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Abstract:
In this paper switched nonuniform and piecewise uniform scalar quantization of
Laplacian source are analyzed. This scalar quantization techniques are used in
order to obtain higher signal quality by increasing signal-to-quantization noise
ratio (SNRQ) with respect to it’s necessary robustness over a broad range of
input variances in a wide range of signal volumes. We observe µ-law compandor
implementation to achieve compromise between high-rate digitalization and
variance adaptation. The main contribution of this model is kipping almost
the same quality as the nonuniform compandor model, with simpler realization
structure and the possibility of it’s applying for digitalization of wide range
continuous signals.
Keywords: switching quantization, µ-law companding, variance adaptation,
Laplacian source.

1 Introduction

Quantization denotes the heart of analog to digital (A/D) conversion and efficient technique
of data compression. Quantizers play an important role in the theory and practice of modern
day signal processing. They are applied for the purpose of storage and transmission of continual
signals. In a number of papers like this one the quantization of Laplacian source was analyzed
since the probability density function (PDF ) of the instantaneous speech signal values for higher
number of digitalization samples is better represented by Laplacian then the Gaussian function
[1], [2], [4], [7], [10]. Analysis of nonlinear quantization optimization in wide volume range [5], [6],
for Gaussian source is given in [8], [9]. In this paper we analyze robust and switched nonuniform
and piecewise uniform scalar quantization of Laplacian source to achieve compromise between
high-rate digitalization and variance adaptation. The aim of our research is to find a simple
way to realize a quantizer system having high quality performance but maintaining robustness
in wide range of input signal. The goal of the paper is designing piecewise uniform scalar
quantizer based on the µ-law compandor which satisfy G.712 standard. In this purpose, we
must to find optimal values for parameter µ and number of quantizers. Proposed solution

Copyright c⃝ 2006-2012 by CCC Publications



116 A.V. Mosic, Z.H. Peric, S.R. Panic

has the same complexity as the G.711 standard, because we use 8 bits, but it satisfy G.712
standard with 7 bits/sample. Important issues from the engineer’s point of view are the design
and implementation of quantizers to meet performance objectives. When the required hardware
solution it is better to use piecewise uniform scalar quantizers, because they can be realized using
linear electronic circuits. But if the required software solution it is better to use nonuniform scalar
quantizers.

This paper is organized as follows. In chapter 2. we have developed expressions for granular
and overload distortion of nonuniform scalar quantization, using Bennett’s integral on Laplacian
distribution. Then in chapter 3. a switching nonuniform model and numerical results for µ-
logarithmic compandor are presented. In chapter 4. our switching piecewise uniform model and
numerical results for µ-logarithmic compandor are presented. Last two chapters show how the
increase of number of quantizers, in switching scheme, affects the SQNR dependence of input
power. Also we have discussed how constant µ should be chosen in order for total distortion to be
as minimum as possible in the wide volume range of input signal. Finally, in conclusion we have
discussed obtained results, and on these bases, we derived conclusions about the possibilities of
this switched quantization application in speech processing.

2 Distortion for nonuniform µ-logarithmic compandor

Scalar quantizers are the only types of quantizers considered in this paper, so we just briefly
recall their properties. An N -point fixed rate scalar quantizer is characterized by the set of
real numbers t1, t2, . . . , tN , called decision thresholds, which satisfy −∞ = t0 < t1 < · · · <
tN−1 < tN = +∞, and set y1, y2, . . . , yN , called representation levels, which satisfy yj ∈ αj =
(tj−1, tj ], for j = 1, . . . , N . Sets α1, α2, . . . , αN form the partition of the set of real numbers R
and are called quantization cells. The quantizer is defined as many-to-one mapping Q : R → R,
Q(x) = yj where x ∈ αj . In practice, input signal value x is quantized to the value yj . Cells
α2, α3, . . . , αN−1 are inner cells (or granular cells) while α1 and αN are outer cells (or overload
cells). In such way, cells α2, α3, . . . , αN−1 form granular while cells α1 and αN form an overload
region.

