INT J COMPUT COMMUN, ISSN 1841-9836
8(6):791-799, December, 2013.

Association Rule Mining using Path Systems in Directed Graphs

S. Arumugam, S. Sabeen

S. Arumugam*

1. National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH)
Kalasalingam University

Anand Nagar, Krishnankoil-626126, INDIA.

2. School of Electrical Engineering and Computer Science

The University of Newcastle

NSW 2308, Australia.

*Corresponding author: s.arumugam.klu@gmail.com

S. Sabeen

Department of Computer Applications
Jaya Engineering College
Chennai-600054, INDIA.
sabeens@rediffmail.com

Abstract: A transaction database (TDB) consists of a set I of items and a multiset
D of nonempty subsets of I, whose elements are called transactions. There are several
algorithms for solving the popular and computationally expensive task of association
rule mining from a TDB. In this paper we propose a data structure which consists of
a directed graph D (loops and multiple arcs are permitted) and a system of directed
paths in D to represent a TDB. We give efficient algorithms for generating the data
structure, for extracting frequent patterns and for association rule mining. We also
propose several graph theoretic parameters which lead to a better understanding of
the system.

Keywords: Directed graphs, path system, in-degree, out-degree, association rule
mining, frequent patterns, data mining.

1 Introduction

The task of association rule mining in a large database of transactions was proposed by
Agarwal et al. [1]. Since then this problem has received a great deal of attention and association
rule mining is one of the most popular pattern discovery methods in Knowledge Discovery from
Database (KDD). A broad variety of efficient algorithms such as Apriori Algorithm |[3], FP-
growth [4], FP-tree [4], SETM [6], DIC [5] have been developed during the past few years. In
this paper we propose a data structure consisting of a directed graph D and a multiset of directed
paths in D to represent a database of transactions. We give an algorithm which generates the
directed graph D and which also simultaneously computes several other measures such as in-
degree, out-degree, total number of arcs, length of a largest transaction, frequency of occurrence
of various nodes and the number of occurrences of each arc in D. The second algorithm generates
all the patterns of the transaction database using the above data structure. This algorithm can
be modified to extract frequent patterns. The third algorithm deals with association rule mining.
In this process we scan the database exactly once and the digraph is constructed dynamically.

2 Directed Graphs and Path Systems

A directed graph D = (V, A) consists of a finite nonempty set V' and a multiset A of ordered
pairs of elements of V. The elements of V' are called vertices and the elements of A are called
arcs. An ordered pair (v,v) is called a loop at v. We allow both loops and multiple arcs (that

Copyright (© 2006-2013 by CCC Publications

792 S. Arumugam, S. Sabeen

is, an arc (u,v) appearing more than once) in D. If a = (u,v) is an arc in D, then u is called
the tail of a and v is called the head of a. For basic terminology in directed graphs we refer to
the book by Chartrand and Lesniak [2]. A directed path in D is a sequence of distinct vertices

P = (v1,vg,...,vk) such that (v;,v;41) is an arc in D for all 4,1 < i < k — 1. A directed cycle
in D is a sequence of vertices C' = (v1,va,...,v,v1) such that (v;,v;+1) is an arc in D for all
i,1 <i < k-1, (vg,v1) is an arc in D and the vertices vi,vg,...,v; are distinct. A directed

graph is called acyclic if it contains no directed cycle. For any vertex v, the in-degree id(v) is
defined to be the number of arcs of the form (u,v) in D and the out-degree od(v) is defined to
the numbers of arcs of the form (v,u) in D. We observe that a loop at v contributes 1 to both
id(v) and od(v) and an arc (u,v) contributes 1 to od(u) and 1 to id(v). A vertex v such that no
arc is incident with v or all the arcs incident at v are loops is called an isolated vertex of D. We
denote by D; the subdigraph of D obtained by removing all the loops in D. A path system or a
path cover in a directed graph D is a multiset v of directed paths in D such that every arc of D
is in exactly one path in ¥. We adopt the convention that all loops in D are members of . If D
contains multiple arcs, a directed path in D may occur more than once in .

3 Digraph model for transaction database

Let I = {1,2,...,n} be a set of objects whose elements are called items. We impose on
I the natural ordering of the set of positive integers. Any nonempty subset of I is called a
transaction. A transaction database D is a multiset of transactions in I. Thus a subset X of I
may occur more than once in D. We assume that for each ¢ € I, there is at least one transaction

in T € D with i € T. In otherwords |J T = I. We say that a transaction 7' € D supports an
TeD

item set X C I if X C T. The support of X is defined by supp(X) = %. Thus supp(X)

is the fraction of transactions supporting X. If we fix a threshold value s, then any subset X of

I with supp(X) > s is called a frequent pattern. An association rule is an implication of the

form X = Y where X, Y C I and X NY = (0. The support of a rule X = Y is defined to be

supp(X UY'). The confidence of the rule is defined as conf(X = Y) = %. The support

and confidence values are usually normalized so that these values occur between 0% and 100%
instead of 0 to 1.0. Normally we generate association rules for frequent patterns. For further
terminology in TDB and association rule mining we refer to the book by Han and Kamber |7].

