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Abstract:

In this note, we consider the problem of looking for small universal one-symbol
tissue P systems with symport /antiport rules. It is proved that six cells suffice
to generate any recursively enumerable set of natural numbers by such a one-
symbol tissue P system with symport/antiport rules, under the restriction
that only one channel is allowed between two cells or between a cell and the
environment. As for the case of allowing two channels between a cell and the
environment, it is shown that the computational completeness can be obtained
by one-symbol tissue P systems with symport/antiport rules having at most
five cells. These results partially answer an open problem formulated by Artiom
Alhazov, Rudolf Freund and Marion Oswald.
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1 Introduction

Membrane computing is one of the recent branches of natural computing, which was initiated
by Gh. Paun in 1998 [7]. The aim of membrane computing is to abstract novel computing
ideas or models from the structure and the functioning of a living cell, as well as from the
organization of cells in tissues, organs, and other higher order structures. The obtained models,
called P systems, provide distributed parallel and non-deterministic computing models. The
field of membrane computing has rapidly developed (already in 2003, IST considered membrane
computing as a “fast emerging research area in computer science”, see http://esi-topics.com).
Please refer to the handbook of membrane computing [9] for general information in this area,
and to the membrane computing web site [11] for the up-to-date information.

Tissue P systems form a class of P systems, which were introduced in [6]. Tissue P systems
were inspired by intercellular communication and cooperation between cells. Briefly, a tissue P
system consists of a set of membranes (abstracted from cells) placed in the nodes of a graph.
The net of membranes deals with symbols and communicates symbols along channels specified in
advance. The communication among cells is based on symport/antiport rules [8]. Symport rules
move objects across a membrane in one direction, whereas antiport rules move objects across a
membrane in opposite directions. Between two cells or between a cell and the environment, it is
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possible that there exists only one channel or more than one channel [2]. A tissue P system works
in a synchronized mode (a global clock is assumed, marking the time for the whole system). In
each time unit, if there are rules that can be applied in each channel, then one of the rules must
be applied. At most one rule is applied in each channel, non-deterministically chosen among
the rules that can be applied in the channel. So, the use of rules is sequential at the level of
each channel, but it is parallel at the level of the system. In this note, we shall consider the
following two restrictive versions of tissue P systems: (1) only one channel is allowed between
two cells or between a cell and the environment, (2) two channels are allowed between a cell and
the environment.

Table 1: The computational completeness results for tissue P systems with only one channel
between two cells, or between a cell and the environment; where 7 indicates an open problem, }
indicates that the result is obtained in this note, the other results are from [1].

symbols/cells 1 2 3 4 5 6 7
1 NREG | ? ? ? ? | NRET | NRE
2 NREG | ? ? | NRE | NRE | NRE | NRE
3 NREG | ? | NRE | NRE | NRE | NRE | NRE
4 NREG | NRE | NRE | NRE | NRE | NRE | NRE

One of the central problems about tissue P systems is to investigate their computational
power. This topic has been widely investigated for tissue P systems of various forms (e.g.,
see [4,6,10]). For the special case when tissue P systems use only a (very) small number of
symbols and cells, please refer to |[1,3]. There seems to be a trade-off between the number of
cells and the number of symbols needed for the computational power of tissue P systems. If only
one channel is allowed between two cells or between a cell and the environment, it was shown
that any recursively enumerable set of natural numbers can be generated by a tissue P system
with at most seven cells and only one symbol [3]. The number of cells can decrease when two
symbols are used; specifically, a tissue P system with two symbols and at most four cells can
generate any recursively enumerable set of natural numbers [3]. The known results about the
computational power of tissue P systems with only one channel between two cells or between a
cell and the environment are listed in Table 1. If two channels are allowed between a cell and the
environment, then one cell is enough to obtain computational completeness for tissue P systems
with at most five symbols [1]. The number of symbols for computational completeness can
decrease when the number of cells increases: for the case of tissue P systems with two channels
between a cell and the environment, the computational completeness can be obtained by tissue
P systems with two cells and three symbols, or three cells and two symbols. The known results
about the computational power of tissue P systems with two channels between a cell and the
environment are listed in Table 2.

