INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 11(1):126-141, February 2016.

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems

V. Sklyarov, 1. Skliarova, A. Rjabov, A. Sudnitson

V. Sklyarov*, 1. Skliarova

University of Aveiro, Dept. of Electronics, Telecommunications and Informatics/TEETA
Campus Universitario de Santiago, 3810-193, Aveiro, Portugal

*Corresponding author: skl@Qua.pt

A. Rjabov, A. Sudnitson
Tallinn University of Technology, Dept. of Computer Engineering
Akadeemia tee 15A, 12618, Tallinn, Estonia

Abstract: Computing and filtering sorted subsets are frequently required in statis-
tical data manipulation and control applications. The main objective is to extract
subsets from large data sets in accordance with some criteria, for example, with the
maximum and/or the minimum values in the entire set or within the predefined con-
straints. The paper suggests a new computation method enabling the indicated above
problem to be solved in all programmable systems-on-chip from the Xilinx Zynq fam-
ily that combine a dual-core Cortex-A9 processing unit and programmable logic linked
by high-performance interfaces. The method involves highly parallel sorting networks
and run-time filtering. The computations are done in communicating software, run-
ning in the processing unit, and hardware, implemented in the programmable logic.
Practical applications of the proposed technique are also shown. The results of imple-
mentation and experiments clearly demonstrate significant speed-up of the developed
software/hardware system comparing to alternative software implementations.
Keywords: computing sorted subsets, communicating hardware /software systems,
filtering, sorting networks, control applications.

1 Introduction

Many electronic, environmental, medical, and biological control applications need to process
data streams produced by sensors and measure external parameters within given upper and
lower bounds (thresholds) [1]. Let us consider some examples. Applying the technique [2| in
real-time applications requires knowledge acquisition from controlled systems (e.g. plant). For
example, signals from sensors may be filtered and analyzed to prevent error conditions (see [2]
for additional details). To provide more exact and reliable conclusion, combination of different
values need to be extracted, ordered, and analyzed. Similar tasks appear in monitoring thermal
radiation from volcanic products [3], filtering and integration of information from a variety of
different sources in medical applications [4] and in other practical applications described in [5].
Since many control systems are real-time, performance is important and hardware accelerators
may provide significant assistance for software. A similar data processing is applicable to data
mining algorithms, such as [6].

Let us consider control systems that collect, filter and analyze data produced by some mea-
surements. We will describe below such computations that permit:

e the maximum and/or minimum sorted subsets to be extracted (the maximum/minimum
sorted subset of size Lpax/Limin contains Lyax/Lmin data items with maximum /minimum
values from a given set);

e the maximum and/or minimum sorted subsets to be found within the given upper B, and
lower B; bounds.

Copyright (© 2006-2016 by CCC Publications - Agora University

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems 127

Measured set of data
Optional digital filter

Filtering data that fall within

given bounds
Data processing
Computed (extracted) subset of data

Figure 1: General architecture of data processing

The problem can be solved as it is shown in Fig. 1.

There are two blocks in Fig. 1. Measured data items are handled in such a way that the
maximum and/or minimum subsets with L.y and/or Ly, items are extracted by the data
processing block. Input data may optionally be filtered allowing only items (such as D) that fall
within pre-given constraints (e.g. Bj < D < B, or B < D < B,) to be processed.

The paper suggests a method and high-performance implementation of architecture in Fig.
1 in all programmable systems-on-chip (APSoC) from the Xilinx Zynqg-7000 family [7] that are
recently developed field-configurable devices integrating the most advanced programmable logic
(PL) and a widely used processing system (PS) based on the dual-core ARM®) Cortex™ MP-
Core™. The available interfaces between the PS and PL are supported by ready-to-use intellectual
property (IP) cores. These, combined with numerous architectural and technological advances,
have enabled APSoCs to open a new era in the development of highly optimized computational
systems for a vast variety of practical applications, including high-performance computing, data,
signal and image processing, control, and many others. The main target of APSoCs is integration
in the developed systems of software and hardware components assuming that such integration
enables characteristics (most often performance) of the system to be improved. The complexity of
hardware only solutions is frequently limited by the available resources in the PL. Software/hard-
ware solutions can be very complex and they are appropriate for control applications, such as
that are described, for example, in [2,4]. The most close related work can be found in [5,8] where
the importance of the considered problem is underlined, but the methods that allow the problem
to be solved are different and the proposed below methods permit better results to be achieved.

The remainder of the paper is organized in eight sections. Section 2 presents the proposed
software/hardware architecture. Section 3 describes a novel method allowing the maximum and
minimum sorted subsets for a given set of data items to be computed. Section 4 suggests a
run-time filtering method. Section 5 is dedicated to on-chip communication mechanisms link-
ing software and hardware components. Section 6 shows how large subsets (for which hardware
resources are not sufficient) can be computed and discusses additional capabilities such as extract-
ing only the maximum or only the minimum subsets. Section 7 demonstrates potential practical
application (from the areas of control and data mining). Implementations in Zynq microchips
and the results of thorough evaluation and comparison of software only and software/hardware
solutions with explicit indication of the achieved acceleration are discussed in section 8. Section
9 concludes the paper.

