
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 10(1):70-77, February, 2015.

Fuzzy Euclidean Normed Spaces for Data Mining Applications

S. Nădăban

Sorin Nădăban*
Aurel Vlaicu University of Arad
Romania, 310330 Arad, Elena Dragoi, 2
*Corresponding author: snadaban@gmail.com

Abstract: The aim of this paper is to introduce some special fuzzy norms on Kn

and to obtain, in this way, fuzzy Euclidean normed spaces. In order to introduce this
concept we have proved that the cartesian product of a finite family of fuzzy normed
linear spaces is a fuzzy normed linear space. Thus any fuzzy norm on K generates
a fuzzy norm on Kn. Finally, we prove that each fuzzy Euclidean normed space is
complete. Fuzzy Euclidean normed spaces can be proven to be a suitable tool for
data mining. The method is based on embedding the data in fuzzy Euclidean normed
spaces and to carry out data analysis in these spaces.
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1 Introduction

Data mining and information retrieval are two important components of the same problem:
discovering new and relevant information and knowledge, through investigation of a large amount
of data, through extracting the information and knowledge out of a very large databases or data
warehouse.

In information retrieval the user knows what he is looking for, but sometimes it is very
difficult to express this thing. The use of fuzzy sets in representing the knowledge proves to be
successful on many occasions, allowing the user to express his expectations in a language close
to the natural one. On the other hand, many times the matching between the requests of the
user and the existing data in the databases is only an approximate one, thus, the use of fuzzy
sets and the degrees of membership proves to be not only useful but also necessary.

In data mining, the user looks for new knowledge. The aim is to divide the data into
homogeneous categories, in data classes. The use of the of fuzzy sets brings about flexibility
both in representing knowledge and in interpreting the results as well.

The measures of similarity are the most used, at all levels in the data mining and information
retrieval. The notion of similarity, or more general of the measures of comparison is the central
point for all applications in the real world. The measure of similarity aims at quantifying the
degree to which two objects are similar or dissimilar, offering a numeric value for this comparison.

Machine learning techniques use similarity measures. Machine learning represents an impor-
tant method of extracting the knowledge out of very large databases. A study concerning fuzzy
learning methods was realized by E. Hüllermeier [4].

In the last twenty years, the World Wide Web has become a major source of data and informa-
tion for all domains. Web mining is the process of discovering useful knowledge and information
through investigating the web structure and its content. Different web mining tasks and ad-
vanced artificial intelligence methods for information retrieval and web mining are discussed by
I. Dzitac & I. Moisil [3].

Clustering and classification are both important tasks in data mining. Since clustering means
the grouping of similar objects, we need some suitable measures on data sets. In order to
determinate the similarity or dissimilarity between any pair of objects, the most used measures
are distance measures.
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If each data point is view as a n-dimensional vector x = (x1, x2, · · · , xn) ∈ Rn, where each
component xi is the value of an attribute of the data, the distance between the two data in-
stances can be calculated using Euclidean distance, Manhattan distance, Minkowski distance,
Max distance, etc.

What will we do if the distance between the vectors x and y can not be precisely measured
and thus we are not able to assign it, with certainty, the value t ∈ R+. There are probably
different approaches enabling to handle somehow this situation. One of them, fuzzy approach,
consists in using on Rn some fuzzy metrics, i.e. mappings M : Rn × Rn × [0,∞) → [0, 1], where
M(x, y, t) = α indicates the truth value of the statement "the distance between x and y is smaller
than the real number t" and which belongs to [0, 1]. It will be better that such fuzzy metrics to
come from fuzzy norms on Rn, namely M(x, y, t) = N(x− y, t), where N : Rn × [0,∞) → [0, 1].

The aim of this paper is to introduce some special fuzzy norms on Kn and to obtain, in this
way, fuzzy Euclidean normed spaces. In order to introduce this concept we have proved that
the cartesian product of a finite family of fuzzy normed linear spaces is a fuzzy normed linear
space. Thus any fuzzy norm on K generates a fuzzy norm on Kn. Finally, we prove that each
fuzzy Euclidean normed space is complete. Fuzzy Euclidean normed spaces can be proven to be
a suitable tool for data mining. The method is based on embedding the data in fuzzy Euclidean
normed spaces and to carry out data analysis in these spaces.

