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Abstract: Image registration (IR) is the process of geometric overlaying or align-
ment of two or more 2D/3D images of the same scene (unimodal registration), taken
or not at different time slots, from different angles, and/or by different image ac-
quisition systems (multimodal registration). Technically, image registration implies
a complex optimization of different parameters, performed at local or/and global
level. Local optimization methods often fail because functions of the involved metrics
with respect to transformation parameters are generally nonconvex and irregular, and
global methods are required, at least at the beginning of the procedure. This paper
presents a new evolutionary and bio-inspired robust approach for IR, Bacterial For-
aging Optimization Algorithm (BFOA), which is adapted for PET-CT multimodal
and magnetic resonance image rigid registration. Results of optimizing the normal-
ized mutual information and normalized cross correlation similarity metrics validated
the efficacy and precision of the proposed method by using a freely available medical
image database.
Keywords: medical imaging, image registration, soft computing, evolutionary strate-
gies, bacterial foraging algorithm, global optimization.

1 About Multimodal Image Registration

Image registration (IR) is a fundamental task in computer vision used to find either a spatial
transformation (e.g., rotation, translation, etc.) or a correspondence (matching of similar image
entities) among two (or more) images taken under different conditions (at different times, using
different sensors, from different viewpoints, or a combination of them), with the aim of overlaying
such images into a common one [1], [2], [3], [4]. Over the years, IR has been applied to a broad
range of situations from remote sensing to medical images or artificial vision and CAD systems,
and different techniques have been independently studied resulting in a large body of research.

IR methods can be classified in two groups according to the nature of images: pixel/voxel-
based IR methods (also called intensity-based), where the whole image is considered for the
registration process; and, on the other side, feature-based methods, which consider prominent
information extracted from the images, being a reduced subset of them. The latter methods
take advantage of the lesser amount of information managed in order to overcome the problems
found in the former when the images present some inconsistences to deal with, for example,
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regardless of changes in the geometry of the images, radiometric conditions, and appearance of
noise and occlusion. These features correspond to geometric primitives (points, lines, surfaces,
etc.) which are invariant to the transformation to be considered between the input images.
Moreover, the latter methods perform faster than the former ones due to the reduced amount of
data they take into account, at the expense of achieving coarse results. Likewise, IR is the process
of finding the optimal spatial transformation (e.g., rigid, similarity, affine, etc.) achieving the
best overlaying between two (or more) different images named scene and model images (Figure
1). They both are related with the specific transformation, measured by a similarity metric
function. Such transformation estimation is interpreted into an iterative optimization procedure
in order to properly explore the search space. Two search approaches have been considered
in the IR literature: matching-based, where the optimization problem is intended to look for a
set of correspondences of pairs of those more similar image entities in both the scene and the
model images, from which the registration transformation is derived; and the transformation
parameter-based, where the strategy is to directly explore inside each range of the transformation
parameters. Both strategies can be used with either a voxel-based or a feature-based approach.

Specific aspects such as the presence of noise, image discretization, different amplitudes in the
scale of the IR transformation parameters, the magnitude of the transformation to be estimated
cause difficulties for traditional local optimizers (gradient- and nongradient-based) and they
become prone to be trapped in local minima. As a consequence, global methods are preferred,
at least at the beginning of the IR process. As for image segmentation procedure, there is not a
universal design for an IR method that could be applicable to all registration tasks, since various
considerations on the particular application must be taken into account.

In recent years a lot of studies and papers were dedicated to medical IR, with more or less
good results [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [15], [16], [17]. Thus, e.g. rigid
3D transformations were performed, e.g., by Alpert [18] using the images principal axes and cen-
ter of gravity. Affine registration was obtained by Wahl [21], employing user identified anatomical
landmarks and external markers, and Maguire et al. [22], who optimized cross-correlation around
such user identified anatomical landmarks and external markers. In [11] a robust surface registra-
tion using a Gaussian-weighted distance map (GWDM) for PET-CT brain fusion was proposed.
A similarity measure was evaluated repeatedly by weighted cross-correlation (WCC).