In this paper we propose a data structure which consists of a directed graph D and a system of
directed paths in D for representing a transaction database. The vertex set of the directed graph
is the item set I. We sort the elements of each transaction T° € D in the increasing order and
represent 7' as a directed path in D. Thus the direction on each edge is given by the orientation
from low-to-high. Any transaction T of the form {x} is represented as a loop at x. We illustrate
this database with a small example.

Example 1. Let I = {1,2,3,4,5}. Let D = {11,15,15,T4,T5,Ts} where T1 = {1,2,5}, T, =
{1,4},T5 = {1,2,4}, Ty = {3,5},T5 = {2},T6 = {3} and Ty = {3,4,5}. The directed graph of D

is given in Figure 1.

Association Rule Mining using Path Systems in Directed Graphs 793

Figure 1

Since every transaction 7' in D gives a directed path in D, it follows that the multiset D of all
transaction forms a path system in D. We observe that the directed graph D; which is obtained
by removing all the loops in the directed graph D representing a TDB is an acyclic directed
graph.

4 Directed graph of a transaction data base
(DGTDB)

In this section we propose an algorithm to construct the directed graph representing a TDB.
The algorithm scans the data exactly once, dynamically constructs the digraph D and simulta-
neously computes several parameters such as frequency of occurrence of each node, number of
loops at each node, number of occurrence of each arc uv, total number of arcs in D, the maximum
length of a transaction, in-degree and out-degree of each node.

The algorithm first creates all nodes of D, one node for each item, with support count
0. Then each transaction is scanned and the directed path in D representing the transaction is
constructed. If (i1,49,...,14) is a transaction, the arc (i;,4;41) is represented as a linked list. The
header of this list has two fields. One field is used to store the list of vertices (i1, 12,...,%j4+1),
which is called the label of the arc (i,j) and the other field is used to store the frequency
of occurrence of the arc (i,7). For example in the digraph given in Figure 3, the arc (3, 5)
occurs with values 2, (1,3,5) and also with values 1 (2,3,5), indicating that it occurs twice
as part of (1,3,5) and occurs once as a part of (2,3,5). In general if an arc (i,j) has labels
k, (i1,%2,...,4r,%,7) it means that the arc (i,j) appears k items as part of (i1,ia,...,0r,1,7).
Dynamic memory allocation method is used for storing these values. The pseudo code for the
construction of DGTDB is given in Figure 3. This algorithm also generates further informations
which are given in the output.

Algorithm: Construction of DGTDB

Input: Transaction Database TDB, n: Number of distinct items in TDB, m: Number of Trans-
actions.

Output: DGTDB: Directed Graph of TDB.

Method:

Create a node for each item and initialize the values f(i), Out-Degree (i), In-Degree (i),
In-Edge(7), Out-Edge (i) L.(i) to zero.
Initialize predecessor = (); and X = ();
1: for each transaction 7T} and for each each item ¢ in 7}, do
2 X =i} f() ++
3: if (|X| > K) then

794 S. Arumugam, S. Sabeen

4: K= |X|,

5. end if

6: if (|Tj| = 1) then

7: L (i) + +;

8: if (Lo(i) =1) then

9: // If an edge from i to i does not exist so far
10: CreateEdge(i,1);

11: Set Label (ec,) = (X);

12: flec,i) =1,

13: n(E) + +;

14: Out-Degree(i) + +;

15: In-Degree(i) + +;

16: In-Edge(i) + +;

17: Out-Edge(i) + +;

18: end if

19: end if

20: if (L.(¢) > 1) then

21: flec,) + +;

22: Out-Degree(7) + +;

23: In-Degree(i) + +;

24: end if

25: if (predecessor # () and (X ¢ any Label (e., 7)) then
26: CreateEdge (predecessor,i);
27: n(E) + +;

28: Set Label(e., i) = (X)

29: flee, 1) =1,

30: Out-Degree(predecessor) + +;
31: In-Degree(i) + +;

32: In-Edge(i) + +;

33: Out-Edge(predecessor) + +;
34: end if

35: if (X € Label (e;,4)) then

36: flej) ++;

37: Out-Degree(predecessor) + +;
38: In-Degree(i) + +;

39: end if

40: predecessor = i;

41: end for

42: return DGTDB;

Figure 2. Pseudo code for DGTDB construction

We illustrate the algorithm DGTDB with a transaction database consisting of 12 items and
30 transactions, which is given in Table 1.