In studying fuzzy topological vector spaces, A.K. Katsaras [5] first introduced the notion of
fuzzy norm on a linear space. Since then many mathematicians have introduced several notions
of fuzzy norm from different points of view. Our definition looks similar, but it is more general,
to the definitions introduced, almost in the same time, by T. Bag & S.K. Samanta (see [1], [2])
and R. Saadati & S.M. Vaezpour (see [7]). In 2006, R. Saadati & J.H. Park introduced the notion
of intuitionistic fuzzy Euclidean normed space (see [8], [9]).

2 Preliminaries

Definition 1. [10] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is called triangular norm (t-norm)
if it satisfies the following conditions:

1. a ∗ b = b ∗ a, (∀)a, b ∈ [0, 1];

2. a ∗ 1 = a, (∀)a ∈ [0, 1];

3. (a ∗ b) ∗ c = a ∗ (b ∗ c), (∀)a, b, c ∈ [0, 1];

4. If a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1], then a ∗ b ≤ c ∗ d.

Example 2. Three basic examples of continuous t-norms are ∧, ·, ∗L, which are defined by a∧b =
min{a, b}, a ·b = ab (usual multiplication in [0, 1]) and a∗L b = max{a+b−1, 0} (the Lukasiewicz
t-norm).

Remark 3. ∗ ≤ ∧, i.e. ∧ is stronger that any other t-norms.

Indeed, a ∗ b ≤ a ∗ 1 = a, a ∗ b ≤ 1 ∗ b = b. Thus a ∗ b ≤ a ∧ b.

Definition 4. Let ∗, ∗′ be two t-norms. We say that ∗′ dominates ∗ and we denote ∗′ ≫ ∗ if

(x1 ∗ ′x2) ∗ (y1 ∗ ′y2) ≤ (x1 ∗ y1) ∗ ′(x2 ∗ y2), (∀)x1, x2, y1, y2 ∈ [0, 1].

Proposition 5. For any t-norm ∗ we have ∧ ≫ ∗.
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Proof: Let x1, x2, y1, y2 ∈ [0, 1].
Case 1. x1 ≤ x2, y1 ≤ y2. Then x1 ∗ y1 ≤ x2 ∗ y2. Thus (x1 ∗ y1) ∧ (x2 ∗ y2) = x1 ∗ y1. On the
other hand (x1 ∧ x2) ∗ (y1 ∧ y2) = x1 ∗ y1. Therefore (x1 ∧ x2) ∗ (y1 ∧ y2) = (x1 ∗ y1) ∧ (x2 ∗ y2).
Case 2. x1 ≤ x2, y2 ≤ y1. As x1 ≤ x2, we have x1 ∗ y2 ≤ x2 ∗ y2. As y2 ≤ y1, we have
x1 ∗ y2 ≤ x1 ∗ y1. Thus x1 ∗ y2 ≤ (x1 ∗ y1) ∧ (x2 ∗ y2). Hence

(x1 ∧ x2) ∗ (y1 ∧ y2) = x1 ∗ y2 ≤ (x1 ∗ y1) ∧ (x2 ∗ y2).

Case 3. x2 ≤ x1, y1 ≤ y2 and Case 4. x2 ≤ x1, y2 ≤ y1 are similar to previous cases. 2

Definition 6. [6] Let X be a vector space over a field K (where K is R or C) and ∗ be a continuous
t-norm. A fuzzy set N in X × [0,∞) is called a fuzzy norm on X if it satisfies:

(N1) N(x, 0) = 0, (∀)x ∈ X;

(N2) [N(x, t) = 1, (∀)t > 0] if and only if x = 0;

(N3) N(λx, t) = N
(
x, t

|λ|

)
, (∀)x ∈ X, (∀)t ≥ 0, (∀)λ ∈ K∗;

(N4) N(x+ y, t+ s) ≥ N(x, t) ∗N(y, s), (∀)x, y ∈ X, (∀)t, s ≥ 0;

(N5) (∀)x ∈ X, N(x, ·) is left continuous and lim
t→∞

N(x, t) = 1.