1.1 Transformations

The IR methods can also be classified according to the registration transformation used to
relate both the scene and the model images. The first category of transformation models includes
linear transformations, which preserves the operations of vector addition and scalar multiplica-
tion, being a combination of translation, rotation, global scaling, and shear components. The
most common linear transformations are rigid, similarity, affine, projective, and curved. Linear
transformations are global in nature, thus not being able to model local deformations. The
second category of transformation models includes elastic and nonrigid transformations, which
allow local warping of image features, thus providing support for local deformations.
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1.2 Similarity Metric

The similarity metric is a function F that measures the goodness of a given registration
solution, that is, of a registration transformation f . The final performance of any IR method
strongly depends on its accurate estimation. Each solution is evaluated by F applying such
transformation f on one of the two images, usually to the scene image (f(Is)). Next, the degree of
closeness or fitting between the transformed scene and the model images, Ψ(·) must be determined

F (Is, Im, f) = Ψ(f(Is), Im) (1)

The main approaches trying to estimate the function Ψ(·) depend on the dimensionality (2D
or 3D) and the nature of the considered images. There are: (a) voxel-based approach: sum
of squared differences, normalized cross-correlation (i.e., correlation coefficient or phase corre-
lation), and mutual information; (b) feature-based approach: feature values-based metrics (i.e.,
registration based on the curvature) and distance between corresponding geometric primitives.

Unfortunately, the F function is affected by both the discretization of images and the presence
of noise, yielding worse estimations and favoring the IR to get trapped in local minima.

1.3 Search Space Strategies

The IR process performs an iterative exploration to obtain that optimal transformation f .
So, the closer f to the unknown global optimum, the better the fitting (measured by the simi-
larity metric F ) between scene and model. The optimization process considered to obtain those
solutions can be deterministic or stochastic (either a global or a local one).

Although the final registration problem solution consists of the right values for the parameters
which determine f, we can distinguish two different strategies to solve the problem, each of them
working in a different solution space: (i) the first searches in the matching space to obtain a set
of correspondences of pairs of the most similar image entities in both the scene and the model
images, from which the registration transformation is derived; (ii) the second directly makes a
search in the space of the f parameters guided by the F function, called transformation parameters
space. The matching-based search space exploration usually consists of the two following stages:
first, a set of correspondences with those more similar regions of pixels (voxel-based) or geometric
primitives (feature-based) in both the scene and the model images must be computed; second,
the transformation f is assessed by numerical methods considering the previous matching.

On the contrary, transformation parameters-based search space involves directly searching
for the solution in the space of parameters of the transformation f . In this respect, each solution
to the IR problem is encoded as a vector composed of the values for the parameters of f ,
and the IR method generates possible vectors of parameter values, that is, possible registration
transformations. As a consequence, the search space exploration is guided by the similarity metric
F . In this way, each solution vector is evaluated by the chosen metric, and the IR problem
becomes a parameter optimization procedure of finding the best values of f that maximize
the similarity metric F . Other classification divides search strategies in local and global ones.
Local optimization techniques frequently fail because functions of these metrics with respect to
transformation parameters are generally nonconvex and irregular and, therefore, global methods
– such as those based on evolutionary algorithms – are often required.

2 Optimization using BFOA

In recent years, the application of several well-known evolutionary algorithms (EAs) [23]
to the IR optimization process has introduced an outstanding interest in order to solve those
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problems due to their global optimization techniques nature. The first attempts to solve IR using
evolutionary computation can be found in the early eighties, when Fitzpatrick et al. [24] proposed
such approach based on a genetic algorithm for the 2D case and applied it to angiographic
images. Since then, several evolutionary approaches have been proposed to solve the IR problem,
mainly in connection with the transformation parameters-based search space, as shown e.g.
in [25], [1], [26], [27], [28], [29], [30]. The main reason of using global optimization techniques,
such as EAs-based algorithms for IR, is that they may not require an optimum solution to achieve
high accuracy of registration.

