzzy Preference Relations Based on the Minimum Operator 793

and

rji =

[
r−ji −

r+ij + r−ji − 1

2
, r+ji −

r−ij + r+ji − 1

2

]
. (21)

Example 2.1. Let R = (rij)4×4 be an incomplete IVFPR for the alternatives x1, x2, x3
and x4, given as follows:

R =




[0.5, 0.5] r12 [0.4, 0.6] [0.3, 0.7]

r21 [0.5, 0.5] [0.7, 0.8] r24

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] r42 [0.6, 0.7] [0.5, 0.5]




where r12, r21, r24 and r42 are unknown preference values. Now applying (2)-(13) to esti-
mate the unknown preference values for the alternative xi over xk, 1 ≤ i ≤ 4 and 1 ≤ k ≤ 4,
we obtain:

KP = {(1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1),

(4, 3), (4, 4)},

UP = {(1, 2), (2, 1), (2, 4), (4, 2)}.

S1
12 = {3}, S2

12 = {3}, S3
12 = {3},

r112 = Tmin(r13, r32) = Tmin([0.4, 0.6], [0.2, 0.3]) = [0.2, 0.3],

r212 = Tmin([1, 1]− r31, r32) = Tmin([0.4, 0.6], [0.2, 0.3]) = [0.2, 0.3],

r312 = Tmin(r13, [1, 1]− r23) = Tmin([0.4, 0.6], [0.2, 0.3]) = [0.2, 0.3],

r12 =
1

3
(r112 + r212 + r312) = [0.2, 0.3].

K
′

P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4),

(4, 1), (4, 3), (4, 4)},

U
′

P = UP − {(1, 2)} = {(2, 1), (2, 4), (4, 2)}.

S1
21 = {3}, S2

21 = {1, 3}, S3
21 = {2, 3},

r121 = Tmin(r23, r31) = Tmin([0.7, 0.8], [0.4, 0.6]) = [0.4, 0.6],

r221 =
1

2
[Tmin([1, 1]− r12, r11) + Tmin([1, 1]− r32, r31)]

=
1

2
[Tmin([0.7, 0.8], [0.5, 0.5]) + Tmin([0.7, 0.8], [0.4, 0.6])]

=
1

2
[[0.5, 0.5] + [0.4, 0.6]] = [0.45, 0.55],
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r321 =
1

2
[Tmin(r22, [1, 1]− r12) + Tmin(r23, [1, 1]− r13)]

=
1

2
[Tmin([0.5, 0.5], [0.7, 0.8]) + Tmin([0.7, 0.8], [0.4, 0.6]]

=
1

2
[[0.5, 0.5] + [0.4, 0.6]] = [0.45, 0.55],

r21 =
1

3
(r121 + r221 + r321) = [0.433, 0.567].

K
′′

P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4),

(4, 1), (4, 3), (4, 4)},

U
′′

P = U
′

− {(2, 1)} = {(2, 4), (4, 2)}.

S1
24 = {1, 3}, S2

24 = {1, 3}, S3
24 = {1, 3},

r124 =
1

2
[Tmin(r21, r14) + Tmin(r23, r34)]

=
1

2
[Tmin([0.433, 0.567], [0.3, 0.7]) + Tmin([0.7, 0.8], [0.3, 0.4])]

=
1

2
[[0.3, 0.567] + [0.3, 0.4]] = [0.3, 0.484],

r224 =
1

2
[Tmin([1, 1]− r12, r14) + Tmin([1, 1]− r32, r34)]

=
1

2
[Tmin([0.7, 0.8], [0.3, 0.7]) + Tmin([0.7, 0.8], [0.3, 0.4])]

=
1

2
[[0.3, 0.7] + [0.3, 0.4]] = [0.3, 0.55],

r324 =
1

2
[Tmin(r21, [1, 1]− r41) + Tmin(r23, [1, 1]− r43)]

=
1

2
[Tmin([0.433, 0.567], [0.3, 0.7]) + Tmin([0.7, 0.8], [0.3, 0.4])]

=
1

2
[[0.3, 0.567] + [0.3, 0.4]] = [0.3, 0.484],

r24 =
1

3
(r124 + r224 + r324) = [0.3, 0.506].