128 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

2 Software/Hardware Architecture

Fig. 2 presents the proposed software/hardware architecture.

>

PS 1. Acquiring data and saving them S
in OCM or external memory. ;E,

2. Requesting to extract subsets in €

. o
On-chip the PL. | S
memory | 3. Collecting extracted subsets in =
(OCM) OCM or external memory. =

=

Ll

High-Performance Interfaces

1. Processing requests from the PSin
highly parallel circuits.

2. Optional interaction with analog and
digital sensors, acquisition of data and
transmitting them to the PS.

PL

Zynq device

Figure 2: The proposed software/hardware architecture

The PS collects data, that may be acquired from different sources (such as from a host PC
or from sensors connected to a Zynq device), and stores them in on-chip or external memory.
The PL processes requests from the PS, that is, reads data from memories, and rapidly extracts
the maximum and/or minimum subsets. Both parts, that are the PS and PL, may function in
parallel and any request can be seen as a macroinstruction executed in the PL concurrently with
other potential instructions in the PS.

It is shown in [9] that for transferring a small number of data items between the PS and the PL
on-chip general-purpose ports (GPP) can be used more efficiently than other available interfaces.
Thus, requests from the PS to the PL are formed through GPP where the PS is the master and
the PL is a slave. It is also shown in [7,9] that large volumes of data can be more efficiently
transferred from/to memories to/from the PL through high performance (HP) interfaces: High-
Performance Advanced eXtensible Interface (AXI HP) and AXI Accelerator Coherency Port
(AXI ACP). In all our designs memories are slaves and either the PL or the processor in the PS
is the master. To increase performance, data from memories may be requested to be cacheable.

3 Computing Sorted Subsets

Let set S containing N M-bit data items be given. The maximum subset contains Ly, largest
items in S and the minimum subset contains Ly,;, smallest items in S (Lyax < N and Ly, < N).
We mainly consider such tasks for which L. < < N and Ly < < N which are more common
for practical applications. Since N may have very large value (millions of items) it cannot be
processed completely in hardware due to the unavailability of sufficient resources. It is shown
in [10,11] that even for relatively complex Field-Programmable Gate Arrays (FPGAs) the size

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems 129

N is limited. For example, for even-odd merge and bitonic merge networks [12] N cannot exceed
a few hundreds of 32-bit items even for very advanced FPGAs (such as the largest devices from
the Xilinx Virtex-7 family). In Zynq devices implementing circuits from [12] the maximum value
of N does not exceed 128 32-bit items. Iterative even-odd transition networks from [11] permit
significantly larger number of items (exceeding thousands of 32-bit items) to be processed and
they will be used for computing sorted subsets in hardware. However, in practical cases the
given sets anyhow cannot be entirely processed and computing the maximum and/or minimum
sorted subsets needs to be done sequentially, nevertheless handling many items in parallel. Fig.
3 depicts the proposed architecture that enables the considered problem to be solved.

Lmax M-bit data items (from K M-bit data items) for initialization at the beginning

LmaxxM M
Lnax M-bit data items 7 Maximum
for maximum subset M, | subset
RUVERN
M
So2 .
55§ ‘ Sorting /
5 S = ; Feedback copying
ax 8 ! \
g5 w1 | network
ML)
>Lmin M-bit data items i Minimum
for minimum subset M, | subset
I‘minx'\/I

Lmin M-bit data items (from K M-bit data items) for initialization at the beginning

Figure 3: Computing the maximum and the minimum sorted subsets

RKl 9

) 0n X

data item I, - €5
from HP port ——>/| 2 wl|li=3@
. = gfIgcw
The maximum ———s| = S »| 1T

. =
item from the "% s ¢ 15EY
minimum subset \ \upto the last |~ s 3~

VN (@)

\ =~ ~ 5

B
7

after the last ‘\ \

>
rd

Address
counter L
(count) |Register address

increment

Figure 4: Processing the last (possibly incomplete) subset

Let us divide the given set S into Q = [N/K] subsets, all of which contain exactly K M-bit

130 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

items except the last one, which may have less than K M-bit items. Computing subsets is done
incrementally in Q steps (we assume below that K < N).

At the first step, the first K M-bit data items are sorted in the network [11] which processes
Liax +K+Lpin data items but comparators linking the upper part (handling Ly.x M-bit data
items) and the lower part (handling Ly,;, M-bit data items) are deactivated (i.e. the links with
the upper and bottom parts are broken). So, sorting is done only in the middle part handling K
M-bit items. As soon as the sorting is completed, the maximum subset is copied to the upper
part of the network and the minimum subset is copied to the lower part of the network (see Fig.