Association Rule Mining using Path Systems in Directed Graphs

795

TID | PRODUCTS IN EACH | TID | PRODUCTS IN EACH
TRANSACTION TRANSACTION

T001 1,3,7,8 T016 2,4,6,8, 10, 12

T002 1,2, 3,8 T017 1,357

T003 2,4,5,6 TO18 9, 11

T004 2,3,5,6 T019 10, 11,12

T005 1,4,5, 11 T020 6,7, 8,12

T006 3,4, 5, 12 T021 3

T007 1,2, 3,4 T022 10, 11, 12

T008 4,5, 11 T023 2,46, 8, 10,12

T009 1,4,5, 8 T024 1,3,570, 11

T010 3,4, 10 T025 2,4, 6, 8, 10, 12

TO11 2,3, 4 T026 3

T012 3 T027 2,4, 6,8, 10, 12

T013 3,6,09, 12 T028 3

T014 1, 10, 12 T029 12

T015 3,6,9,12 T030 3

The DGTDB for the

The number given at each node represents the frequency of the corresponding item.

Table 1. Transaction Database, TDB

above transaction database is given in Figure 3.

Figure 3. Directed

Graph of TDB in Table 1.

5 Algorithm for extracting frequent patterns

(XoFP)

In this section we present an algorithm for extracting the set £ of all frequent patterns from
DGTDB constructed in Section 4. For each node i, the algorithm generates all frequent patterns
L with i as the last item of L;. If in-edge (i) = 0, then {i} is the only pattern with ¢ as the
last item. Otherwise for each edge e. with ¢ as head we consider all subsets X of label (ec,?)
such that |X| > 2 and ¢ € X. Then the frequency of X is the sum of the frequencies of all the
edges e. with i as head for which X C label(e.,). If this frequency is greater than or equal to
the minimum support threshold, then X is added to the set of frequent patterns. The algorithm
XoFP is given in Figure 4.

Algorithm: XoFP, Extraction of Frequent Patterns from DGTDB.
Input: s: Minimum support threshold; DGTDB: Directed Graph of TDB.
Output: L: The set of all frequent patterns mined from the DGTDB.

Method:

796 S. Arumugam, S. Sabeen

1. L=0;m=0;
2: // Initialize set of frequent patterns
3: for each node i do

4: if (f(i) > s) then

5: L=LU{i}

6: return {i}, f(7)

T m + +;

8 end if

9: if (In-Edge(i) > 0) then

10: f=0;

11: for each Label (e, 1), 1 < ¢ < In-Edge(i) do
12: f=[flec,1);

13: W = Label(e, 1);

14: if (W ¢ L) then

15: for each z C W, |z| > 2 and i € x do
16: for each Label (e,,7) do
17: if (z C Label e,(i) then
18 = f+ fepi):

19: end if

20: end for

21: end for

22: if (f > s) then

23: L=LU{z};

24: return {z}, f

25: m + +;

26: end if

27: end if

28: end for

29: end if

30: end for

31: return (£)

Figure 4. XoFP, Extraction of patterns from DGTDB
Example 2. By applying XoFP to the DGTDB given in Figure 3, the set of frequent patterns
obtained using the items 1,2,3 and 4 along with the respective frequencies are given in Table 2.

Node id | Frequent Patterns | Frequency
1 {1} 8
2 {2} 9

{1,2} 2

3 {3} 16
{1,3})

{2,3} 4

{1,2,3} 2

4 {4} 12
{1,4} 3

{2,4} 7

{3,4} 4

{2,3,4} 2

Table 2. Extracted frequent patterns from the nodes 1, 2, 3 and 4 of DGTDB where s = 2.

Association Rule Mining using Path Systems in Directed Graphs 797

6 Algorithm for generating association rules
(GEAR)

In this section we present an algorithm for generating association rules and strong association
rules from the set of frequent patterns mined from the given TDB. An association rule which
satisfies both minimum support threshold and minimum confidence threshold is called a strong
association rule. For each frequent pattern X and for each nonempty proper subset Y of X the
algorithm computes the support and confidence of the association rule Y = X — Y.

Algorithm: GEAR, Generating association rules from the frequent patterns

Input: L: set of all frequent patterns; ¢- Minimum confidence threshold of rule; s- Minimum
support threshold.

Output: R: set of all strong association rules; R/: set of all association rules not in R.