The triple (X,N, ∗) will be called fuzzy normed linear space (briefly FNL-space).
Remark 7. a) T. Bag and S.K. Samanta [1], [2] gave a similar definition for ∗ = ∧, but in order
to obtain some important results they assume that the fuzzy norm satisfies also the following
conditions:

(N6) N(x, t) > 0, (∀)t > 0 ⇒ x = 0 ;

(N7) (∀)x ̸= 0, N(x, ·) is a continuous function and strictly increasing on the subset
{t : 0 < N(x, t) < 1} of R.

The results obtained by T. Bag and S.K. Samanta can be found in this more general settings.
b) R. Saadati and S.M. Vaezpour [7] suppose that

1. N(x, t) > 0, (∀)t > 0;

2. N(x, ·) is a continuous function, (∀)x ̸= 0.

Remark 8. N(x, ·) is nondecreasing, (∀)x ∈ X.
Theorem 2.1. [6] Let (X,N, ∗) be a FNL-space. For x ∈ X, r ∈ (0, 1), t > 0 we define the open
ball

B(x, r, t) := {y ∈ X : N(x− y, t) > 1− r} .
Then

TN := {T ⊂ X : x ∈ T iff (∃)t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T}
is a topology on X.

Moreover, if the t-norm ∗ satisfies sup
x∈(0,1)

x ∗ x = 1, then (X, TN ) is Hausdorff.

Theorem 2.2. [6] Let (X,N,∧) be a FNL-space. Let

pα(x) := inf{t > 0 : N(x, t) > α}, α ∈ (0, 1) .

Then P = {pα}α∈(0,1) is an ascending family of semi-norms on X.
Moreover, for x ∈ X, s > 0, α ∈ (0, 1) we have: pα(x) < s if and only if N(x, s) > α.
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3 Convergence in FNL-spaces

Definition 9. [2] Let (X,N, ∗) be a FNL-space and (xn) be a sequence in X. The sequence (xn)
is said to be convergent if (∃)x ∈ X such that lim

n→∞
N(xn − x, t) = 1 , (∀)t > 0 . In this case, x

is called the limit of the sequence (xn) and we denote lim
n→∞

xn = x or xn → x.

Definition 10. [2] Let (X,N, ∗) be a FNL-space and (xn) be a sequence in X. The sequence
(xn) is called Cauchy sequence if lim

n→∞
N(xn+p − xn, t) = 1 , (∀)t > 0, (∀)p ∈ N∗ .

Remark 11. If (X,N, ∗) is a FNL-space, then every convergent sequence is Cauchy sequence.

Definition 12. [2] Let (X,N, ∗) be a FNL-space. (X,N, ∗) is said to be complete if any Cauchy
sequence in X is convergent to a point in X. A complete FNL-space will be called fuzzy Banach
space.

Definition 13. Let (X,N, ∗) be a FNL-space, α ∈ (0, 1) and (xn) be a sequence in X. The
sequence (xn) is said to be α-convergent if exists x ∈ X such that

(∀)t > 0, (∃)n0 ∈ N : N(xn − x, t) > α, (∀)n ≥ n0 .

In this case, x is called the α-limit of the sequence (xn) and we denote xn
α→ x.

Theorem 3.1. Let (X,N, ∗) be a FNL-space and (xn) be a sequence inX. The following sentences
are equivalent:

1. (xn) is convergent to x;

2. (xn) is convergent to x in topology TN ;

3. (xn) is α-convergent to x, (∀)α ∈ (0, 1);

4. lim
n→∞

pα(xn − x) = 0, (∀)α ∈ (0, 1).

Proof: (2) ⇔ (1)

xn → x in the topology TM ⇔

(∀)r ∈ (0, 1), (∀)t > 0, (∃)n0 ∈ N : xn ∈ B(x, r, t), (∀)n ≥ n0 ⇔

(∀)r ∈ (0, 1), (∀)t > 0, (∃)n0 ∈ N : N(xn − x, t) > 1− r, (∀)n ≥ n0 ⇔

lim
n→∞

N(xn − x, t) = 1 , (∀)t > 0 .

(1) ⇔ (3) It is obvious.
(4) ⇔ (3)

lim
n→∞

pα(xn − x) = 0 ⇔ (∀)t > 0, (∃)n0 ∈ N : pα(xn − x) < t, (∀)n ≥ n0

⇔ (∀)t > 0, (∃)n0 ∈ N : N(xn − x, t) > α, (∀)n ≥ n0 ⇔ xn
α→ x .