3).

From the second step, all the comparators are properly linked, i.e. the network from [11]
handles Lyax+K+Lpin items, but the feedback copying (see the first step and Fig. 3) is disabled.
Now for each new K M-bit items the maximum and the minimum sorted subsets are appropriately
corrected, i.e. new items may be appended.

At the last step, the number of incoming items may be less than K. Fig. 4 explains how the
maximum and minimum subsets are corrected for the last possibly incomplete subset of items.
There is an additional MUX in Fig. 4, which supplies data items from a HP port (linking the
PL with memory) until the received item is not the last. As soon as the last item is read from
memory, the next items (until K) are taken as the maximum value from the minimum subset
(see the lower subset in Fig. 3). Clearly, such an item cannot be moved again to the minimum
subset and the last sorting step is executed similarly to the previous steps.

Let us look at the example shown in Fig. 5 for which: N = 21, K = 8, Lyjax = Lmin =
4, and S = 26,37,11,19,3,7,99,56,29,37,22,99,1,55,39,47,12,45,83,5,18. The set S is divided into
the following three subsets: A = 26,37,11,19,3,7,99,56, B = 29,37,22,99,1,55,39,47, and C =
12,45,83,5,18.

Note that the last subset C contains only 5 elements and is incomplete. Symbol U in Fig.
5 indicates undefined value. The iterative sorting network is exactly the same as in [11]. Any
comparator is shown in Knuth notation [13| and it converts two-item inputs in two-item outputs
in such a way that the upper value is greater than or equal to the lower value. The maximum
number of iterations for sorting is K/2 [14] and this number is almost always smaller because
the method [11] terminates subsequent iterations as soon as all items are sorted. There are 3
steps in Fig. 5. At the first step, K (K=8) items are sorted and copied to the maximum and
minimum subsets.

Two comparators are disabled in accordance with the explanations given above (breaking
links of the middle section in the sorted network with the upper and the lower sections). At the
second step, all the network comparators are enabled and L. +K+Lyin items are sorted by the
iterative network with feedback register (FR). All necessary details can be found in [11]. It is easy
to show that the maximum number of iterations is [(max(Lpax,Lmin)+K)/2| and much like the
previous case this number is almost always smaller [11]. At the last (third) step, the incomplete
subset C is extended to K items by copying the maximum value (11) from the minimum subset
11,7,3,1 to the positions of missing data (see Fig. 5). After sorting Lyax+K-+Lpin items at the
step 3 the final result is produced.

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems

131

Iterative sor’iing network Step1 Step 2 Step 3
[|) [1
{ " Tu] [u] e 99 | | 99 99| | 99
- 1|_'— ullu |8]|s6 56| (99| , |99 |99
5L s ullu|2|37 37||56| @ |56 |83
R W U =|26] |26 55| & [55] |56
N4 = 26| | 99| ¢ 99 29| 47| 8[| 12] |55
N 37| |56 | 5| 56 37| (39| T ||45] |45
ﬁ\g— g 11| |37 |2|37 22|(37| cq|83||18
K-<:8; gf ad|29]]26 g 26| 19937 5 |]12
Ko | = 3 |19] 419 1 ||29], L|18] |12
_KN70 | & 7 | |11]5]11 55|26 |2—p11| |11
—>NIL| B 99| |7 |&|7 39| (22| g+11| |12
>N 1§ & |s6] 3 |33 | [|47]|19|E11] |11
0L T [U§19| |19]|11|zran| |7

- _F ullu| |n 1|7 |E |7 |5

’7 ulu|f]7 7 113 & [3 |3

— ullu 3 3 ()1 1|12

Comparator may be’

either enabled or disabled Load Sort Copy Load Sort Load Sort

Figure 5: An example (computing subsets)

4 Filtering

Maximum subset

Minimum subset

Let B, and B; be predefined upper (B,) and lower (B;) bounds for the given set S. We would
like to use the circuit in Fig. 3 only for such data items D that fall within the bounds B, and
By, i.e. By < D < By (or, possibly, B < D < By). Fig. 6 depicts the proposed architecture that
enables data items to be filtered at run-time (i.e. during the data exchange between the PS and
PL). There is an additional block on the upper input of the MUX (see also Fig. 4), which takes
a data item Iy from a HP port and executes the operation indicated on the right-hand part of
Fig. 6. If the counter is incremented, then a new register is chosen to store Iy. Otherwise, the
signal WE (write enable) is passive and a new item with a value that is out of the bounds B,
and By is not recorded in the registers.

| |
: B, and/or B, ';\

The maximum
item from the

)

1
1
1

\

minimum subset

after the Iast\\

WEJ/
R4 >
K-1 E‘E
-
> lwg,\
Q n|l1ESm
x cC o|lim@
o] = oo
2 7| 'O gpio
> O ‘mo I'Ucm
L o|!'E50
2 — I-Cliam
\ s up to the last |~ So
v ot o
v Tmmmm e — ~ ¥ o5
(=
1
1
——————— 1

S5
rd

Address
counter
(count)

Register address

increment

(count = count+1, WE) when
B,<1,<B,else null;

If input value |, is within the
constraints B, and B, then
increment the address counter
and allow writing data
(activate the signal WE — write
enable). Otherwise deactivate
the signal WE and do not
increment the address counter.