K
′′′

P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (4, 1), (4, 3), (4, 4)},

U
′′′

P = U
′′

− {(2, 4)} = {(4, 2)}.

S1
42 = {1, 3}, S2

42 = {1, 2, 3}, S3
42 = {1, 3, 4},

r142 =
1

2
[Tmin(r41, r12) + Tmin(r43, r32)]

=
1

2
[Tmin([0.3, 0.7], [0.2, 0.3]) + Tmin([0.6, 0.7], [0.2, 0.3])]

=
1

2
[[0.2, 0.3] + [0.2, 0.3]] = [0.2, 0.3],

r242 =
1

3
[Tmin([1, 1]− r14, r12) + Tmin([1, 1]− r24, r22) + Tmin([1, 1]− r34, r32)]

=
1

3
[[0.2, 0.3] + [0.5, 0.494] + [0.2, 0.3]]

= [0.298, 0.367],
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r342 =
1

3
[Tmin(r41, [1, 1]− r21) + Tmin(r43, [1, 1]− r23) + Tmin(r44, [1, 1]− r24)]

=
1

3
[[0.3, 0.567] + [0.2, 0.3] + [0.494, 0.5]]

= [0.331, 0.456],

r42 =
1

3
(r142 + r242 + r342) = [0.276, 0.374].

K
′′′′

P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (4, 1), (4, 2), (4, 3), (4, 4)},

U
′′′′

P = φ.

Hence, the complete IVFPR is

R =




[0.5, 0.5] [0.2, 0.3] [0.4, 0.6] [0.3, 0.7]

[0.433, 0.567] [0.5, 0.5] [0.7, 0.8] [0.3, 0.506]

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] [0.276, 0.374] [0.6, 0.7] [0.5, 0.5]


 (22)

By applying scaling condition on (18), R becomes a min-consistent IVFPR R̃ as follows:

R̃ =




[0.5, 0.5] [0.316, 0.434] [0.4, 0.6] [0.3, 0.7]

[0.566, 0.684] [0.5, 0.5] [0.7, 0.8] [0.463, 0.615]

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] [0.385, 0.537] [0.6, 0.7] [0.5, 0.5]


 .

3 A new algorithm to choose the best alternative in GDM with

incomplete IVFPRs.

In this section, a new algorithm is presented for GDM with incomplete IVFPRs by using
min-consistency. An explanatory example is given to validate the anticipated technique. For
ease, the structure of the determination process is also shown in Figure1. Suppose that there are
n alternatives x1, x2, ..., xn and m experts E1, E2, ..., Em. Let R

q
be the IVFPR for the expert

Eq shown as follows:

R
q
=

(
rqij

)

n×n
=




[0.5, 0.5] rq
12

. . rq
1n

rq
21

[0.5, 0.5] . . rq
2n

. . . .

. . . .

rqn1 rqn2 . . [0.5, 0.5]



, (23)

where rqij ∈ L([0, 1]) is the preference value given by expert Eq for alternative xi over xj , r
q
ij =

[1, 1]− rqji, rqii = [0.5, 0.5], 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ q ≤ m. The proposed GDM technique
is given as follows:
Step 1: Determine the sets Kq

P and U q
P of pairs of alternatives for known and unknown preference

values respectively, shown as follows:

Kq
P = {(i, j)|rqij is known}, (24)

U q
P = {(i, j)|rqij is unknown}, (25)
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where 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ q ≤ m.
Step 2: If U = φ, then skip Step 2, otherwise construct the sets Sq1

ik , S
q2
ik and Sq3

ik based on the
sets Kq

P and U q
P . The constructed sets are used to estimate the unknown preference values rqik

for the alternative xi over xk by expert Eq as follows:

rik =
rq1ik + rq2ik + rq3ik

3
, (26)

Sq1
ik = {j|(i, j) ∈ Kq

P , (j, k) ∈ Kq
P and (i, k) ∈ U q

P }, (27)

Sq2
ik = {j|(j, i) ∈ Kq

P , (j, k) ∈ Kq
P and (i, k) ∈ U q

P }, (28)

