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Abstract: With the explosive growth of high-rate multimedia services and promptly
boomed energy consumption in wireless networks, energy-efficient design is become
more and more important. In this paper, we investigate energy-efficient design for
relay-aided multiple-input multiple-output-orthogonal frequency division multiplex-
ing (MIMO-OFDM) cognitive radio networks. We formulate an energy-efficient power
allocation problem, which takes a form of nonlinear fractional programming. To solve
the problem, we first make a joint concave approximation to the original problem
which facilitates the optimal algorithm development. Then, we derive an equivalent
parametric optimization problem of the approximated problem. Finally, an itera-
tion energy-efficient power allocation algorithm is presented. Numerical results reveal
that the proposed algorithm can improve energy efficiency over traditional capacity
maximization method.
Keywords: cognitive radio, power allocation, MIMO, relay, fractional programming.

1 Introduction

Cognitive radio (CR) and multiple-input multiple-output-orthogonal frequency division mul-
tiplexing (MIMO-OFDM) communications have been considered as a promising scheme to solve
the spectrum scarcity problem and improve the quality of wireless communications [1]. Recently,
to reduce the multi-path fading and improve the channel capacity, cooperative relaying technique
is considered as a potent means to be adopted in the CR networks. Thus, the researches of relay
aided MIMO CR networks are being received a growing attention in recent years [2, 3].

In [4], the relay selection and beamforming problem for the non-regenerative MIMO cognitive
multi-relay network was considered and an optimal scheme was proposed via maximizing the
capacity of the SUs by selecting the best cognitive MIMO relay. [5] studied a new paradigm for
CR networks, which allowed the secondary users (SUs) to cooperatively relay the traffic for the
primary users (PUs) while simultaneously transmitting their own traffic, and proposed a novel
MIMO cooperative cognitive radio networks framework. [6] considered the power allocation
problem for MIMO two-way CR sytem under a specturm sharing scenario, and presented an
analytical expression of the optimal power allocation to each antenna of the treminals. [7] studied
the power and channel allocation, and relay assignment for MIMO-OFDM based cooperative
CR networks and proposed an optimal complexity algorithm and a sub optimal low complexity
algorithm. [8] investigated subcarrier pairing and power allocation for MIMO-OFDM relay-aided
CR networks and used environmental learning algorithm to mitigate the interference of the PUs.
In the previous works, most researches intend to improve the throughput of relay aided CR
systems. However, the energy efficiency (EE) has been considered more and more important in
future wireless communication networks. The wireless devices and equipments consume about
9% of the total energy of information technology, the communication and information technology
already contributes to about 2% of the global carbon dioxide emissions [9, 10]. Therefore green
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communication, which emphasizes on EE in wireless communication networks, is attracting more
and more attention [11, 12]. A large amount of work has bee reported on energy-efficient design
for CR networks [13-15]. For MIMO CR networks, [16] studies EE optimization problem of MIMO
CR broadcast channels to improve the system throughput for unit energy consumption. In [17],
the throughput and energy efficiency optimization under quality-of-service (QoS) constraints for
MIMO CR systems are studied. In [18], a promising framework of spectrum sharing strategy
selection based on EE is proposed for MIMO CR interference channels.

In this paper, we focus on energy-efficient power allocation for relay-aided MIMO-OFDM
CR networks. We formulate an optimization problem related to maximization of EE of the
consider network under total power constraints of cognitive source node and cognitive relay
node, and interference constraints of primary users. Since the original optimization problem is
difficult to solve directly, we first get an approximated problem of the original problem, and then
transform the approximated problem into an equivalent convex optimization problem. A new
iterative energy-efficient power allocation scheme is presented at last. The rest of this paper
is organized as follows: In Section 2, we introduce the system model and formulate an energy-
efficient power allocation problem. In Section 3, the double-loop iterative method is presented.
Finally, simulation results and Conclusions are presented in Section 4 and 5.