Figure 6: Digital filter

132 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

Let us look at the same example in Fig. 5 for which we choose B, = 90 and B} = 10 (see
Fig. 7). At the first step incoming data items have preliminary been filtered, the values 99, 7,
and 3 have been removed (because they are either greater than B, = 90 or less than B; = 10),
and the subset A with 8 items is built from 11 first elements of the set S. At the second (last)
step, the values 99, 1, and 5 have been removed, and the subset B = 55,39,47,12,45,83,18 is built
from the remaining allowed elements of the set S. Since there are 7 items in B and K = 8, this
subset is incomplete.

As can be seen from Fig. 7, two steps are sufficient to extract the maximum and the minimum
subsets from the filtered set S. Similarly, filtering and computing sorted subsets can be done for
very large data sets.

Iterative sor’ﬁing network Step 1 Step 2
{ - b Lo
I_ uillu 56 56| [83[] &
N ullu 37 37||56| 2
N . ullu 37 37| |55|| €
N AN c .8 2
e U U |29 B |29 |47 E
r N4 = 26| | 56 56| £[|55] |45 e
NG 37137 [37] g||39]||39| =2
—N g 2 11| (37| (37| =||47]| |37
Kd— 51 2 19 (29| |29| B4|12]| |37
NG st A~
BN < 56| | 26 26|, | 45|29
NG N T 29| | 22 22 73 83| |26
| ——NL1L | B 37| |19 19|g ||18||26| %
sNd2 |9 22| [11] |11| 2 26| |22| &
e s T U 26|56 [10[] B
eesN14 | L s £ £
R i uillu 22| g |22 |18|| 5
ullu 19| [19||12|] =
— ul|u 11 11 [11]) S
Load Sort Copy Load Sort

Figure 7: An example (filtering and computing subsets)

Clearly, the described above operations can be done in software. For example, C function gsort
permits large data sets to be sorted. After that extracting the maximum and minimum subsets
may easily be done. Filtering can be provided much like it is shown in Fig. 6 eliminating items
that do not fall within the predefined constraints. However, for many practical applications
performance of the described above operations is important. To evaluate software/hardware
solutions three different components need to be taken into account (see Fig. 8): 1) software
part; 2) hardware part; and 3) the circuits that provide for data exchange between software and
hardware. Numerous experiments were done in [15] to compare such solutions with software only
systems. One example in [15] enables sorting blocks of data composed of 320 32-bit items in the
PL that are further merged in the PS (see Fig. 8). From 512,288 to 4,194,304 of 32-bit data items
were randomly generated in the PS (i.e. the size of data varies from 2MB to 16MB) and then
sorted in software with the aid of the function gsort and in the software/hardware system (see
Fig. 8). The actual performance improvement was by a factor of about 2.5. It was shown in [15]
that hardware circuits in the PL are significantly faster than software in the PS. In this paper we
evaluate and compare software /hardware and software only solutions taking into account all the

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems 133

involved communication overheads that were measured in [15]. We will mainly use AXI ACP [7]
which provides one of the fastest interfaces for exchange of large data sets between the PS and
PL [7,9,15]. The number of data items transferred from the PS/memory to the PL is the same
as in [15]. However, the number of data items transferred from the PL to the PS/memory is
significantly smaller enabling much better acceleration to be achieved.

/[Merging blocks]

PS Software part |
Circuits that id t — Transferring blocks
ircuits that provide support [— betiwoan softuare
for data exchange and hardware

PI— Hardware part ~
Software/hardware \[Sorting blocks]

Figure 8: An example of a software/hardware system

5 Communication of Software and Hardware

Fig. 9 shows how communication is organized between software and hardware. It is done
similarly to [8,15], but the proposed in this paper processing is different. The developed hardware
in the PL is divided in two parts: application-specific (that is filtering and computing subsets)
and communication-specific processing. The latter is studied in [15] and provides support for
data exchange with storage of the PL that is either block RAM or registers built from flip-flops
of configurable logic blocks.