2

Theorem 3.2. Let (X,N, ∗) be a FNL-space and (xn) be a sequence in X. Then (xn) is a Cauchy
sequence if and only if lim

n→∞
pα(xn+p − xn) = 0, (∀)α ∈ (0, 1), (∀)p ≥ 1.
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Proof:
lim
n→∞

pα(xn+p − xn) = 0, (∀)α ∈ (0, 1), (∀)p ≥ 1

⇔ (∀)t > 0, (∃)n0 ∈ N : pα(xn+p − xn) < t, (∀)n ≥ n0, (∀)α ∈ (0, 1), (∀)p ≥ 1

⇔ (∀)t > 0, (∃)n0 ∈ N : N(xn+p − xn, t) > α, (∀)n ≥ n0, (∀)α ∈ (0, 1), (∀)p ≥ 1

⇔ (∀)t > 0, lim
n→∞

N(xn+p − xn, t) ≥ α, (∀)α ∈ (0, 1), (∀)p ≥ 1

⇔ (∀)t > 0, lim
n→∞

N(xn+p − xn, t) = 1, (∀)p ≥ 1 ⇔ (xn) is a Cauchy sequence .

2

Definition 14. Let (X,N, ∗), (X,N ′, ∗′) be two FNL-space. The fuzzy norms N and N ′ are said
to be equivalent if for any sequence (xn) in X, we have xn → x in (X,N, ∗) if and only if xn → x
in (X,N ′, ∗′).

4 Fuzzy Euclidean normed spaces

In this section we will denote by K the field of real numbers R or the field of complex numbers
C.
Theorem 4.1. Let (X1, N1, ∗), (X2, N2, ∗), · · · , (Xn, Nn, ∗) be FNL-spaces. Let ∗′ be a continuous
t-norm such that ∗′ ≫ ∗. Let N : X1 ×X2 × · · ·Xn × [0,∞) → [0, 1],

N(x1, x2, · · · , xn, t) = N1(x1, t) ∗ ′N2(x2, t) ∗ ′ · · · ∗ ′Nn(xn, t) .

Then (X1 ×X2 × · · ·Xn, N, ∗) is a FNL-space.

Proof: (N1) N(x1, x2, · · · , xn, 0) = N1(x1, 0) ∗ ′N2(x2, 0) ∗ ′ · · · ∗ ′Nn(xn, 0) = 0 .
(N2)

N(0, 0, · · · , 0, t) = N1(0, t) ∗ ′N2(0, t) ∗ ′ · · · ∗ ′Nn(0, t) = 1 .

Conversely, if N(x1, x2, · · · , xn, t) = 1, (∀)t > 0, we obtain that

N1(x1, t) ∗ ′N2(x2, t) ∗ ′ · · · ∗ ′Nn(xn, t) = 1, (∀)t > 0.

As ∗′ ≤ ∧, we have

1 ≤ min{N1(x1, t), N2(x2, t), · · · , Nn(xn, t)}, (∀)t > 0.

Thus N1(x1, t) = 1, N2(x2, t) = 1, · · · , Nn(xn, t) = 1, (∀)t > 0. Hence x1 = x2 = · · · = xn = 0.
(N3) For λ ̸= 0, we have

N(λx1, λx2, · · · , λxn, t) = N1(λx1, t) ∗ ′N2(λx2, t) ∗ ′ · · · ∗ ′Nn(λxn, t) =

= N1

(
x1,

t

|λ|

)
∗ ′N2

(
x2,

t

|λ|

)
∗ ′ · · ·Nn

(
xn,

t

|λ|

)
= N

(
x1, x2, · · · , xn,

t

|λ|

)
.