Introduced by Passino [31], [32], bacterial foraging paradigm is a bio-inspired optimization
method based on the foraging model. This paradigm belongs to the broader class of distributed
nongradient global optimization. A foraging animal takes actions to maximize the energy ob-
tained per unit time spent foraging, E/T, in the face of constraints presented by its own physi-
ology (e.g., sensing and cognitive capabilities) and environment (e.g., density of prey, risks from
predators, physical characteristics of the search area). In other words, these social animals, like
E. coli – a bacterium, try to maximize their long-term average rate of energy intake.

Prominent applications in medical image processing are related to edge detection [33], image
segmentation [19], [20], but also for image registration [36], [37], knowing that these procedures
may be viewed as optimization tasks.

2.1 BFO Algorithm

The bacterial foraging paradigm is suitable as model for optimization algorithms because
animals/bacteria behavior is to search for nutrients and avoid noxious substances to maximize
their energy. As in all evolutionary models, individuals with a good strategy to find nutrients
are replicated and those having poor foraging strategy are eliminated. In contrast to genetic
algorithms and evolutionary strategies, which exploit the competitive characteristics of biological
evolution (e.g., survival of the fittest), bacterial foraging (BF) exploits cooperative and social
aspects of animal colonies (like E. coli bacterium) in their attempts to obtain nutrients that
maximizes energy intake per unit time spent for foraging.

Each member of the bacteria colony is characterized by its position in the n-dimensional
space which is a possible solution of the optimization problem. The solution is computed as
the position in which a bacterium is in the best healthy state or has the lowest cost value.
During foraging, the bacteria colony (swarm) proceeds through four foraging steps: chemotaxis,
swarming, reproduction and elimination-dispersal.

Let’s consider a bacteria colony with S individuals; P (j, k, l) = {θt(j, k, l), i = 1...S} is the
position of colony members in the jth chemotactic step, kth is the k-th reproduction step and lth

– the l-th elimination-dispersal step; J(i, j, k, l) denotes the cost of the ith bacterium in position
θt(j, k, l).

- Chemotaxis: E. Coli bacteria have two types of movements: tumble and swim. The
chemotactic step is defined as a tumble followed by a tumble or a tumble followed by
a run. In the chemotactic step each bacterium changes its position to: θt(j + 1, k, l) =
θi(j, k, l) + C(i)φ(i), where C(i) is the size of the chemotactic step and is a unit length
random generated direction [4]. If the cost computed in the new position is lower than in
the previous position, then the swim is continued in the same direction as long as the cost
is reduced but not more than a maximum number of steps.

- Swarming: In case the bacteria have the ability to signal to others the existence of a
favorable or poisonous environment, they will tend to swarm together in the direction of
nutrients. The cell to cell attraction or rejection is modeled by adding to the cost function
J(i, j, k, l) computed for a specific bacterium, components computed as function of the
status of all the other bacteria in the colony.
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- Reproduction: All bacteria reach the reproduction state after a number of chemotactic
steps. The healthy state is computed for all bacteria and it may be expressed as the total
quantity of accumulated nutrients or simply by the value of the cost function in the current
position. The least healthy bacteria die while and to keep constant the size of the colony,
an equal number of healthier bacteria split into two bacteria without mutation.

- Elimination and Dispersal: After a number of reproduction steps, some bacteria are dis-
persed into the environment (moved in a random position) with a specified probability,
without taking into account their healthy state.

BFOA starts with a colony of S bacteria placed in randomly generated positions. The evo-
lutionary process goes through Ned elimination/dispersal steps, each of these consists of Nre

reproduction steps. Each reproduction step consists of Nc chemotactic steps. In each chemo-
tactic step a bacterium may do at most Ns swimming steps if the value of the cost function
decreases. The position in which a bacterium has the greatest healthy status is the solution of
the optimization problem. In case of image registration, the size of the search space is equal to
the number of parameters of the geometric transform and as healthy status is used the value of
a measure that evaluates the similarity between the transformed source image and the model
image.

2.2 Parallel Version of BFO Algorithm

A closer look at BFOA reveals that it contains 4 nested loops: elimination/dispersal, repro-
duction and chemotaxis for each bacterium in the colony. The body of the inner loop is executed
Ned × Nre × NC × S times, which may be a fairly large number. In the examples presented
in the next sections, it is executed 256000 times, but the cost function evaluation is performed
about 600000 times due to the fact that each bacterium may perform more swim steps in a single
chemotactic step.