The following notations are used in this paper, CM×N denotes M ×N complex matrix, (·)H
denotes the conjugate transpose, (·)+ means max (0, ·), the distribution of a circularly symmetric-
complex-Gaussian vector with mean vector x and covariance matrix y is denoted by CN (x, y) ,
diag (·) returns a square matrix with the elements of (·) on the diagonal.
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Figure 1: Relay-aided MIMO-OFDM cognitive radio network

2 Signal Model and Problem Statement

Consider a two-hop relay-aided cognitive radio (CR) network shown in Fig.1, there are a
secondary source node (SSN), a secondary destination node (SDN), and a secondary relay node
(SRN). The relay-aided CR network coexists with L licensed primary users (PUs). The SSN
communicates with SDN through SRN, and they share the whole spectrum with PU. SSN,
SDN, and SRN are equipped with MS antennas, each PU is equipped with MP (MP ≤ MS

)antennas. The relay-aided CR network adopts OFDM modulation for transmission, and the total
number of available subcarriers for CR network is N . Let GSR (n) ∈ CMS×MS and GRD (n) ∈
CMS×MS denote the channel matrices from SSN to SRN and SRN to SDN over the n-th subcarrier
respectively. Let GSP l (n) ∈ CMp×MS , GRPl (n) ∈ CMp×MS and GDPl (n) ∈ CMp×MS denote the
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channel matrices from SSN to l-th PU, from SRN to l-PU, and from SDN to l-PU, respectively.
The channel matrix from l-th PU to SSN, SDN, and SRN are GH

SPl (n), G
H
RPl (n) and GH

DPl (n).
Assume there is no cooperation between CR network and PUs, environmental learning (EL)

method [19] is performed to control the interference to the PUs. Via EL learning method,
secondary nodes estimate the null space information of the channels between secondary nodes and
PU. Assume the cognitive beamforming (CB) matrices at SSN, SRN, SDN for the n-th subcarrier
are USP l (n) ∈ CMS×(MS−MP ) , URPl (n) ∈ CMS×(MS−MP ) and UDPl (n) ∈ CMS×(MS−MP ),
respectively. These CB matrices satisfy UH

SPl (n)GSP l (n) = 0, UH
RPl (n)GRPl (n) = 0 and

UH
DPl (n)GDPl (n) = 0. However, the accurate CB matrices are difficult to be acquired, therefore

in practical applications, the estimated CB matrices ŨSP l (n), ŨRPl (n) and ŨDPl (n) are used.
In the first hop, the received signal at CRN in the n-th subcarrier is given by:

yR (n) = GSR (n) ŨSP l (n)xS +GH
RPl (n)w

1
P + zR (n) (1)

where xS is the transmitted signal of SSN, w1
P is the PU interference to SRN in the first hop.

zR (n) ∼ CN
(
0, σ2RIMS

)
is the additive white Gaussian noise (AWGN) at SRN.

In the second hop, SRN first filters received signal yR (n) with Ũ
H
RPl (n), and then precodes

the filtered signal by forwarding matrix B (n), finally precodes the resultant signal by ŨDPl (n).
Therefore, the received signal at SDN in the n-th subcarrier is:

yD (n) = GRD (n) ŨRPl (n)B (n) Ũ
H
RPl (n)yR (n) +GH

DPl (n)w
2
P + zD (n) (2)

where w2
P is the PU interference to SDN in the second hop, zD (n) ∼ CN

(
0, σ2DIMS

)
is additive

white Gaussian noise (AWGN) at SDN in the n-th subcarrier.
Finally, the CR-DN does receive CB by filtering yD (n) with Ũ

H
DPl (n), we have

y = D2 (n)B (n)D1 (n)xS +D(n)2B (n)n1 (n) + n2 (n) (3)

where D1 (n) = Ũ
H
DPl (n)GRD (n) ŨRPl (n) and D2 (n) = Ũ

H
RPl (n)GSR (n) ŨSP l (n), n1 (n) =

∆UH
RPl (n)G

H
RPl (n)w

1
P+Ũ

H
RPl (n) zR (n), n2 (n) = ∆UH

DPl (n)G
H
DPl (n)w

2
P+Ũ

H
DPl (n) zD (n),

∆UH
RPl (n) = Ũ

H
RPl (n) − UH

RPl (n), ∆UH
DPl (n) = Ũ

H
DPl (n) − UH

DPl (n) denote the first-order
perturbations of the CB matrices due to imperfect environmental learning [8, 19].