PS

Using software only to solve exactly the same

problem without hardware circuits —
Data transfer from/to

These operations are controlled by software — selected memories
: | (DDR, OCM, or cache)}—------

L L] GP:tﬁ;:zBJJ::m o ﬁ

—| start| K B, | B .. 2
J, \L l J, \L iLBurst mode\

Application-specific processing |+ ~| Communication-specific
(filtering and computing subsets) N processing

PL 1 ~

/\ ﬁj AXI ACP

The PS software Memory [¢-------m-mmmemneeee

Figure 9: Communication between software and hardware components

134 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

Data are transmitted in blocks of 32/64-bit items (i.e. either M=32 or M=64) and the fastest
burst mode is applied. Input data items Iy (k=0,1,... ,K-1) are processed by the described above
circuits (see Fig. 3, 4, 6). Note that GPP do not allow burst mode to be applied but are very
appropriate for transferring small number of signals that may be used for control in the PL and
for some additional details. In our system they are:

1) start requiring data processing in the PL to be initiated,;

2) K (see Fig. 3);

3) By and By (see Fig. 6);

4) additional signals, namely source address, destination address and sizes of data to be
transferred from the PS to the PL and vice versa.

Fig. 10 demonstrates a component diagram for reading the initial large volume data from
the PS and for transferring the results (i.e. the computed maximum and minimum subsets) from
the PL to the PS. We found that in such interactions between the PS and PL the best way is
to use HP ports to read data from the PS (memories) and transfer them to the PL and to write
data from the PL to the PS (memories). Since memory controllers belong to the PS we can talk
about data transfers between the PS and PL. Exchange of data in both directions is done in
burst mode supported by a burst reader and a burst writer described in [8,15]. Both processing
(Th) and communication (T.) times are measured and taken into account.

Top module

Time (T,+T) £ N\
PI- measured v

.) Writing the
_ Reading | Time (T}) computed)

Begin data measured subset Processing
processing is -
in hardware > completed S

C
N o] 2)
NSTeg e 0y £
IS 2T 28 2 ey 5
Y Ta 2a iy Yo ©
S8 ®€E S e = Eall @
N Lo S 1Q O w o
SN o 28 1< = £ O
o e o
L : AV N %8 —_—
Computing - cZ|| £
Burst reader Burst writer | 27 =
sorted subsets =2l =
\)
|
VHDL components

Application-specific processing

Figure 10: Operations in hardware components

6 Computing Large Subsets and Additional Capabilities

For some practical applications the maximum and/or minimum subsets may be large and the
available hardware resources become insufficient to implement the circuits in Fig. 3.

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems 135

The arising problem can be solved using the following technique. Let l,.x and lyn be
constraints for the upper and bottom parts of the sorting network in Fig. 3, i.e. circuits with
larger values (than ly.x and i) cannot be implemented due to the lack of hardware resources
or for some other reasons. Let the parameters for the maximum and minimum subsets be greater
than lyax and Lpin, i.€. Liax > lmax and Linin > lnin. In such case the maximum and minimum
subsets can be computed incrementally [8] as follows:

1. At the first iteration the maximum subset containing l .y items and the minimum subset
containing l,;, items are computed. The subsets are transferred to the PS (to memories).
The PS removes the minimum value from the maximum subset and the maximum value
from the minimum subset. Such correction avoids loss of repeated items at subsequent
steps. Indeed, the minimum value from the maximum subset (the maximum value from
the minimum subset) can appear for subsets to be subsequently constructed in point 3
below and they will be lost because of filtering (see point 3).

2. The minimum value from the corrected in the PS maximum subset is assigned to By. The
maximum value from the corrected in the PS minimum subset is assigned to B;. The values
By, and By are supplied to the PL through GPP.

3. The same data items (from memory), as in point 1 above, are preliminary filtered (see Fig.
6) in such a way that only items that are less than B, and greater than B; are allowed to be
processed, i.e. computing sorted subsets can be done only for the filtered data items. Thus,
the second part of the maximum and minimum subsets will be computed and appended
(in the PS) to the previously computed subsets (such as subsets from point 1). Note, that
the method for processing incomplete subsets (see Fig. 4) may need to be applied for the
last iteration.

4. The points 2 and 3 above are repeated until the maximum subset with L.« items and the
minimum subset with Ly, items are computed.

Note, that if the number of repeated items is greater than or equal to lyax /lmin, then the method
above may generate infinite loops [8]. This situation can easily be recognized. Indeed, if after
corrections in point 1 above any new subset becomes empty then an infinite loop will be created.
In such case we can use another method based on software/hardware sorters from [9]. In section
8 we will present the results of experiments for such sorters.

For some practical cases only the maximum or the minimum subsets need to be extracted.
This task can be solved easier than in Fig. 3 with the aid of the circuit shown in Fig. 11 (for
computing only the maximum subset).