Table 2: The computational completeness results for tissue P systems with two channels between
a cell and the environment; where 7 indicates an open problem, T indicates that the result is
obtained in this note, the other results are from [1].

symbols/cells 1 2 3 4 5 6
1 NFIN | ? ? ? | NRET | NRE
2 ? ? | NRE | NRE | NRE | NRE
3 ? NRE | NRE | NRE | NRE | NRE
4 ? NRE | NRE | NRE | NRE | NRE
5 NRE | NRE | NRE | NRE | NRE | NRE
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In this note, we continue to investigate the computational power of tissue P systems with
small numbers of symbols and cells. Specifically, we look for universal one-symbol tissue P
systems with symport/antiport rules having a small number of cells. It is proved that six cells
suffice to generate any recursively enumerable set of natural numbers for such a one-symbol tissue
P system, under the restriction that only one channel is allowed between two cells or between a
cell and the environment. The idea used in the proof of the result can also be extended to the
case of allowing two channels between a cell and the environment, then one cell can be saved.
The results obtained in this note partially answer open problems formulated in [1]| (see Tables 1
and 2).

This note is organized as follows. In Section 2, the formal language theory preliminaries are
recalled, including the formal definition of register machine. The formal definition of tissue P
systems is introduced in Section 3. Two universal one-symbol tissue P systems are presented in
Section 4, with an overview of the computation. Conclusions and comments are presented in
Section 5.

2 Formal language theory preliminaries

For an alphabet V', V* denotes the set of all finite strings over V, with the empty string
denoted by A. The set of all nonempty strings over V is denoted by V.

A register machine is a construct M = (m, H,lo, I, I), where m is the number of registers
(each holds a natural number), H is the set of instruction labels, [y is the start label (labeling
an ADD instruction), [;, is the halt label (assigned to instruction HALT), and [ is the set of
instructions. Each label from H labels only one instruction from I, thus precisely identifying it.
The instructions are of the following forms:

e [; : (ADD(r),l;,1) (add 1 to register » and then go to one of the instructions with labels
i, k),

o [ : (SUB(r),l;,1)) (if register r is non-zero, then subtract 1 from it, and go to the instruction
with label I;; otherwise, go to the instruction with label [},),

e [; : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way. The register
machine starts with all registers empty (i.e., storing the number zero). It applies the instruction
with label Iy and proceeds to apply instructions as indicated by labels (and, in the case of SUB
instructions, by the content of registers). If the register machine reaches the halt instruction,
then the number n stored at that time in the first register is said to be computed by M. It is
known that register machines compute all sets of numbers which are Turing computable, hence
they characterize NRE |5 (N RE is the family of length sets of recursively enumerable languages;
that is, those recognized by Turing machines). Especially, it is known that three registers are
enough to generate any recursively enumerable set of natural numbers.

Without loss of generality, it can be assumed that [y labels an ADD instruction and that in
the halting configuration all registers different from the first one are empty, and that the output
register is never decremented during the computation (its content is only added to).

Without loss of generality, it can be assumed that in each ADD instruction l; : (ADD(r), 15, 1)
and in each SUB instruction [; : (SUB(7),l;,l) the labels l;,1;,1; are mutually distinct (for a
short proof, see [2]).
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3 Tissue P systems with symport /antiport rules

Tissue P systems were introduced in [6], and tissue-like P systems with channel states were
introduced in [2]. In this note, the following type of systems is considered, omitting the channel
states.

A tissue P system (of degree m > 1) with symport/antiport rules is a construct

= (0,T,E,wi,...,wn,ch,(R(iJ))ij)ecn), Where:
e (O is the alphabet of objects;
e T C O is the alphabet of terminal objects;
e I C O is the set of objects present in the environment in arbitrarily copies each;

® wi,..., Wy, are strings over O, representing the multisets of objects placed in the cells of
the system at the beginning of the computation (it is assumed that the system contains m
cells, labelled with 1,2,...,m);

e ch C{(i,7) | 4,5 € {0,1,2,...,m},(4,7) # (0,0)} is the set of links (channels) between
cells (they were also called synapses in [2]; 0 indicates the environment);

e R(i,7) is a finite set of antiport rules of the form x/y, for some x,y € O, associated with
the channel (i, 7) € ch.