Let the singular value decomposition of {Dk (n)}k=1,2 be Dk (n) = Uk (n)Λk (n)V
H
k (n)

(k = 1, 2), and define qm,n =

√
pRm,n

pSm,nλ
SR
m,n+σ

2
R

, where pSm,n and pRm,n are the transmit power of

SSN and SRN, λSRm,n is the eigenvalue of GSR (n). Thus, the forwarding matrix can be defined
as B (n) = V H

2 (n)Q (n)U1 (n). Multiplying y with UH2,n at SDN , we have

y = Λ2 (n)Σ (n)Λ1 (n)V 1 (n)xS +Λ2 (n)Σ (n)UH
1 (n)n1 (n) +UH

2 (n)n2 (n) (4)

where Σn = diag (q1,n, q2,n, · · · , qM,n).
According to formula (4), the MIMO-OFDM channel between SSN and SDN can be decom-

posed into N ×MS parallel independent channels, therefore, the throughput of the Relay-aided
MIMO-OFDM network is

Ctp (p) =
1

2

M∑
m=1

N∑
n=1

log2

(
1 +

pSm,nαm,np
R
m,nβm,n

1 + pSm,nαm,n + pRm,nβm,n

)
(5)

where αm,n =
λSR
m,n

σ2R+ψ1
, βm,n =

λRD
m,n

σ2D+ψ2
, λRDm,n is the eigenvalue of GRD (n), ψ1 and ψ2 are constants

and linear with 1
NEL

( NEL is the number of samples in EL stage), p =
{
pSm,n, p

R
m,n

}
is power



Energy-Efficient Design for Relay-Aided MIMO-OFDM Cognitive Radio Networks 115

vector. The overall power consumption at SSN and SDN can be expressed respectively as follows:

PSSN = τS
M∑
m=1

N∑
n=1

pSm,n + PSc (6a)

PSRN = τR
M∑
m=1

N∑
n=1

pRm,n + PRc . (6b)

where τS and PSc are the reciprocal of drain efficiency of power amplifier and circuit power at
SSN. τR and PRc are the reciprocal of drain efficiency of power amplifier and circuit power at
SDN.

The EE of the cognitive relay network while selecting the l-th CRN for transmitting is defied
as:

ξEE (p) =

1
2

M∑
m=1

N∑
n=1

log2

(
1 +

pSm,nαm,npRm,nβm,n

1+pSm,nαm,n+pRm,nβm,n

)
τS

M∑
m=1

N∑
n=1

pSm,n + τR
M∑
m=1

N∑
n=1

pRm,n + PSc + PRc

(7)

Since we use the estimated CB matrices, the interferences to PUs cased by SSN and SRN are
inevitably, the interferences cased by SSN and SRN to l-th PU are

ISPl =
µS
σ2l

M∑
m=1

N∑
n=1

pSm,n (8a)

IRPl =
µR
σ2l

M∑
m=1

N∑
n=1

pRm,n. (8b)

where µS and µR are constants and linear with 1
NEL

, σ2l is the transmit power of the l-th PU
signal.

From (7), the objective of energy-efficient power allocation problem for the relay-aided
MIMO-OFDM CR network can be expressed as:

OP1 max
pSm,n,p

R
m,n≥0

1
2

M∑
m=1

N∑
n=1

log2

(
1 +

pSm,nαm,npRm,nβm,n

1+pSm,nαm,n+pRm,nβm,n

)
τS

M∑
m=1

N∑
n=1

pSm,n + τR
M∑
m=1

N∑
n=1

pRm,n + PSc + PRc

(9)

subject to 

C1 :
M∑
m=1

N∑
n=1

pSm,n ≤ PSth

C2 :
M∑
m=1

N∑
n=1

pRm,n ≤ PRth

C3 : µS
σ2
l

M∑
m=1

N∑
n=1

pSm,n ≤ Ith, l = 1, 2, · · · , L

C4 : µR
σ2l

M∑
m=1

N∑
n=1

pRm,n ≤ Ith, l = 1, 2, · · · , L.

where PSth and PRth are the total power budgets of SSN and SRN respectively, Ith is the
interference threshold of PUs. C1 and C2 are transmission power constraints of SSN and SDN,
C3 and C4 are the interference constraints of the PUs.