We propose a parallelization based on the shared memory model that is suitable for multi-core
processor based systems. It must be noticed that in this case the number of available processors
is reduced (2, 4 or 8). An excessive tasks partitioning obviously leads to poor performances due
to the large number of synchronization operations.

If we consider to not use the attractant/repellant effect in the optimization algorithm, then the
calculations performed for each individual bacterium in the inner loop are independent excepting
the test in which the best value of the cost function is checked. So, we can execute in parallel
a chemotactic step for all bacteria, taking care to not simultaneously call the function to check
for the best value of the cost function.

3 Pixel Based Image Registration

The proposed IR procedures use the Normalized Mutual Information and Normalized Cross
Correlation as measures to evaluate the quality of the registration process.

Our study approaches the rigid body image registration, which initially determines global
alignment, followed by local elastic registration. Let T denote the spatial transformation that
maps features or coordinates (spatial locations) from one image or coordinate space to another
image or coordinate space. Let pA and pB denote coordinate points (pixel locations) in images
A and B, respectively. The image registration problem is to determine T so that the mapping
T : pA → pB ⇔ T(pA) = pB results in the "best" alignment of A and B. For 3-D rigid body
registration, the mapping of coordinates p = [x, y, z]T into p′ = [x′, y′, z′]T can be formulated
as a matrix multiplication in homogeneous coordinates, as shown in equation (2) in an explicit
manner. That is, the goal of the optimization is to determine the parameters tx, ty, tz, α, β, and
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γ in (2). Usually, optimization in image registration means to maximize similarity. Similarity
metric values, as functions of transformation parameters, refer to the objective function, denoted
as f(x). Alternatively, one may formulate the image registration as a minimization problem
and, thus, the goal is to minimize −f(x). Although there is yet no proof for its optimality,
because of its robustness (usually it attains its maximum at correct alignment) and good results
in previous works, normalized mutual information was selected as the similarity measure in our
study. Moreover, it is still generally non-smooth and prone to local optima. For this reason,
global optimization approaches are preferred.

[
p′

1

]
=T

[
p

1

]
⇔


x′

y′

z′

1

=


cosβ cos γ cosα sin γ+sinα sinβ cos γ sinα sin γ− cosα sinβ cos γ tx

− cosβ sin γ cosα cos γ− sinα sinβ sin γ sinα cos γ− cosα sinβ sin γ ty

sinβ − sinα cosβ cosα cosβ tz

0 0 0 1



x

y

z

1


(2)

3.1 Normalized Mutual Information

Mutual Information (MI) and Normalized Mutual Information (NMI) evaluate the relative
independence of two images and do not depend on the specific dynamic range or intensity scaling
of the images [1], [10]:

MI(A,B) = H(A) +H(B)−H(A,B) (3)
NMI(A,B) = (H(A) +H(B))/H(A,B), (4)

where H(A), H(B) are the image entropies and H(A,B) is the joint entropy of the two images.
High values of mutual information indicate high dependence between images. Because the goal
of the optimization algorithms is to minimize a cost function, the value of (−1) ∗NMI will be
used to evaluate the quality of a certain solution. In the cost function evaluation, the geometric
transform corresponding to the current solution is applied to the source image and then the NMI
value is computed for the model image and the transformed source image. The area based IR
implementations are time consuming because each cost evaluation requires a geometric transform
to be applied and also image and matrix operations to compute NMI.

3.2 Normalized Cross Correlation

Cross correlation is used for estimating the degree to which two series are correlated. One
of the most encountered applications of the normalized cross correlation is to determine the
position of a template sub-image B in a source image A. The normalized cross correlation
(NCC) is computed by

NCC(i, j) =
ΣıΣȷA(i+ ı, j + ȷ) ·B(ı, ȷ)√

ΣıΣȷB(ı, ȷ)2 ·
√

ΣıΣȷA(i+ ı, j + ȷ)2
. (5)