An antiport rule of the form x/y € R(i,j) for the ordered pair (i,7) of cells means moving
the objects specified by x from cell ¢ (from the environment, if ¢ = 0) to cell j, and at the same
time moving the objects specified by y from cell j to cell . The rules with one of x,y being
empty are, in fact, symport rules, but we do not always explicitly consider this distinction here,
as it is not relevant for what follows.

Note that the objects from E are never exhausted, irrespective of how many copies of each of
them are brought into the system, arbitrarily many copies remain available in the environment.

A configuration of a tissue P system is described by the multisets of objects over O associated
with the cells of the system. The tuple (w1, ws,...,wy,) is the initial configuration. A halting
configuration is a configuration such that there is no rule that can be applied. The computation
starts from the initial configuration; in each time unit, a rule is used on each channel for which a
rule can be used (if no rule is applicable for a channel, then no object passes over it). Therefore,
the use of rules is sequential at the level of each channel, but it is parallel at the level of the
system: all channels which can use a rule must do it (the system is synchronously evolving).
The computation is successful if and only if it halts (reaching a configuration where no rule can
be applied). The result of a halting computation is encoded by the multiset of objects over T
appearing in a cell specified in advance in the halting configuration.

In this note, we deal with a restricted version of the systems introduced above. Only channels
(i,j) with ¢ # j are allowed. If only one channel is allowed between two cells or between
a cell and the environment, then for any i,j only one of (i,5) and (j,7) is allowed. If two
channels are allowed between two cells or between a cell and the environment, then both (7, j)
and (j,4) are allowed. Furthermore, only one-symbol tissue P systems are considered, hence we
assume O = T = E = {a}. Then, for simplicity, a one-symbol tissue P system is written as
I = (w1, ..., wm,ch, (R(i, 7)) ecn); the output cell is that with label 1. We also write z/y for
an antiport rule a”/a¥ and x for multiset a”.
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4 Universality results

In [3], it was shown that one-symbol tissue P systems with symport/antiport rules having
seven cells are Turing universal when only one channel is allowed between two cells or between a
cell and the environment. This result is improved by showing that six cells are enough for Turing
universality.

Theorem 1. For any recursively enumerable set L of natural numbers, a one-symbol tissue
P system with symport/antiport rules having at most 6 cells can be constructed to generate L,
under the restriction that only one channel is allowed between two cells or between a cell and the
environment.

Proof: Let us consider a register machine M = (m, H,ly,l, I). As stated in Section 2, a register
machine with three registers can generate any recursively enumerable set L of natural numbers,
where the instructions that act on the first register are ADD instructions. This means that
m = 3. In what follows, we shall construct a tissue P system II with only one symbol a to
simulate the register machine M.

The system II consists of six cells labeled by 1,...,6. The cell with label 1 represents register
1 (the output register); the cells with labels 2 and 3 represent registers 2 and 3, respectively;
the cells with labels 4 and 5 are program cells (the cell with label 4 controls the simulation of
the instructions that act on registers 1 and 2, the cell with label 5 controls the simulation of the
instructions that act on register 3); the cell with label 6 is used as a trap that, whenever started,
leads to a non-halting computation by using the antiport rule 2/2 in channel (6,0). The number
stored in each register r (r = 1,2, 3) is represented by the number of copies of symbol a in the
cell with label r in the following way. If register 1 contains number n (n > 0), then the cell with
label 1 has n + 5 copies of symbol a; if register 2 (resp. 3) contains number n (n > 0), then the
cell with label 2 (resp. 3) has 2n + 2 copies of symbol a.