Sq3
ik = {j|(i, j) ∈ Kq

P , (k, j) ∈ Kq
P and (i, k) ∈ U q

P }, (29)

rq1ik =





1

|Sq1

ik
|

∑

j∈Sq1

ik

Tmin(r
q
ij , r

q
jk), if |Sq1

ik | 6= 0

[0.5, 0.5], otherwise
(30)

rq2ik =





1

|Sq2

ik
|

∑

j∈Sq2

ik

Tmin([1, 1]− rqij , r
q
jk), if |Sq2

ik | 6= 0

[0.5, 0.5], otherwise
(31)

rq3ik =





1

|Sq3

ik
|

∑

j∈Sq3

ik

Tmin(r
q
ij , [1, 1]− rqjk), if |Sq3

ik | 6= 0

[0.5, 0.5], otherwise
(32)

where |Sq1
ik |, |S

q2
ik | and |Sq3

ik | are the cardinalities of the sets Sq1
ik , S

q2
ik and Sq3

ik respectively.

K
′q
P = Kq

P ∪ {(i, k)}, (33)

U
′q
P = U q

P − {(i, k)}. (34)

Step 3: To satisfy min-consistency of the complete interval-valued fuzzy preference relation

R
q
=

(
rqij

)

n×n
, the following scaling conditions are used:

(i) If rq−ij + rq+ji < 1 and rq+ij + rq−ji < 1, then

rqij =

[
rq−ij +

1− (rq−ij + rq+ji )

2
, rq+ij +

1− (rq+ij + rq−ji )

2

]
(35)

and

rqji =

[
rq−ji +

1− (rq+ij + rq−ji )

2
, rq+ji +

1− (rq−ij + rq+ji )

2

]
. (36)

(ii) If rq−ij + rq+ji < 1 and rq+ij + rq−ji > 1, then

rqij =

[
rq−ij +

1− (rq−ij + rq+ji )

2
, rq+ij −

rq+ij + rq−ji − 1

2

]
(37)

and

rqji =

[
rq−ji −

rq+ij + rq−ji − 1

2
, rq+ji +

1− (rq−ij + rq+ji )

2

]
. (38)
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(iii) If rq−ij + rq+ji > 1 and rq+ij + rq−ji < 1, then

rqij =

[
rq−ij −

rq−ij + rq+ji − 1

2
, rq+ij +

1− (rq+ij + rq−ji )

2

]
(39)

and

rqji =

[
rq−ji +

1− (rq+ij + rq−ji )

2
, rq+ji −

rq−ij + rq+ji − 1

2

]
. (40)

(iv) If rq−ij + rq+ji > 1 and rq+ij + rq−ji > 1, then

rqij =

[
rq−ij −

rq−ij + rq+ji − 1

2
, rq+ij −

rq+ij + rq−ji − 1

2

]
(41)

and

rqji =

[
rq−ji −

rq+ij + rq−ji − 1

2
, rq+ji −

rq−ij + rq+ji − 1

2

]
. (42)

A min-consistent matrix R̃
q

=
(
r̃
q

ij

)

n×n
is obtained under these conditions.

Step 4: Determine the collective matrix R
c
against all experts, shown as follows:

R
c
=

(
rcij

)
n×n

=
1

m

(
r̃
1

ij + r̃
2

ij + r̃
3

ij ...+ r̃
m

ij

)

n×n
, (43)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n.
Step 5: Calculate the average degree Ai of alternative xi over all other alternatives by using
interval normalizing method:

Ai =

n∑
j=1

rcij

n∑
i=1

n∑
j=1

rcij

, i = 1, 2, 3, ..., n. (44)

Step 6: [21] Calculate the possibility degree dij = d(Ai ≥ Aj) by using the formula:

d(Ai ≥ Aj) = min

{
max

(
A+

i −A−j

A+

i −A−j +A+

j −A−i
, 0

)
, 1

}
(45)

and construct the complementry matrix D = (dij)n×n, where dij ≥ 0, dij + dji = 1, dii = 0,
i, j = 1, 2, 3, ..., n.
Step 7: [33] Calculate the ranking value RV (xi) of alternative xi by using formula:

RV (xi) =
2

n2

n∑

j=1

dij , (46)

where 1 ≤ i ≤ n and
n∑

i=1

RV (xi) = 1.
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Figure 1: Resolution process for GDM with IVFPRs.