The problem is to determine the position of a given pattern in a two dimensional image f .
Let f(x, y) denote the intensity value of the image f of size Mx × My at the point (x, y),
x ∈ {0, . . . ,Mx − 1}, y ∈ {0, . . . ,My − 1}. The pattern is represented by a given template t of
size Nx × Ny. A common way to calculate the position (upos, vpos) of the pattern in the image
f is to evaluate the normalized cross correlation value γ at each point (u, v) for f and template
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t, which has been shifted by u steps in the x direction and by v steps in the y direction. The
following equation gives a basic definition for the normalized cross correlation coefficient

γ =
Σx,y(f(x, y)− fu,v)(t(x− u, y − v)− t)√

Σx,y(f(x, y)− fu,v)2Σx,y(t(x− u, y − v)− t)2
, (6)

where (fu,v) denotes the mean value of f(x, y) within the area of the template t shifted to (u, v),
which is computed by:

(fu,v) =
1

NxNy

u+Nx−1∑
x=u

v+Ny−1∑
y=v

f(x, y). (7)

With similar notation, t is the mean value of the template t. The denominator in (6) is the
variance of the zero mean image function f(x, y) − fu, v and the shifted zero mean template
function t(x − u, y − v) − t. Due to this normalization, γ(u, v) is independent to changes in
brightness or contrast of the image, which are related to the mean value and the standard
deviation.

4 Experiments and Results

The BFOA based image registration procedure was tested on a large set of DICOM medical
images from a database at the address http://www.osirix-viewer.com/datasets/ [39]. In
Figure 1 below, information about some test images are shown.

Image Description:
File : img_1.tif
Size : 256× 256× 8b

Name : PETCETIX
Modality : PET-CT
Description: Whole body FDG PET-CT study

in a patient with abdominal lymphoma.
File: img_2.tif
Size: 256 x 256 x 8b
Name: BRAINIX
Modality: MR
Description: Brain tumor.
File: img_3.tif
Size: 256 x 256 x 8b
Name: WRIX
Modality: MRI
Description: Scaphoid fracture. T1 / STIR fusion.

Figure 1: Test images used in the experiment

In the experiment, 4 images were used: img_1, img_2, img_2HistEq (that was obtained by
applying the histogram equalization to img_2 having low contrast), and img_3.

The source images were obtained by applying a rotation (angle θ = 10◦) against the rotation
center (cx = −20 and cy = 20) followed by an isotropic scaling (scale = 1.2). The transform
matrix is:
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T =

 α β (1− α)cx − βcy

−β α βcx + (1− α)cy

0 0 1

 (8)

where α = scale · cos θ and β = scale · sin θ. The actual value of the transform matrix is

T =

 1.1818 0.2084 −0.5322

−0.2084 1.1818 −7.8029

0 0 1

 (9)

The inverse transform matrix is T−1 =

0.8207 −1.1477 −0.6924

1.1447 0.8207 6.4807

0 0 1

 that corresponds to an

affine transform with the following parameters: θ′ = −10◦, c′x = −20, c′y = 20 and scale′ =
0.8333. The search space for the optimization problem is R4.

The BFO parameters values used in the experiment are:
Colony size, S = 400; Number of chemotactic steps, Nc = 20; Maximum number of swim

steps, Ns = 10; Number of reproduction steps, Nre = 16; Number of elimination/dispersal steps,
Ned = 2; Probability of dispersal, Ped = 0.25; Length of the move step = 0.001.

As it can be observed in Figure 1 the test images have the same size but are different in
terms of contrast. It was expected that the image contrast affects the quality of the registration
process, and this assumption was found to be true.

In vision, contrast is the difference in luminance that makes an object distinguishable. The
test images we used in this paper were not analyzed for their content (i.e., it is a context-free
registration), so the contrast and his evaluation was performed by means of the histogram of the
images.

Root mean square contrast is computed as standard deviation of pixel values. It does not
depend on the spatial frequency or spatial distribution in the image.

ContrastRMS =
√

1
MN

∑N
i=1

∑M
j=1(I(i, j)− Iavg)

2, (10)

where M,N are the image dimensions, I(i, j) is the image pixel at (i, j) coordinates and Iavg is
the average of pixel values in image I.