Without loss of generality, we assume that I; = 2¢ + 1, 0 < i < ¢, t > 0, are the labels of
instructions of register machine M, and I; is the label of halting instruction HALT. We define

the function c: 4
3

c(0) =12, c(i+1) =) c(j)+c(0), fori>0.
=0

It is easy to check that the function ¢ has the following properties.

— For any i < k,j <k, i # j, we have c(k) > c(i) + c(j) + 12.

For any i, 0 < i < t, we have ¢(l;) > 12.

For any i # j, 0 <1,j <t, we have c(l;) # c(l;).
— For any i < j, 0 < 4,5 <t, the value ¢(l; + 1) is between ¢(l;) and c(l;).

In the initial configuration of I, the cell with label 1 contains five copies of symbol a, and the
cells with labels 2 and 3 contain two copies of symbol a, which represents the fact that registers
1, 2 and 3 initially have number 0; the cell with label 4 contains ¢(ly) copies of symbol a; the cells
with labels 5 and 6 contain 0 copy of symbol a. In general, when the cell with label 4 contains
¢(l;) copies of symbol a, system II starts to simulate the instruction I;.

Formally, the tissue P system II is a construct of the form

= (57 2,2, C(lo), 0,0, ch, (R(Z7]))(’L,j)€ch)7 where:

e ch={(4,i)|i€{0,1,2,5,6}} U{(5,0),(5,3),(5,6),(6,0)};
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e the sets of rules R(,7), (i,7) € ch, are as follows:
R(4,0) = {(c(li) = 6)/(c(ly) = 5), (e(li) = 6)/(c(lk) = 5) [ Li  (ADD(1), 1j, k) € R}
U{(eli) =3)/(e(lj) = 1), (e(li) = 3)/(e(le) = 1) | i : (ADD(2), 1, lk) € R}
U{(eli) = 1)/(e(li +1) = 3), (e(li + 1))/ (c(3)),
(c(li +1) = 2)/c(ly) [ 1i - (SUB(2),1;,1x) € R},
R(4,1) ={6/5},R(4,2) ={3/1,1/3}, R(4,6) = {2/0}, R(5,3) = {3/1,1/3},

R(4,5) ={c(li)/0,0/c(l;),0/c(lk) | li - (ADD(3), 1, Ii) }
U{c(li)/0,0/c(l;),0/c(lk) | i : (SUB(3), 15, 1k)},
R(5,0) = {(c(li) = 3)/(e(ly) = 1), (e(li) = 3)/(c(lx) = 1) [ Li = (ADD(3),1j, k) € R}
U{(e(ls) = 1)/ (elli +1) = 3), (e(li + 1))/ (e(l5)),
(c(li +1) = 2)/c(ly) [ 1i = (SUB(3), 15, k) },
R(5,6) = {2/0}, R(6,0)={2/2}.

In order to show that tissue P system II can correctly simulate register machine M, we only
need to show how the following six kinds of rules of register machine M are simulated by tissue
P system II.

(1) Simulating ADD instructions that act on register 1.

Let I; : (ADD(1),1;,1;) be an ADD instruction that acts on register 1, and the cell with label 4
contains c(l;) copies of symbol a (in the initial configuration, the cell with label 4 contains ¢(lp)
copies of symbol a). The simulation uses the rules:

6/5 € R(47 1)7 (C(lz) - 6)/(C(lk‘) - 5) € R(47O)7 (C(lz) - 6)/(c(lj) - 5) € R(47 0)'

The simulation takes one step. At this step, six copies of symbol a from the cell with
label 4 are sent to the cell with label 1 by the rule 6/5 € R(4,1) (the number n stored in
register 1 is encoded by n + 5 copies of symbol a in the cell with label 1, so the cell with label
1 contains at least five copies of symbol a, and thus the rule 6/5 € R(4,1) can be applied),
exchanging with five copies of symbol a. The number of copies of symbol a in the cell with label
1 increases by one, which simulates that the number stored in register 1 is increased by one.
At the same time, the other copies of symbol a from the cell with label 4 can be used by the
rule (c(l;) —6)/(c(l;) —5) € R(4,0) or (c(l;) —6)/(c(l) — 5) € R(4,0), non-deterministically
chosen. Note that the cell with label 4 also gets five copies of symbol a at this step by the rule
6/5 € R(4,1). The cell with label 4 accumulates ¢(l;) or ¢(l;;) copies of symbol a in total after
this step. In this way, system II starts to simulate instruction /; or [j.