M
This part of the network register : .
Lmax is filled with the smallest values | Maximum
at the beginning M;) subset
_ Mbit, |
B 4o g b
© 5 i .
oL - | Sorting network
axv &
£ =38 Mhbhit L

Figure 11: Computing the maximum subset for a given set

At initialization stage Lyax M-bit words of the FR (see Fig. 5) are filled in with the smallest

136 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

possible value (such as zero or the minimal value for M-bit data items). After that the processing
is executed as before (see section 3) and finally the maximum subset will be computed. For
computing the minimum subsets the bottom part of Fig. 3 is filled in with the largest possible
value (such as the maximum value for M-bit data items).

7 Practical Applications

Let us consider practical applications from the scope of control. We have already mentioned
in section 1 that applying the technique [2]| in real-time systems requires knowledge acquisition
from controlled devices. The data may be compared with the previously collected data that are
kept in databases for similar control scenarios. The results of comparison can be analyzed and
used to modify the algorithms allowing control operations to be optimized, undesirable (or error
prone) situations to be avoided, etc. Let us look at Fig. 12 where software collects important
data from a controlled system, such as changes in temperature, deviation of positions, offsets,
etc. The collected data are optionally filtered and their subsets (maximum, minimum, or both)
are computed (see the bottom part of Fig. 12). Data from previous scenarios for analogous
conditions are extracted from the database and they are also optionally filtered and similar
subsets are computed (see the upper part of Fig. 12).

i [selectasetof || i [Optional [computing]
! Data base] 7] parameters "| filtering "| subsets
S software-------------------a: b hardware .---1 N
Controll . Modifications of |, | Analysis and
i ontrofier) control algorithms | comparison
D e software---- - oo i
Controlled ' Collecting [.| Optional .| Computing|
system | data 17| filtering "| subsets i
R software ----! Lecoccoceooooo. hardware --------------- ;

Figure 12: An example of control application

Data from the controlled system (see the bottom part of Fig. 12) and from the database (see
the upper part of Fig. 12) are analyzed. For example, average maximum values are checked.
The results of analysis may be used to modify control algorithms much like it is done in [9, 16].
For example, modules of controllers from [9] can be replaced to optimize execution of relevant
operations.

Another group of potential applications is from the scope of statistical data manipulation
such as data mining. To describe one of the problems from this area informally let us consider
an example [6] with analogy to a shopping card. A basket is the set of items purchased at one
time. A frequent item is an item that often occurs in a database. A frequent set of items often
occur together in the same basket. A researcher can request a particular support value and find
the items which occur together in a basket either a maximum or a minimum number of times

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems 137

within the database [6]. Similar problems appear to determine frequent inquiries at the Internet,
customer transactions, credit card purchases, etc. producing very large volumes of data in the
span of a day [6]. Computing sets of the most frequent or the less frequent items in large data
sets permits the relevant data mining algorithms to be simplified and accelerated. Sorting of
subsets is involved in many known algorithms from this area e.g. [17-19] and the results of the
paper may provide a valuable assistance.

8 Implementation, Experiments, and Comparisons

Much like [8] we have used a multi-level computing system [9]. Initial data are either generated
randomly in software of the PS with the aid of C language rand or prepared in the host PC.
In the last case data may be generated by some functions or copied from available benchmarks.
Computing subsets in software/hardware systems is mainly done in Zynq APSoC xc7z020 housed
on ZedBoard [20] with the aid of the described above software/hardware architectures (see Fig.
2-4, 6, 9, 10). Computing subsets in software only sorters is completely done in software of the
PS calling C language gsort function which sorts data and after that the maximum and/or the
minimum subsets are extracted. The results are verified in software running either in the PS or
in the host PC. Functions for verification of the results are given in [9]. Verification time is not
taken into account in the measurements below.

Synthesis and implementation of hardware modules were done in Xilinx Vivado 2015.2. Stan-
dalone software applications were created in C language and uploaded to the PS memory from
the Xilinx Software Development Kit (SDK) using methods described in [9]. Interactions with
APSoC are done through the SDK console window.

For all the experiments 64-bit AXI ACP port was used for transferring blocks between the
PL and memories. The size of each block for burst mode is chosen to be 128 of 64-bit items.
Two memories were tested: the OCM (for smaller number of data items) and external (on-
board) DDR. The OCM is faster because it provides for 64-bit data transfers [7] but the size of
this memory is limited to 256 KB. The available on ZedBoard 4 Gb DDR supports 32-bit data
transfers.