Duo to lack of convexity, it is difficult to solving OP1 directly. In the following, we make a
joint concave approximation to OP1 and introduce a new equivalent optimization problem via
nonlinear fractional programming (NFP) [21].
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3 Energy Efficient Power Allocation Algorithm

To make OP1 more tractable, the throughput Ctp can be approximated at the high signal-
to-noise ratio (SNR) as

C̃tp (p) =
1

2

M∑
m=1

N∑
n=1

log2

(
1 +

pSm,nαm,np
R
m,nβm,n

pSm,nαm,n + pRm,nβm,n

)
(10)

Note: As in [20], C̃tp (p) is joint concave with pSm,n and pRm,n.
Thus, we can also get the approximation of EE as:

ξ̃EE (p) =
C̃tp (p)
Ptotal (p)

(11)

where Ptotal (p) = PSSN + PSRN .
Substitute ξ̃EE into OP1, we get the approximated optimization problem

OP2 max
pSm,n,p

R
m,n≥0

ξ̃EE (p) (12)

subject to
C1 ∼ C4

For notational simplicity, we define ℵ as the set of feasible solution of OP2, and let p ={
pSm,n, p

R
m,n

}
be variable vector. Define the maximum EE ρ∗ of network as follows:

ρ∗ =
C̃tp (p∗)

Ptotal (p∗)
= max

p∈ℵ

C̃tp (p)
Ptotal (p)

(13)

where p∗ is the optimal solution of OP2.
Introducing a new parametric optimization problem OP3

OP3 max
pSm,n,p

R
m,n≥0

{
C̃tp (p)− ρPtotal (p)

}
(14)

subject to
C1 ∼ C4

where ρ is non-negative parameter. Since C̃tp (p) is joint concave with pSm,n and pRm,n, for a given
ρ, OP3 is a convex optimization problem.

Next, introduce a theorem based on NFP [21]: Theorem The optimal solution achieve the
maximum EE if and only if

max
p∈ℵ

{
C̃tp (p)− ρ∗Ptotal (p)

}
= C̃tp (p∗)− ρ∗Ptotal (p∗)

= 0 (15)

with C̃tp (p) ≥ 0, Ptotal (p) > 0.
Proof: Similar proof can be found in [21].
The Theorem implies that for fractional OP2, there is an equivalent problem whose objective

function is in subtractive form, e.g. C̃tp (p)− ρ∗Ptotal (p) . Therefore, solving OP2 is equivalent
to solve problem OP3 for a given ρ and then update ρ until the Theorem is satisfied.
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An alternative method solving OP3 is through deriving the Lagrange dual [22] of the opti-
mization problem OP3. The Lagrange function of OP3 is defined as bellow:

Lag

(
p, θ1, θ2, {χl}Ll=1 , {ηl}

L
l=1

)
= 1

2

M∑
m=1

N∑
n=1

log2

(
1 +

pSm,nαm,npRm,nβm,n

pSm,nαm,n+pRm,nβm,n

)
−ρ
[
τS

M∑
m=1

N∑
n=1

pSm,n + τR
M∑
m=1

N∑
n=1

pRm,n + PSC + PRC

]
−θ1

(
M∑
m=1

N∑
n=1

pSm,n − PSth

)
− θ2

(
M∑
m=1

N∑
n=1

pRm,n − PRth

)
−

L∑
l=1

χl

(
µS
σ2l

M∑
m=1

N∑
n=1

pSm,n − Ith

)
−

L∑
l=1

ηl

(
µR
σ2
l

MS∑
m=1

N∑
n=1

pRm,n − Ith

)
(16)

where θ1, θ2 , χl and ηl are the Lagrange multipliers.
Therefore, the Lagrange dual function of the primal problem OP3 can be written as:

Dual

(
θ1, θ2, {χl}Ll=1 , {ηl}

L
l=1

)
= max

p≥0
Lag

(
p, θ1, θ2, {χl}Ll=1 , {ηl}

L
l=1

)
(17)

The corresponding Lagrangian dual problem of OP3 can be expressed as:

min
θ1,θ2,χl,ηl≥0

Dual

(
θ1, θ2, {χl}Ll=1 , {ηl}

L
l=1

)
(18)

The problem (17) is convex, according to the Karush-Kuhn-Tucker condition: ∂Lag

∂pSm,n
= 0 and

∂Lag

∂pRm,n
= 0, then we have:

1

2 ln 2

αm,nβ
2
m,n

(
pRm,n

)2(
pSm,nαm,n + pRm,nβm,n

) (
pSm,nαm,n + pRm,nβm,n + pSm,np

R
m,n

) = ρτS + θ1 + µS

L∑
l=1

χl
σ2l

(19)

1

2 ln 2

α2
m,nβm,n

(
pSm,n

)2(
pSm,nαm,n + pRm,nβm,n

) (
pSm,nαm,n + pRm,nβm,n + pSm,np

R
m,n

) = ρτR + θ2 + µR

L∑
l=1

ηl
σ2l

(20)

Solving the above two equations, we get the optimal power allocation solutions as:

pSm,n =
1

√
αm,nx1

(√
x1
αm,n

+
√

x2
βm,n

)(1−(√ x1
αm,n

+

√
x2
βm,n

)2
)+

(21)

pRm,n =
1√

βm,nx2

(√
x1
αm,n

+
√

x2
βm,n

)(1−(√ x1
αm,n

+

√
x2
βm,n

)2
)+

(22)

where [x]+ = max (0, x), x1 = ρτS + θ1 + µS
L∑
l=1

χl

σ2
l

and x2 = ρτR + θ2 + µR
L∑
l=1

ηl
σ2
l

. Note:

(21) and (22) show that pSm,n and pRm,n are either both positive or both zero, this implies that if
power allocated to the n-th subcarrier in the first hop is zero, then no power is allocated to its
corresponding subcarrier in the second hop, which meets the intuition very well.
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Table 1:
Algorithm: approximated energy-efficient
power allocation

1 Initialization: initial ρ, ϖθ
1, ϖθ

2, ϖ
χ
l and ϖη

l
,

the maximum tolerance δ
2 repeat
3 repeat
4 update pSm,n and pRm,n according to (21)

and (22)
5 update ϖθ

1, ϖθ
2, ϖ

χ
l and ϖη

l
according

to (23)
6 until ϖθ

1, ϖ
θ
2, ϖ

χ
l and ϖη

l
converge

7 Update ρ = ξ̃EE (p) via (11)
8 until

∣∣∣C̃tp (p)− ρPtotal (p)
∣∣∣ ≤ δ

The optimal dual variables can be obtained from the dual problem (18) using the subgradient
method[23]. The dual variables could be updated as:

θ1 =

(
θ1 +ϖθ

1

(
PSth −

M∑
m=1

N∑
n=1

pSm,n

))+

(23a)

θ2 =

(
θ2 −ϖθ

2

(
PRth −

M∑
m=1

N∑
n=1

pRm,n

))+

(23b)

χl =

(
χl −ϖχ

l

(
Ith −

µS
σ2l

M∑
m=1

N∑
n=1

pSm,n

))+

(23c)

ηl =

(
ηl −ϖη

l

(
Ith −

µR
σ2l

M∑
m=1

N∑
n=1

pRm,n

))+

(23d)

where ϖθ
1, ϖθ

2, ϖ
χ
l and ϖη

l
are the step length. According to the aforementioned analysis, we

propose a two loop iterative algorithm to solve the approximated energy-efficient power allocation
problem OP2, which is termed as AEE-PA and tabulated as in Table 1.