All objects in cell 4 are simultaneously used by communications along the channels (4,0) and
(4,1). If the system does not use at the same time the rule 6/5 € R(4,1) and one of the rules
(c(li) —6)/(c(l;) —5) € R(4,0) or (c(l;) —6)/(c(lx) —5) € R(4,0), then the system will enter an
infinite loop and then the computation gives no result.

For instance, the rule (c(l;) — 6)/(c(l;) —5) € R(4,0) or (c(l;) — 6)/(c(lx) — 5) € R(4,0)
consumes ¢(l;) — 6 copies of symbol a in the cell with label 4, and there are 6 copies of symbol
a that are subject to other possible rules. Because for 0 < i, j/, k/ < t, the encoding c¢(l;) of
each instruction [; of register machine M is larger than 6, these 6 copies of symbol a cannot
be used by the rules (c(li) — 6)/(c(lj) — 5), (c(lyy) — 6)/(c(ler) — 5), (c(lir) — 3)/(c(ly) — 1),
(c(lir) = 3)/(c(ler) = 1), (c(lir) = 1)/ (e(lis +1) = 3), cl + 1) /e(lys), (el +1) = 2)/e(lr), e(lt)/0
from R(4,0) and the rule ¢(l;/)/0 from R(4,5). These 6 copies of symbol a can be used by the
rule 3/1 or 1/3 from R(4,2), but not both, since at most one rule is allowed to be used in each
channel at one step. So there are at least 3 copies of symbol a that are subject to other possible
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rules. By the maximal parallel manner of application of rules, the rule 2/0 € R(4,6) must be
applied at this step, hence two copies of symbol a are sent to the cell with label 6.

Conversely, the rule 6/5 € R(4,1) consumes 6 copies of symbol a in the cell with label
4, and there are c(l;) — 6 copies of symbol a that are subject to other possible rules. For
0 <dyiryin, jr kt <t,ir #in, it < i and i/t < i, these ¢(l;) — 6 copies of symbol a can be used by
the rule ¢(l;,)/0 from R(4,5), and one of the rules (¢(l;) —6)/(c(lj) —5), (e(liy) —6)/(c(lrs) = 5),
(clli) — 3)/(elly) — 1), (elln) — 3)/(ellr) = 1), (elli) = 1)/ (ellir+ 1) — ), el + 1) elly), (el +
1) —2)/c(lgy) from R(4,0). By the first property of the function ¢, ¢(i) > ¢(ir) 4 c(it) + 12, there
are at least 6 copies of symbol a that are subject to other rules at this moment. These 6 copies
of symbol a can be used by the rule 3/1 or 1/3 from R(4,2), but not both. Therefore, there are
at least 3 copies of symbol a that are subject to the rule 2/0 € R(4,6); the rule 2/0 € R(4,6)
must be applied, and two copies of symbol a are sent to the cell with label 6.

In each of these two cases, the cell with label 6 receives two copies of symbol a, and the rule
(2,2) € R(6,0) would be applied forever. Consequently, the rule 6/5 € R(4,1) and one of the
rules (c¢(l;) —6)/(c(l;) —5) € R(4,0) or (c(l;) —6)/(c(lx) —5) € R(4,0) must be used, hence the
instruction l; : (ADD(1),l;,lx) is correctly simulated by system II (otherwise, the computation
cannot halt).

(2) Simulating ADD instructions that act on register 2.

Let I; : (ADD(2),1;,1) be an ADD instruction that acts on register 2, and the cell with label
4 contains c(l;) copies of symbol a. The following rules are used to simulate the instruction
li : (ADD(Q), lj, lk)

3/1€ R(4,2), (e(li) = 3)/(c(ly) —1) € R(4,0), (c(li) = 3)/(c(l) — 1) € R(4,0).