Visibility (Michelson contrast) is represented by formula

ContrastMichelson =
Imax − Imin

Imax + Imin
, (11)

where Imin and Imax are the lowest and highest pixel values in image I, respectively.
Contrast values computed for the tested model images are described in Table 1.

Table 1: Contrast values computed for the test images

For image_2.tif with initial low contrast a histogram equalization procedure was performed
and image named img_2_HistEq was obtained. The source images were obtained by applying
the affine transform specified above followed by salt-and-pepper and Gaussian noise alteration.
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The Signal-To-Noise Ratio was computed using the formula below and is shown in Table 2.

SNR = 10 log

∑N
i=1

∑M
j=1 I(i, j)

2∑N
i=1

∑M
j=1(I(i, j)− Inoise(i, j))2

dB, (12)

Table 2: Signal-to-Noise Ratio (SNR) values for testimages with noise

The registered images for test image img_1 are shown in Figure 2.

a. Model image,
img_1

b. Source image,
no noise added c. Source image,

salt and pepper
noise added,
SNR=1.63 dB

d. Source image,
Gaussian noise
added
SNR=20.14 dB

e. Registered image f. Registered image g. Registered image
Figure 2: Registered images for test image img_1

In Table 3, the columns NMI/Expected and NCC/Expected contain respectively the values
of Mutual Information and Normalized Cross Correlation computed for the model image and the
image obtained by applying the inverse affine transform on the source images. The NMI/Com-
puted and NCC/Computed contain respectively the Mutual Information and Normalized Cross
Correlation computed for the model image and the registered image obtained by applying the
approximated affine transform. The first 3 rows in Table 3 contain the values obtained using
MI as similarity measure while the last 3 rows contain the results obtained by using NCC as
similarity measure in the registration evaluation.
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Table 3: Image registration results obtained for test image img_1

In the case of the image drawn in Figure 2, it must be noticed that in all cases the value of the
similarity measure computed for the registered image does not exceed the expected value. This
happens because the image histogram is uniform (the gray levels are more uniformly distributed
in the image), even if there does exist a considerable number of black pixels. Accordingly, the
results obtained using the two similarity measures are quite similar.

Similarly, registered images for test image img_2 are depicted in Figure 3.

a. Model image,
img_2

b. Source image,
no noise added c. Source image,

salt and pepper
noise added,
SNR=-15.04 dB

d. Source image,
Gaussian noise
added
SNR=5.76

e. Registered image f. Registered image g. Registered image
Figure 3: Registered images for test image img_2

In the case of test image img_2, even if the image has a low contrast, the IR result is
also good. The image contrast is ContrastRMS = 0.05 (a very low value) and in all cases the
similarity measure error is less than 1/1000, so the proposed BFOA-based IR method works well
in case of low contrast images. Moreover, for very noisy images (SNR as low as −15.04dB) this
method also works very well, as shown in Figures 3 (f, g).
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Table 4: Image registration results obtained for test image img_2

a. Model image,
img_3

b. Source image,
no noise added

c. Source image,
salt and pepper
noise added,
SNR=-2.28 dB

d. Source image,
Gaussian noise
added
SNR=15.80

e. Registered image f. Registered image g. Registered image
Figure 4: Registered images for test image img_3

Table 5: Image registration results obtained for test image img_3

In case of the test image img3 (Table 5), it must be noticed that in all experimental situations the
computed NCC value is very slightly greater than the expected value. This may be explained
by: (1) the low contrast of model and source images, (2) the images have a high portion of
dark background and (3) the black areas inserted (as a necessity, from experimental reasons) in
the transformed and registered images after the affine transforms application. But also in these
conditions the values of MI seem to be more relevant and give a real evaluation of the registration



342 H. Costin, S. Bejinariu, D. Costin

process.

a. Model image b. Source image,
no noise added

c. Source image,
salt and pepper
noise added,
SNR=4.12 dB

d. Source image,
Gaussian noise
added
SNR=22.49

e. Registered image f. Registered image g. Registered image
Figure 5: Registered images for test image img_2_HistEq

The proposed IR procedure was also applied to the low contrast image img_2, processed by
applying the histogram equalization (Figure 5). In this way the contrast value was increased
from 0.05 to 0.35. It must be noticed that in this case the registration results are similar to the
case of the original image, img_2 (Table 6).