The measurements were based on time units (returned by the function XTime GetTime [21])
for Liax = Lmin = 128, M=32, and K = 256 (see Fig. 3). The following operations have
been executed: a) copying data to the selected memory in the PS; b) providing the necessary
initialization for the function XTime GetTime (i.e. the consumed time will be measured from this
point); ¢) making the request, i.e. setting (through GPP) source address, destination address,
the size of data to be copied, and start processing in the PL (optionally some other data, such
as By and By for filtering, may be provided); d) copying data from the PS to PL and executing
all the required operations in the PL; e) copying the computed subsets from the PL to PS; f)
generating a hardware interrupt that is handled in the PS as a completion of the request (thus,
the consumed time is measured at this point in the PS). Each unit returned by the function
XTime_GetTime corresponds to 2 clock cycles of the PS [21]. The PS clock frequency is 666
MHz. Thus, any unit corresponds to approximately 3 ns. The PL clock frequency was set to 100
MHz.

Fig. 13 shows the time consumed for computing the maximum and minimum subsets for
data sets with different sizes in KB (from 2 to 128). Since M=32 the number of processed words
(N) is equal to the indicated size divided by 4.

Fig. 14 shows the acceleration of the software/hardware system comparing to the software
only system. Note that Fig. 13, 14 give diagrams for the OCM. If DDR memory is used then
communication overheads are slightly increased but acceleration in the software/hardware system
comparing to the software only system is again significant.

138 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

Let us compare the results with [5,8]. The number of data items in the proposed solutions
is larger than in [5] and can easily be additionally increased. For similar data sets the achieved
acceleration is better than in [8] thanks to additional optimization of the proposed circuits.

We also implemented and tested the proposed circuits in a more advanced prototyping board
ZC706 [22] with Zynq microchip xc7z045. Data were taken from DDR memory and the maximum
and minimum subsets were extracted with K data items where K varied from 256 to 1,024 (as
before M = 32, N is equal to 256 KB). The consumed time varies from 1,850 ps for Ly, =
Lax = 256 to 7,200 ps for Ly = Lmax = 1,024. Thus, the proposed solutions can be used for
solving significantly more complicated problems that cannot be solved, in particular, with the
aid of the methods [5]. If only the maximum or only the minimum subsets have to be computed
the acceleration is slightly increased (although it is almost the same) and the occupied hardware
resources are reduced.

The proposed filtering (see Fig. 6) does not consume any additional time because it is
combined with data transfers. So, we can say that the time is included in communication
overheads and the latter were taken into account in all measurements. It should be noted that
filtering is not described in |5, 8|.

Time in us
100 000

10 000

1000

—+-Software/hardware

-=-Software only
100

10

16 32 64 128 Size of data in KB

N
SN
oo

Figure 13: Computing time in software only and software/hardware systems

If the size of the requested subsets is increased in such a way that all data need to be read from
memory several times then the results are the same as in [8] (see comments in [8] for additional
details).

We found that parallel circuits that enable the maximum and minimum subsets to be ex-

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems 139

Acceleration
105

95 Example: this point

indicates acceleration
85 by a factor of 75 of the
proposed software/
hardware solution
75 comparing to the
software only solution

65

55 —eAcceleration of
software/hardware

45 system comparing to
software only system

35

25

2 4 8 16 32 64 128 Size of data in KB

Figure 14: Acceleration of software/hardware system comparing to software only system

tracted in the ZedBoard [20] can be built up to K = 256. In this case additional hardware
resources that enable data exchange between the PS (memories) and PL are available. Similar
circuits for the ZC706 can be built up to K = 1,024. Note that if a block of data needs to
be sorted in hardware then the number of processed data may be greater because in our case
two blocks (each of which possesses K items) have to be handled in parallel and in case of data
sorting [9] it is sufficient to handle just one block of data. Additional optimizations such as
partial merging in hardware circuits permit the size K to be additionally increased. However,
the processing time will also be increased.

9 Conclusion

The paper suggests methods for computing the maximum and minimum subsets that are
extracted from large data sets in communicating software/hardware systems, namely in devices
from the Xilinx Zynq family, which combine a high-performance processing system with advanced
programmable logic. The extracted subsets may be filtered and this feature is useful for control
applications. The proposed solutions are highly parallel permitting capabilities of programmable
logic to be used very efficiently. All the proposed methods were implemented in commercial
microchips, tested, evaluated, and compared with alternatives. The results of experiments have
shown significant speed-up of the proposed software/hardware systems comparing to software
only systems and to competitive hardware/software implementations. In particular, the size of

140 V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson

subsets was increased and additional tasks important for control applications were discussed and
solved. Practical applications of the proposed technique for control applications and statistical
data manipulation were also given.

Acknowledgment

This research was supported by EU through European Regional Development Funds, the
institutional research funding IUT 19-1 of the Estonian Ministry of Education and Research,
ESF grant 9251, and Portuguese National Funds through FCT - Foundation for Science and
Technology, in the context of the project PEst-OE/EEI/UI0127/2014.

Bibliography

[1] Sklyarov, V.; Skliarova, I. (2013); Digital Hamming Weight and Distance Analyzers for Bi-
nary Vectors and Matrices, Int. Journal of Innovative Computing, Information and Control,
9(12): 4825-4849.