The simulation takes one step. The content of the cell with label 4 is split into two parts, with
one part containing ¢(l;) — 3 copies of symbol a and the other part containing 3 copies of symbol
a. The ¢(l;) — 3 copies of symbol a in the cell with label 4 are exchanged with ¢(l;) — 1 copies of
symbol a from the environment by the rule (¢(l;) — 3)/(c(l;) — 1) € R(4,0), or exchanged with
c(lx) — 1 copies of symbol a by the rule (¢(l;) — 3)/(c(lx) — 1) € R(4,0), non-deterministically
chosen. The 3 copies of symbol « in the cell with label 4 are exchanged with one copy of symbol
a from the cell with label 2 by the rule 3/1 € R(4,2). In this way, the number of copies of symbol
a in the cell with label 2 increases by two, which simulates that the number stored in register 2
is increased by one. The number of copies of symbol a in the cell with label 4 becomes ¢(l;) or
(), which means that system II starts to simulate instruction {; or [j.

Similar to the case of simulating ADD instructions that act on register 1, if system II does
not use the above rules, then the rule 2/2 € R(6,0) can be applied and would be applied forever.
The computation is not a successful one and gives no result. Therefore, the ADD instruction
l; : (ADD(2),1;,1) is correctly simulated by system II.

(3) Simulating SUB instructions that act on register 2.

Let I; : (SUB(2),1;,l;) be an SUB instruction that acts on register 2, and the cell with label
4 contains ¢(l;) copies of symbol a. The following rules are used to simulate I; : (SUB(2),;,l)):

(e(l;) = 1)/(c(l; + 1) — 3) € R(4,0), 1/3 € R(4,2),
c(li + 1)/e(l;) € R(4,0),  (c(l; +1) —2)/c(ly) € R(4,0).

The simulation takes two steps. Note that one of the main issues in the process of simulating
l; : (SUB(2),1;,1)) is to check whether the number stored in register 2 is non-zero. The number n in
register 2 is represented by 2n+2 copies of symbol a in the cell with label 2, so the system should
check whether the cell with label 2 contains more than two copies of symbol a. The checking is
done as follows. At the first step, the ¢(l;) copies of symbol a are split into two parts, with one
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part containing c(l;) — 1 copies of symbol a and the other part containing one copy of symbol
a. The ¢(l;) — 1 copies of symbol a can be used by the rule (¢(l;) —1)/(c(l; + 1) — 3) € R(4,0),
exchanging with ¢(l; + 1) — 3 copies of symbol a. For the remaining copy of symbol a, there are
two cases. If the number stored in register 2 is non-zero and thus the cell with label 2 contains
at least 4 copies of symbol a, then the only rule which can be used is 1/3 € R(4,2). If the
number stored in register 2 is zero and thus the cell with label 2 contains only 2 copies of symbol
a, then no rule can be used and the symbol stays in the cell with label 4. In the case of the
number stored in register 2 being non-zero, the number of copies of symbol a in the cell with
label 2 decreases by two (this simulates that the number stored in register 2 is subtracted by
one), and the number of copies of symbol a in the cell with label 4 becomes ¢(l; + 1). For the
case of the number stored in register 2 being zero, the number of copies of symbol a in the cell
with label 2 keeps unchanged (this simulates that the number stored in register 2 is still zero),
and the cell with label 4 accumulates ¢(l; + 1) — 2 copies of symbol a. At the second step, by
using the rules ¢(l; + 1)/c(l;) € R(4,0) or ¢(l; + 1) — 2/c(ly) € R(4,0), the cell with label 4
eventually obtains ¢(l;) or c(l;) copies of symbol a, respectively. Note that system II should
simulate [; : (SUB(2),l;,(;) by using the above rules; otherwise, the rule 2/0 € R(4,6) must be
used, which actives a trap in the sense of the rule 2/2 € R(6,0) being used forever.