(N4)

N(x1+y1, x2+y2, · · · , xn+yn, t+s) = N1(x1+y1, t+s)∗′N2(x2+y2, t+s)∗′ · · ·∗′Nn(xn+yn, t+s) ≥

≥ (N1(x1, t) ∗N1(y1, s)) ∗ ′(N2(x2, t) ∗N2(y2, s)) ∗ ′ · · · ∗ ′(Nn(xn, t) ∗Nn(yn, s)) ≥
≥ (N1(x1, t) ∗ ′N2(x2, t) ∗ ′ · · · ∗ ′Nn(xn, t)) ∗ (N1(y1, s) ∗ ′N2(y2, s) ∗ ′ · · · ∗ ′Nn(yn, s)) =

= N(x1, x2, · · · , xn, t) ∗N(y1, y2, · · · , yn, s).
(N5) Let x = (x1, x2, · · · , xn) ∈ X1 ×X2 × · · ·Xn. As N1(x1, ·), N2(x2, ·), · · · , Nn(xn, ·) are left
continuous and ∗′ is a continuous t-norm, we obtain that N(x, ·) is left continuous. It is obvious
that lim

t→∞
N(x, t) = 1. 2
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Proposition 15. If (X1 × X2 × · · ·Xn, N, ∗) is a FNL-space, then (X1, N1, ∗), (X2, N2, ∗), · · · ,
(Xn, Nn, ∗) are FNL-spaces, whereN1(x1, t) = N((x1, 0, · · · , 0), t), N2(x2, t) = N((0, x2, · · · , 0), t),
· · · , Nn(xn, t) = N((0, 0, · · · , xn), t).

Proof: We will prove that N1 is a fuzzy norm. Similarly it can be shown that N2, · · · , Nn are
fuzzy norm.
(N1) N1(x1, 0) = N((x1, 0, · · · , 0), 0) = 0;
(N2) N1(x1, t) = 1, (∀)t > 0 ⇔ N((x1, 0, · · · , 0), t) = 1, (∀)t > 0 ⇔ (x1, 0, · · · , 0) = 0 ⇔ x1 = 0;
(N3)

N1(λx1, t) = N((λx1, 0, · · · , 0), t) = N(λ(x1, 0, · · · , 0), t) =

= N

(
(x1, 0, · · · , 0),

t

|λ|

)
= N1

(
x1,

t

|λ|

)
;

(N4)

N1(x1 + y1, t+ s) = N((x1 + y1, 0, · · · , 0), t+ s) = N((x1, 0, · · · , 0) + (y1, 0, · · · , 0), t+ s) ≥

≥ N((x1, 0, · · · , 0), t) ∗N((y1, 0, · · · , 0), s) = N1(x1, t) ∗N1(y1, s) ;

(N5) It is obvious. 2

Example 16. Let N : K× [0,∞) → [0, 1], defined by

N(x, t) :=

{
e−

|x|
t , if t > 0

0, if t = 0
.

Then (K, N,∧) is a FNL-space.

Proof: (N1) It is obvious.
(N2) N(x, t) = 1, (∀)t > 0 ⇔ e−

|x|
t = 1, (∀)t > 0 ⇔ − |x|

t = 0, (∀)t > 0 ⇔ x = 0.
(N3) Let x ∈ R, t > 0, λ ∈ R∗. Then

N(λx, t) = e−
|λx|
t = e

− |x|
t/|λ| = N

(
x,

t

|λ|

)
.

(N4) Fix x, y ∈ R, t, s > 0. We assume, without restricting the generality, that e−
|x|
t ≤ e−

|y|
s .

Thus − |x|
t ≤ − |y|

s , i.e. |x|s ≥ |y|t. We will show that e−
|x+y|
t+s ≥ e−

|x|
t , namely − |x+y|

t+s ≥ − |x|
t , i.e.

|x+ y|t ≤ |x|(t+ s). But

|x+ y|t ≤ (|x|+ |y|)t = |x|t+ |y|t ≤ |x|t+ |x|s = |x|(t+ s) .

Therefore
N(x+ y, t+ s) = e−

|x+y|
t+s ≥ min

{
e−

|x|
t , e−

|y|
s

}
= N(x, t) ∧N(y, s) .

(N5) It is obvious. 2

Lemma 17. Let (K, N, ∗) be a FNL-space. Then there exists α ∈ (0, 1) such that pα(1) ̸= 0.

Proof: pα(1) = inf{t > 0 : N(1, t) > α}. We suppose that pα(1) = 0, (∀)α ∈ (0, 1). Then
N(1, t) > α, (∀)α ∈ (0, 1), (∀)t > 0. Thus N(1, t) = 1, (∀)t > 0. Therefore 1 = 0, contradiction.