Table 6: Image registration results obtained for test image img_2_HistEq

4.1 Execution Time and Parallel Approach of the Algorithm

The following tables contain for each test image the execution time in seconds, the number
of cost function evaluations for sequential and parallel executions and also the parallel efficiency
(Eff). The most common evaluation of parallel algorithms is performed using the parallel
efficiency Eff = ts

tp×n , where ts is the time used by the sequential version of the algorithm, tp is
the processing time for the parallel version and n is the number of used processors [38].

When comparing these values, the following issues must be considered:
– The parallel implementation was evaluated on Intel Core i5 3.10 GHz processor, with 4

cores. The system has 4 GB RAM and uses Windows 7 (64 bits) as operating system. The
application was compiled as a 32 bits application;
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– The execution times have to be considered as approximations, because the application
was executed in Windows OS without obtaining the exclusive access of processor. The
processor allocation during parallel execution was made by the operating system;

– In all executions of BFOA, the random number string was the same (the generator was
initialized using the same value).

In Table 7 and Table 8 below the execution time (in seconds), the number of cost function
evaluations and parallel efficiency are presented.

Table 7: Parallel efficiency obtained for images img_1 and img_3

Table 8: Parallel efficiency obtained for images img_2 and img_2_HistEq

Also, Figures 6 and 7 show parallel versus sequential execution time for img_2 and img_2_HistEq
respectively, for clean and different added noise.

Figure 6: Parallel and sequential execution time in case of image img_2_HistEq
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Figure 7: Parallel and sequential execution time in case of image img_2

As is depicted in Table 7 and Table 8, the parallel efficiency value is between 0.78 and 0.86.
Higher values of efficiency are obtained for longer tasks, when normalized cross correlation is
used for image similarity evaluation. It must be noticed that in this case, the parallel version
execution time is similar to the sequential version execution time when NMI is used for similarity
evaluation. Considering that also the registration precision is higher in case of NMI usage, it can
be concluded that NMI is recommended as evaluation measure. The obtained parallel efficiency
value is high, considering the time required for synchronization tasks and critical sections which
cannot be parallelized. It must be noticed that in case of images img_2 and img_2_HistEq,
for the sequential image registration, the cost function is called the same number of times. The
execution time is different because in Windows operating system the processor is also used for
other tasks. In case of parallel image registration, the number of cost function evaluation is
different for the different allocation of the processor cores. Figures 6 and 7 show processing
time for different added noise and the two similarity measures considered, for sequential and
parallel versions of the proposed algorithm, when registering images img_2_HistEq and img_2,
respectively.

5 Conclusions

This study proved the feasibility of rigid and mono-modal image registration by using a
new optimization approach - Bacterial Foraging Optimization Algorithm (BFOA), a bio-inspired
technique that belongs to the large family of evolutionary computing and metaheuristic meth-
ods. As similarity measures between two images performing registration process, we used the
normalized mutual information and normalized cross correlation which had to be optimized by
BFOA. The obtained results are encouraging, i.e. the accuracy of registration process as high
even in the case of noisy images, with very low signal-to-noise ratios. In this way our method
might be considered as a robust registration technique. Yet, the maximum expected value of the
IR evaluation measure was not reached because when processing images from the used database
two technical details have limited the overall registration:

– after the affine transform applied to obtain the source image and inverse transform is
applied to obtain the registered image, some black areas are inserted in some images due
to geometrical experimental reasons;

– the pixels values are changed because during the direct and inverse affine transform the
pixels values are approximated using interpolation methods. In this experiment the bilinear
interpolation is used.

Concerning the possibility to accelerate the execution time of the registration process, it is
noteworthy that the proposed algorithm is suited to parallelization, as shown above. In this
respect runtimes at least 3 times lower of the parallel version than of sequential approach were
obtained, so the parameter named "speedup" equals 3. When computing parallel efficiency, it is
worth mentioning that values of 0.78–0.86 were obtained when using the Intel Core i5 processor
(4 cores), that meaning a good efficiency of the parallel approach.
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