Example 3.1. A firm produces solar water refiners. In its production process, the company
has to buy solar panels in different sizes and voltages from different suppliers. Presently, Japan
Solar Company has four potential suppliers in four different countries, namely, Korea, China,
Italy and Turkey, signified as xi(i = 1, 2, 3, 4), respectively. A committee consisting of three
experts Eq(q = 1, 2, 3) from different departments has been formed to assess the four suppliers
xi(i = 1, 2, 3, 4). Suppose that the experts Eq(q = 1, 2, 3) provide their assessments in the form
of following incomplete IVFPRs:

R
1
=




[0.5, 0.5] r112 [0.6, 0.8] r114
r121 [0.5, 0.5] r123 [0.3, 0.7]

[0.2, 0.4] r132 [0.5, 0.5] [0.6, 0.9]

r141 [0.3, 0.7] [0.1, 0.4] [0.5, 0.5]


 ,

R
2
=




[0.5, 0.5] r12 [0.4, 0.6] [0.3, 0.7]

r21 [0.5, 0.5] [0.7, 0.8] r24

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] r42 [0.6, 0.7] [0.5, 0.5]


 ,

and

R
3
=




[0.5, 0.5] r312 [0.7, 0.8] r314
[0.4, 0.6] [0.5, 0.5] r323 [0.5, 0.7]

[0.2, 0.3] r332 [0.5, 0.5] r334
r341 [0.3, 0.5] r343 [0.5, 0.5]


 .

Step 1: For the fuzzy preference relation R
1
, the sets of pairs of alternatives for known and

unknown preference values are determined as follows:

K1
P = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)},

U1
P = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (4, 1)}.
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Step 2:

S11
12 = φ, S12

12 = φ, S13
12 = φ,

r1112 = [0.5, 0.5], r1212 = [0.5, 0.5], r1312 = [0.5, 0.5],

r112 =
1

3
(r1112 + r1212 + r1312)

= [0.5, 0.5].

K1
′

P = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (3, 4), (4, 2), (4, 3),

(4, 4)},

U1
′

P = U1
P − {(1, 2)} = {(1, 4), (2, 1), (2, 3), (3, 2), (4, 1)}.

S11
14 = {2, 3}, S12

14 = {3}, S13
14 = {2, 3},

r1114 =
1

2
[Tmin(r

1
12, r

1
24) + Tmin(r

1
13, r

1
34)] =

1

2
[[0.3, 0.5] + [0.6, 0.8]]

= [0.45, 0.65],

r1214 = Tmin([1, 1]− r113, r
1
34) = Tmin([0.2, 0, 4], [0.6, 0.9]) = [0.2, 0.4],

r1314 =
1

2
[Tmin(r

1
12, [1, 1]− r142) + Tmin(r

1
13, [1, 1]− r143)]

=
1

2
[Tmin([0.5, 0.5], [0.3, 0.7]) + Tmin([0.6, 0.8], [0.6, 0.9])]

=
1

2
[[0.3, 0.5] + [0.6, 0.8]] = [0.45, 0.65],

r114 =
1

3
(r1114 + r1214 + r1314) = [0.3667, 0.5667].

K1
′′

P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 1), (3, 3), (3, 4), (4, 2),

(4, 3), (4, 4)},

U1
′′

P = U1
′

P − {(1, 4)} = {(2, 1), (2, 3), (3, 2), (4, 1)}.

Hence, continuing as above the fuzzy preference relation R
1

against expert E1 is obtained as
follows:

R
1
=




[0.5, 0.5] [0.5, 0.5] [0.6, 0.8] [0.3667, .5667]

[0.4667, 0.5222] [0.5, 0.5] [0.2889, 0.4574] [0.3, 0.7]

[0.2, 0.4] [0.3055, 0.5389] [0.5, 0.5] [0.6, 0.9]

[0.2519, 0.4673] [0.3, 0.7] [0.1, 0.4] [0.5, 0.5]


 .