[2] Zmaranda, D.; Silaghi, H.; Gabor, G.; Vancea, C. (2012); Issues on applying knowledge-
based techniques in real-time control systems, International Journal of Computers Commu-
nications € Control, 8(1): 166-175.

[3] Field, L.; Barnie, T.; Blundy, J.; Brooker, R. A.; Keir, D.; Lewi, E.; Saunders, K. (2012);
Integrated field, satellite and petrological observations of the November 2010 eruption of
Erta Ale, Bulletin of Volcanology, 74(10): 2251-2271.

[4] Zhang, W.; Thurow, K.; Stoll, R. (2014); A knowledge-based telemonitoring platform for
application in remote healthcare, International Journal of Computers Communications &
Control, 9(5): 644-654.

[5] Farmahini-Farahani, A.; Duwe, H. J.; Schulte, M. J.; Compton, K. (2013); Modular design
of high-throughput, low-latency sorting units, Computers, IEEE Transactions on, 62(7):
1389-1402.

[6] Baker, Z. K.; Prasanna, V. K. (2006); An architecture for efficient hardware data min-
ing using reconfigurable computing systems. In Field-Programmable Custom Computing
Machines, Proc. 14th Annual IEEE Symp. on Field-Programmable Custom Computing Ma-
chines - FCCM, Napa, USA, 67-75.

[7] Xilinx, Inc.; Zyng-7000 All Programmable SoC Technical Reference Manual, available at
http://www .xilinx.com /support/documentation /user _guides/ughb85-Zynq-7000-TRM.pdf.

[8] Sklyarov, V.; Skliarova, I.; Rjabov, A.; Sudnitson, A. (2015); Zyng-based System for Ex-
tracting Sorted Subsets from Large Data Sets, Journal of Microelectronics, Electronic Com-
ponents and Materials, 45(2): 142-152.

[9] Sklyarov, V.; Skliarova, I.; Silva, J.; Rjabov, A.; Sudnitson, A.; Cardoso, C. (2014); Hard-

ware/software co-design for programmable systems-on-chip, TUT Press.

[10] Mueller, R.; Teubner, J.; Alonso, G.; (2012); Sorting networks on FPGAs, The VLDB
Journal—The International Journal on Very Large Data Bases, 21(1), 1-23.

Computing Sorted Subsets for Data Processing in
Communicating Software/Hardware Control Systems 141

[11] Sklyarov, V.; Skliarova, I. (2014); High-performance implementation of regular and easily
scalable sorting networks on an FPGA, Microprocessors and Microsystems, 38(5): 470-484.

[12] Baddar, S. W. A. H.; Batcher, K. E. (2012); Designing sorting networks: A new paradigm,
Springer Science & Business Media.

[13] Knuth, D. E. (2011); The art of computer programming: sorting and searching (Vol. 3),
Addison-Wesley.

[14] Kipfer, P.; & Westermann, R. (2005); Improved GPU sorting, GPU
gems 2: programming techniques for high-performance graphics and
general-purpose computation, edited by M. Pharr, 733-746, available at
http://http.developer.nvidia.com/GPUGems2/gpugems2 _chapter46.html.

[15] Silva, J.; Sklyarov, V.; Skliarova, 1. (2015). Comparison of On-chip Communications in
Zynq-7000 All Programmable Systems-on-Chip, Embedded Systems Letters, IEEE, 7(1): 31-
34.

[16] Sklyarov, V.; Skliarova, I.; Barkalov, A.; Titarenko, L. (2014); Synthesis and Optimization
of FPGA-based Systems, Springer.

[17] Sun, S. (2011); Analysis and acceleration of data mining algorithms on high perfor-
mance reconfigurable computing platforms, Ph.D. thesis, lowa State University, available
at: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1421&context=etd.

[18] Wu, X.; Kumar, V.; Quinlan, J. R. et al. (2008); Top 10 algorithms in data mining, Know!-
edge and Information Systems, 14(1): 1-37.

[19] Firdhous, M. (2012); Automating legal research through data mining, Journal of Advanced
Computer Science and Applications, 1(6): 1-8.

[20] Avnet, Inc. (2014); ZedBoard (ZyngTM Evaluation and De-
velopment) Hardware User’s Guide, Version 2.2, available at:
http://www.zedboard.org/sites/default /files/documentations/ZedBoard HW UG _v2 2.pdf.

[21] Xilinx, Inc.; OS and Libraries Document Collection UGG647, available at:
http://www.xilinx.com /support/documentation/sw_manuals/xilinx2014 2/oslib_rm.pdf.

[22] Xilinx, Inc.; ZC706, All Programmable SoC FEwvaluation Kit, UG961, Available at:
http://www.xilinx.com /support/documentation /boards and kits/zc706/2014 3 /ug961-
zc706-GSG.pdf.