Note: [23] shows that the subgradient algorithm can converge to the optimal solution of
convex optimization problems within a small range. Therefore, the inner loop can converge
to the optimal solution of the dual problem (18) with in a small range. Since OP3 is convex
optimization problem, the duality gap for OP3 is zero, the inner loop also converges to the
optimal solution of OP3 within a small range. The detailed proves of the convergence of the
outer loop, i.e. NFP can be found in [21].

4 Performance Simulations

We perform numerical simulations to evaluate the present some numerical experiments to
evaluate the performance of our proposed scheme. Without loss of generality, the channel gains
are assumed to be Rayleigh fading with an average power gain of 1dB, and set the parame-
ters N = 10, L = 2 , MS = 4, MP = 2, σ2R = σ2D = 10−6W , σ2l = 1W , τS = τR = 1,
PSc = PRc = 10−2W , PSth = PRth = Pmax. Since ψ1, ψ2, µS and µR are linear with 1

NEL
, for
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simplicity, let , , and are equals with . All the results have been averaged over 500 iterations. We
compare the proposed algorithm with the traditional throughput maximum problem. Change
the objective function ξEE (p) in OP1 with the throughput Ctp (p) in (5) and change the approx-
imated objective function ξ̃EE (p) in OP2 with the approximated throughput C̃tp (p) in (10),
then we formulate the traditional throughput maximum problem. Since C̃tp (p) is joint con-
cave in with pSm,n and pRm,n, the throughput maximum problem is convex problem which can be
solved by many standard convex optimization algorithms [22]. We name the method to solve the
throughput maximum problem as TM-PA. In the following, we compare the proposed algorithm
with the TM-PA scheme.

Since the proposed AEE-PA consists of two loops, we only consider the affect of the number
of outer loop iterations tO and set the number of inner iterations large enough to guarantee that
the inner loop can find the optimal solution of OP3. Fig.2 shows the EE versus the outer loop
iterations tO for different total power budget under Ith = 1W , NEL = 500 . It can be observed
in Fig.2 that AEE-PA converges to the optimal value within eleven iterations for all considered
value of total power budgets. The maximum EE can be improved when there are more total
power budgets.

Fig.3 depicts the EE versus total power budget Pmax for different interference thresholds under
NEL = 500. As shown in Fig.3, the EE of the both algorithms increases with the increasing of
the total power budget, however the proposed AEE-PA has a higher EE than the non energy
efficiency scheme TM-PA. The EE versus interference threshold Ith for different total power
budgets under NEL = 500 is evaluated in Fig.4. It is shown in Fig.4 that the EE of the both
algorithms grows with the growth of the interference threshold. This is because that the lower
the interference threshold is, the more the CR network suffers outage.

We also evaluate the impact of NEL (the number of samples in EL stage) on the proposed
algorithm. In Fig.5, EE versus interference threshold Ith for different NEL under Pmax = 0.5W
is depicted. Obviously, the algorithm has a better performance with lager NEL than small NEL.
This is because smaller NEL performs poor learning and yields large interference to PUs.
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5 Conclusions

In this paper, we investigated the power allocation for relay-aided MIMO-OFDM cognitive
radio networks from energy efficiency perspective. Different from traditional throughput max-
imizing methods, we solve the power allocation problem via maximizing the energy efficiency
measured by "Joule per bit" metric. However, the formulated problem is nonconvex. To make
it solvable, we first make an approximation to the original problem. Indeed, the approximated
problem is a fractional programming problem. Then, the approximated problem is transformed
into a parametric convex optimization problem. Finally, we give closed form solutions to the
parametric convex optimization problem and proposed a two loop iterative energy-efficient power
allocation algorithm. To show the improvement in energy efficiency, we compared the proposed
algorithm with the traditional throughput maximizing method. From the simulation results, we
observed that the proposed new scheme have a better performance than conventional capacity
maximization scheme in energy efficiency.
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