2

Proposition 18. A sequence (xn) is convergent in a FNL-space (K, N, ∗) if and only if (xn) is
convergent in (K, | · |).
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Proof: A sequence (xn) is convergent to x in (K, N, ∗) ⇔ lim
n→∞

pα(xn − x) = 0, (∀)α ∈ (0, 1)

⇔ lim
n→∞

|xn − x|pα(1) = 0, (∀)α ∈ (0, 1) ⇔ lim
n→∞

|xn − x| = 0 ⇔ (xn) is convergent in (K, | · |) 2

Corollary 19. Any two fuzzy norm on K are equivalent.
Definition 20. The triplet (Kn, N, ∗) is called fuzzy Euclidean normed space (briefly FEN-space)
if ∗ is a continuous t-norm and N : Kn × [0,∞) → [0, 1] is a fuzzy norm defined by

N(x1, x2, · · · , xn, t) = N1(x1, t) ∧N2(x2, t) ∧ · · · ∧Nn(xn, t) ,

where N1, N2, · · · , Nn are fuzzy norms on K ((N4) is satisfied with the t-norm ∗, for all fuzzy
norms N1, N2, · · · , Nn).
Remark 21. Theorem 4.1 and the fact that ∧ ≫ ∗ assure the accuracy of the previous definition,
meaning that N is fuzzy norm on Kn indeed.
Proposition 22. A sequence (xk) is convergent in a FEN-space (Kn, N, ∗) if and only if (xk) is
convergent in (Kn, || · ||), where || · || denotes the Euclidean norm on Kn.

Proof:
(xk) is convergent to x in (Kn, N, ∗) ⇔ lim

k→∞
N(xk − x, t) = 1, (∀)t > 0

⇔ lim
k→∞

N1(x
1
k − x1, t) ∧N2(x

2
k − x2, t) ∧ · · · ∧Nn(x

n
k − xn, t) = 1, (∀)t > 0

⇔ lim
k→∞

Ni(x
i
k − xi, t) = 1, (∀)t > 0, (∀)i = 1, n⇔ |xik − xi| → 0, (∀)i = 1, n⇔ ||xk − x|| → 0 .

2

Theorem 4.2. Any FEN-space (Kn, N, ∗) is complete.

Proof: Let (xk) be a Cauchy sequence in (Kn, N, ∗). Then

pα,N (xk+p − xk) = inf{t > 0 : N(xk+p − xk, t) > α} =

= inf{t > 0 : N1(x
1
k+p − x1k, t) ∧N2(x

2
k+p − x2k, t) ∧ · · · ∧Nn(x

n
k+p − xnk , t) > α} =

= inf{t > 0 : N1(x
1
k+p − x1k, t) > α,N2(x

2
k+p − x2k, t) > α, · · · , Nn(x

n
k+p − xnk , t) > α} ≥

≥ inf{t > 0 : Ni(x
i
k+p − xik, t) > α}, (∀)i = 1, n .

Thus
pα,N (xk+p − xk) ≥ pα,Ni(x

i
k+p − xik) = |xik+p − xik|pα,Ni(1), (∀)i = 1, n .

By Lemma 4.4, applied to fuzzy norm Ni, we obtain that there exists αi ∈ (0, 1) such that
pαi,Ni(1) ̸= 0. Therefore

pαi,N (xk+p − xk) ≥ |xik+p − xik|pαi,Ni(1), (∀)i = 1, n .

As (xk) is a Cauchy sequence in (Kn, N, ∗), we obtain that (xik) is a Cauchy sequence in
(K, | · |), (∀)i = 1, n. Thus (xik) is convergent to xi, (∀)i = 1, n. Therefore (xk) is convergent to
x = (x1, x2, · · · , xn) in (Kn, || · ||) and previous proposition implies that (xk) is convergent to x
in (Kn, N, ∗). 2

5 Conclusion

In this paper some special fuzzy norms on Kn is given in order to obtain, in this way, fuzzy
Euclidean normed spaces. These spaces can be proven to be a suitable tool for data mining. The
method is based on embedding the data in fuzzy Euclidean normed spaces and to carry out data
analysis in these spaces.
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