(4) Simulating ADD instructions that act on register 3.

Let I; : (ADD(3),l;,1;) be an ADD instruction that acts on register 3, and the cell with label
4 contains ¢(l;) copies of symbol a. The simulation uses the rules:

c(li)/0 € R(4,5), (c(li) —3)/(c(;) = 1) € R(5,0), (c(li) —3)/(c(lx) —1) € R(5,0),
3/1¢(5,3), 0/c(l;) € R(4,5), 0/c(ly) € R(4,5).

The simulations of instructions that act on register 3 are controlled by the cell with label 5.
The simulation of the instruction l; : (ADD(3),1;, 1)) takes three steps. At the first step, the ¢(l;)
copies of symbol a in the cell with label 4 are sent to cell with label 5 by the rule ¢(l;) /0 € R(4,5).
In the cell with label 5, the ¢(l;) copies of symbol a are split into two parts at the second step,
with one part containing c¢(l;) — 3 copies of symbol a and the other part containing 3 copies of
symbol a. The ¢(l;) — 3 copies of symbol a are exchanged with ¢(l;) — 1 copies of symbol a from
the environment by the rule (c(l;) —3)/(c(l;) — 1) € R(5,0) or exchanged with ¢(lx) — 1 copies of
symbol a from the environment by the rule (c(l;) —3)/(c(lx) — 1) € R(5,0), non-deterministically
chosen. The 3 copies of symbol a in cell with label 5 are exchanged with one copy of symbol a
from the cell with label 3. In this way, the number of copies of symbol a in the cell with label 3
increase by two, which simulates that the number stored in register 3 is increased by one. The
cell with label 5 accumulates ¢(I;) or ¢(l;) copies of symbol a, these copies of symbol a are sent
to the cell with label 4 by the rules 0/¢(l;) € R(4,5) or 0/c(l) € R(4,5) at the third step. In
this way, the system can continue to simulate the next instruction /; or /. Note that system
IT should simulate I; : (ADD(3),l;,1;) by using the above rules; otherwise, the rule 2/0 € R(5,6)
must be used, which actives a trap in the sense of the rule 2/2 € R(6,0) being used forever.
Therefore, the ADD instruction /; : (ADD(3), ;, i) is correctly simulated by system II.

(5) Simulating SUB instructions that act on register 3.

Let I; : (SUB(3),l;,;) be an SUB instruction that acts on register 3, and the cell with label
4 contains c(l;) copies of symbol a. The following rules are used to simulate the instruction
li : (SUB(3),1j,1):

c(1:)/0 € R(4,5), (c(ls) — 1)/(c(li +1) — 3) € R(5,0), (i +1)/c(l;) € R(5,0),
1/3 € R(5,3), (c(li +1) —2)/c(ly) € R(5,0), 0/c(lj) € R(4,5), 0/c(ly) € R(4,5).