Method:
. R=0;Rr=0; N(R) = 0; N(R/) = 0;
2: for each X,Y where X € £ with | X|>1and Y C X,Y #0,Y # X do

3: Generate Rule (Y = (X —Y))
f(X)

4: Compute conf =)

5. // f(X) is the frequency of pattern X. f(Y") is the frequency of pattern Y.
6: if (conf > ¢) then

7: R=RU{Y = (X —Y) : support=s, confidence = conf};

8: n(R) + +;

9: else

10: R = R1U{Y = (X —Y) : support=s, confidence = conf};

11: n(Rr) + +;

12: end if

13: end for

14: return (R) and return (R/);
Figure 5. GEAR, Algorithm for Generating Association Rules

Example 3. From Table 2 we have X = {1,2,3} is a frequent pattern with frequency 2. The
set of all association rules generated from this pattern by using GEAR along with the confidence
and support for each rule is given in Table 3. We have taken the minimum confidence threshold
¢ and the minimum support threshold s as 50 and 6 respectively.

S.No | Association Rules | Confidence | Support of | R or R/
of the Rule the Rule
1 {1} = {2,3} 25 6 Ry
2 {2} = {1,3} 222 6 R
3 {3} = {1,2} 12.5 6 Ry
4 {1,2} = {3} 100 6 R
5 {1,3} = {2} 66.67 6 R
6 {2,3} = {1} 50 6 R

Table 3. Association Rules mined from the frequent pattern {1,2,3}.

For the TDB given in Table 1 we have generated 188 frequent patterns. The number of
frequent patterns generated with various support counts is given in Table 4. The total number

798

S. Arumugam, S. Sabeen

of associate rule generated is 1588. The number of association rule with various support counts
is given in Table 5. The breakup of the number of association rules generated with various levels
of confidence is given in Table 6.

S.No | Support % | No. of Patterns | S.No | Support % | No. of Patterns
Generated Generated
1 3 188 10 30 3
2 6 113 11 33 3
3 9 84 12 36 3
4 12 72 13 39 1
5 15 25 14 42 1
6 18 14 15 45 1
7 21 12 16 48 1
8 24 9 17 51 0
9 27 5 18 54 0
Table 4. Number of patterns with various support counts
S.No | Support % > | No. of Association | S.No | Support % > | No. of Association
Rules Generated Rules Generated
1 3 1588 10 30 0
2 6 746 11 33 0
3 9 484 12 36 0
4 12 292 13 39 0
5 15 38 14 42 0
6 18 16 15 45 0
7 21 10 16 48 0
8 24 2 17 51 0
9 27 0 18 54 0

Table 5. Number of association rules with various support counts

S.No | Confidence % | No. of Association Rules Generated
1 < 50 465
2 50-59 162
3 60-69 81
4 70-79 36
5 80-89 95
6 > 90 749
Table 6. Number of strong association rules with various confidence levels

7 Conclusion

In this paper we have proposed a new data structure consisting of a directed graph D and
a path system in D for representing a TDB. We have presented algorithms for constructing D,
for generating frequent patterns using D and for generating association rules. During the entire
process the data is scanned exactly once. Further it is possible to get several information about
the TDB by using graph theoretic parameters. For example if in-degree(i) = 0 in the directed

Association Rule Mining using Path Systems in Directed Graphs 799

graph D; obtained from D by removing all the loops, then the item i always appears as the first
item in every transaction T' with ¢ € T. Similarly if out-degree(i) = 0, then the item i always
appears as the last item in every transaction T with ¢ € T. Our algorithm can be used to identify
all such items. Use of other graph theoretic parameters to extract new knowledge about the
TDB and the comparison of the performance of this algorithm with other existing algorithms in
the literature using real data set will be reported in a subsequent paper.

Acknowledgment

The first author is thankful to the Department of Science and Technology, New Delhi for its

support through the n-CARDMATH Project No. SR/S4/MS:427/07.

Bibliography

[1]

2]

3]

4]

[5]

6]

7]

R. Agrawal, T. Imielinski and A. Swami, Mining association rules between sets of items in
large database, In Proc. of the ACM SIGMOD International Conference on Management of
Data (ACM SIGMOD 93), Washington, USA, 22(2)207-2016, May 1993.

G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, CRC, 4" edition,
2005.

R. Agrawal and R. Srikant, Fast Algorithms for mining association rules, In Proc. of the
20" International Conference on Very Large Database (VLDB’ 94), Santiago, Chile, 487-
499, June 1994.

J. Han, J. Pei and Y. Yin, Mining Frequent Patterns without Candidate Generation, In
Proc. of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas,
Texas, USA, 29(2):1-12, May 2000.

S. Brin, R. Motwani, J.D. Ullman and S. Tsur, Dynamic itemset counting and implications
rules for masket basket data, In Proc. of the ACM SIGMOD International Conference on
Management Data, 26(2):255-264, 1997.

M. Hontsma and A. Swami, Set oriented mining for association rules in relatrend database,
The technical report RJ9567, IBM Almaden Research Centre, San Jose, California, October
1993.

J. Han and M. Kamber, Data minining, Concepts and Applications, Elsevier Inc., (2006).