Step 3: min-consistency preference relation R̃
1

based on R
1

is obtained as follows:

R̃
1

=




[0.5, 0.5] [0.4889, 0.5166] [0.6, 0.8] [0.4497, .6574]

[0.4834, 0.5111] [0.5, 0.5] [0.375, 0.576] [0.3, 0.7]

[0.2, 0.4] [0.424, 0.625] [0.5, 0.5] [0.6, 0.9]

[0.3426, 0.5503] [0.3, 0.7] [0.1, 0.4] [0.5, 0.5]


 .

Likewise, min-consistency preference relations R̃
2

and R̃
3

against the experts E2 and E3 respec-
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tively, given as below:

R̃
2

=




[0.5, 0.5] [0.33, 0.46] [0.4, 0.6] [0.3, 0.7]

[0.54, 0.67] [0.5, 0.5] [0.7, 0.8] [0.46, 0.61]

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] [0.39, 0.54] [0.6, 0.7] [0.5, 0.5]


 ,

R̃
3

=




[0.5, 0.5] [0.4166, 0.55] [0.7, 0.8] [0.4722, 0.599]

[0.45, 0.5834] [0.5, 0.5] [0.5333, 0.6592] [0.5, 0.7]

[0.2, 0.3] [0.3408, 0.4667] [0.5, 0.5] [0.384, 0.4994]

[0.401, 0.5278] [0.3, 0.5] [0.5006, 0.616] [0.5, 0.5]


 .

Step 4: The collective matrix against all the experts is shown as follows:

R
c
=




[0.5, 0.5] [0.4118, 0.5089] [0.5667, 0.7333] [0.4073, 0.6521]

[0.4911, 0.5882] [0.5, 0.5] [0.5361, 0.6784] [0.42, 0.67]

[0.2667, 0.4333] [0.3216, 0.4639] [0.5, 0.5] [0.428, 0.5998]

[0.3479, 0.5927] [0.33, 0.58] [0.4002, 0.572] [0.5, 0.5]




Step 5: The average degree Ai, i = 1, 2, 3, 4, of each alternative is derived by using interval
normalizing method given as:

A1 =

4∑
j=1

rc1j

4∑
i=1

4∑
j=1

rcij

=
[1.8858, 2.3943]

[6.9274, 9.0726]
= [0.2078, 0.3456];

A2 =

4∑
j=1

rc2j

n∑
i=1

n∑
j=1

rcij

=
[1.9472, 2.4366]

[6.9274, 9.0726]
= [0.2146, 0.3517];

A3 =

4∑
j=1

rc3j

n∑
i=1

n∑
j=1

rcij

=
[1.5163, 1.997]

[6.9274, 9.0726]
= [0.1671, 0.2883];

A4 =

4∑
j=1

rc4j

n∑
i=1

n∑
j=1

rcij

=
[1.5781, 2.2447]

[6.9274, 9.0726]
= [0.1739, 0.3240].

Step 6: By using eq. (45), the complementry matrix D = (dij)4×4 is obtained as follows:

D = (dij)4×4 =




0.5 0.4765 0.6892 0.5964

0.5235 0.5 0.7147 0.619

0.3108 0.2853 0.5 0.4217

0.4036 0.381 0.5783 0.5



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Step 7: The ranking value Rv(xi) of alternative xi, 1 ≤ i ≤ 4, is obtained as follows:

Rv(x1) =
2

42

4∑

j=1

d1j = 0.2827625;

Rv(x2) =
2

42

4∑

j=1

d2j = 0.29465;

Rv(x3) =
2

42

4∑

j=1

d3j = 0.189725;

Rv(x4) =
2

42

4∑

j=1

d4j = 0.2328625;

where
4∑

i=1

Rv(xi) = 1. Thus, the final ranking of the alternatives is derived as follows:

x2 > x1 > x4 > x3.

Therefore, x2 is the best alternative.
The numerical examples show the way to apply the proposed technique to construct the

complete IVFPR based on min-consistency. In general, the proposed approach is quite easy for
use in estimating unknown preference values.

4 Conclusion

In this paper the extended minimum t-norm has been used successfully to determine the
missing values in incomplete IVFPR and further extends to construct the min-consistent matrix.
Numerical studies show that the proposed technique can handle all type of incomplete IVFPR.
Consequently, another algorithm is established to deal with GDM problems with incomplete
IVFPRs. This process involves two stages, the estimation of unknown interval-valued preference
values and the choice of the best alternative(s).
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