The simulation takes four steps. Similar to the simulation of ADD instructions that act on
register 3, the ¢(l;) copies of symbol a in the cell with label 4 are first sent to the cell with label
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5 and then the cell with label 5 takes care of the simulation of SUB instructions that act on
register 3. At the second step, system II starts to check whether the number stored in register
3 is non-zero. Note that the number n in register 3 is represented by 2n + 2 copies of symbol
a, thus the system should check whether the cell with label 3 contains more than two copies of
symbol a. The checking is done as follows. The ¢(I;) copies of symbol a in the cell with label 5 are
split into two parts, with one part containing one copy of symbol a and the other one containing
¢(l;) — 1 copies of symbol a. The ¢(l;) — 1 copies of symbol a are exchanged with ¢(l; + 1) — 3
copies of symbol a from the environment by the rule (¢(l;) — 1)/(c(l; + 1) — 3) € R(5,0). For
the one copy of symbol a, there are two cases. If the cell with label 3 contains at least 3 copies
of symbol a (this corresponds to the fact that the number stored in register 3 is non-zero), then
the only rule which can be applied is 1/3 € R(5,3) and thus the number stored in register 3 is
decreased by one. If the number of copies of symbol a in the cell with label 3 is less than 3 (this
corresponds to the fact that the number stored in register 3 is zero), then no rule can be applied
and thus the number in register 3 keeps unchanged; furthermore, the one copy of symbol a stays
in the cell with label 5. In this way, the cell with label 5 accumulates either ¢(l; + 1) copies
of symbol a or ¢(l; + 1) — 2 copies of symbol a. By using the rules ¢(l; + 1)/c(l;) € R(5,0) or
(c(li +1) —2)/c(lx) € R(5,0), the ¢(l; + 1) copies of symbol a are exchanged with ¢(l;) copies
of symbol a or the ¢(l; + 1) — 2 copies of symbol a are exchanged with ¢(l;) copies of symbol
a at the third step. At the fourth step, the c(l;) or c(l;) copies of symbol a in the cell with
label 5 are sent to the cell with label 4 by the rules 0/c(l;) € R(4,5) or 0/(lx) € R(4,5), and
system II starts to simulate the next instruction [; or l;. Note that the rules 2/0 € R(5,6) and
2/2 € R(6,0) guarantee that system II should use the above rules to simulate I; : (SUB(3),1;,l1);
otherwise, system II would enter into a computation that cannot halt.

(6) Simulating the halting instruction.
The halting instruction I, is simulated by the rule ¢(l;)/0 from R(4,0).

When the register machine M reaches the halting instruction I, the cell with label 4 accu-
mulates ¢(l;) copies of symbol a. At that moment, the rule ¢(l;)/0 € R(4,0) can be used, by
which all the copies of symbol a in the cell with label 4 are moved into the environment, and
thus the computation halts.

From the above explanation, we can find that the register machine M can be correctly
simulated by tissue P system II. From the formal definition of tissue P system II, we see that
system II has at most one channel between two cells or between a cell and the environment.
Therefore, Theorem 1 holds. O

Corollary 2. For any recursively enumerable set L of natural numbers, a one-symbol tissue P
system with symport/antiport rules having at most 5 cells can be constructed to generate L, when
two channels are allowed between a cell and the environment.

Proof: Let us first recall that the cell with label 6 in system II constructed in the proof of
Theorem 1 is used as a trap. If two channels are allowed between a cell and the environment, then
the “trap” cell can be saved by introducing two antiport rules 2/2¢(l;) € R(4,0) and 2/2¢(l}) €
R(5,0), where the function c is defined as in the proof of Theorem 1. These two rules are used as
a “trap” in the sense that, once one of the rules is used, then the rule will be used forever. Note
that the number 2¢(l;) is so large that even in the case of all possible rules which can be used
being used, there remain enough copies of symbol a to repeat the “trap” rule 2/2¢(l;) € R(4,0)
or 2/2¢(l;) € R(5,0). In this way, the computation enters an infinite loop. The changes in the
construction from the proof of Theorem 1 are left to the reader. O
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5 Conclusions and Comments

In this note, a one-symbol universal tissue P system with symport/antiport rules having six
cells is obtained, under the restriction that one channel is allowed between two cells or between
a cell and the environment. As a corollary of the above result, a one-symbol universal tissue P
system with symport/antiport rules having five cells is also constructed, under the restriction
that two channel are allowed between a cell and the environment. These results partially answer
open problems formulated in [1] (see Tables 1 and 2).

Some improvement of the number of cells used in the universal tissue P systems given in this
work may be still possible (thus answering more open problems in Tables 1 and 2). A natural
idea is to consider removing the trap cell, just as done in the case of allowing two channels
between the cell and the environment.

In the universal tissue P systems given in this work, two cells have been used to control the
simulation of the SUB instructions of register machine: the cell with label 4 is responsible for the
simulation of the SUB instructions that act on register 2; the cell with label 5 takes care of the
simulation of the SUB instructions that act on register 3. We conjecture that one cell is enough
to take care of the simulation of the SUB instructions that act on registers 2 and 3.
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