Let input signal is characterized by continuous random variable X with PDF p(x). The
first approximation to the long-time-averaged PDF of amplitudes is provided by a two-sided
exponential or Laplacian model. Waveforms are sometimes represented in terms of adjacent-
sample differences. The PDF of the difference signal for an image waveform follows the Laplacian
function [4]. Laplacian source can be also used for modelling of the speech signal. In the rest of
the paper we assume that information source is Laplacian source with memoryless property and
zero mean value. The PDF of that source is given by:

p(x) =
1√
2σ2

e−
|x|

√
2

σ , (1)

where x is zero-mean statistically independent Laplacian random variable of variance σ2.
The quality of the quantizer is measured by distortion of resulting reproduction in comparison

to the original one. Mostly used measure of distortion is mean-squared error. It is defined by:

D(Q) = E(X −Q(X))2 =

N∑
i=1

∫ ti

ti−1

(x− yi)
2p(x)dx. (2)

The N -point quantizer Q is optimal for the source X if there is no other N -point quantizer
Q1 such that D(Q1) < D(Q). We also define granular distortion Dg(Q) and overload Dol(Q)
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distortion by:

Dg(Q) =

N−1∑
j=2

∫ tj

tj−1

(x− yj)
2p(x)dx, (3)

Dol(Q) =

∫ t1

−∞
(x− y1)

2p(x)dx+

∫ +∞

tN−1

(x− yN )2p(x)dx. (4)

Obviously follows that D(Q) = Dg(Q) +Dol(Q).
The companding technique is one of the commonly used techniques for the construction of

nearly optimal quantizers for large number of quantization levels. It forms the core of the ITU-
T G.711 standard [3]. It is a nonuniform PCM standard recommended for encoding speech
signals. The recommendation is based on digitally linearizable companding, which permits a
precise control of quantization characteristics. The compression and expansion characteristics
are piecewise linear approximations to µ-law , where µ = 255, with 8 bits/sample are adopted,
leading to a bit-rate of 64 kbps at 8 kHz of sampling frequency. Companding procedure consists
of following steps: i) compressing the input signal x by applying the compressor function c(x).
ii) applying the uniform quantizer Qu on the compressed signal. iii) expanding the quantized
version of the compressed signal using an inverse compressor function c−1(x). As explained
the corresponding non-uniform quantizer consisting of a compressor, a uniform quantizer, and
an expander in cascade is called companding quantizer (compandor). Hence, the companding
quantizer can be represented as Q(x) = c−1(Qu(c(x))), where Qu(x) is uniform quantizer in the
interval [−1, 1]. Let us denote by tu,i and yu,i decision thresholds and representation levels of
the uniform quantizer Qu(x). Corresponding values ti and yi of the companding quantizer Q(x)
could be determined as the solutions of the following equations:

c(ti) = tu,i = −1 +
2i

N
, c(yi) = yu,i = −1 +

2i− 1

N
. (5)

There are several ways how to choose the compressor function c(x) for compression law. In
practice, a piecewise linear approximation of the logarithmic compression characteristic is used.
There are two different ways. In North America, a µ-law compression characteristic is used,
which is defined as follows:

c(x) =


xmax

ln(1+µ) ln
(
1 + µ x

xmax

)
, 0 ≤ x ≤ xmax

− xmax
ln(1+µ) ln

(
1− µ x

xmax

)
, −xmax ≤ x ≤ 0

. (6)

Substituting (1), (5) and (6) in (3) and (4), and considering that yN can be approximated with
xmax, granular and overload distortions are defined as:

Dg(Q) =
σ2 ln2(1 + µ)

3N2

[
1

µ2
x2max

σ2
+
xmax

σ

√
2

µ
+ 1

]
, (7)

Dol(Q) = σ2e−
√
2xmax

σ . (8)

Since we now know how to calculate total distortion for quantization of a Laplacian source
that has variable average power in a wide range:

D(Q) =
σ2 ln2(1 + µ)

3N2

[
1

µ2
x2max

σ2
+
xmax

σ

√
2

µ
+ 1

]
+ σ2e−

√
2xmax

σ , (9)
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we can find the signal power-to-total-distortion ratio (dB), which is denoted as SQNR:

SQNR = 10 lg
σ2

D(Q)

= 10 lg
1

ln2(1+µ)
3N2

[
1
µ2

x2
max
σ2 + xmax

σ

√
2
µ + 1

]
+ e−

√
2xmax

σ

. (10)

On the basis of this expression we will design the desired model below.

3 Switching nonuniform scalar quantization and numerical re-
sults for µ-logarithmic compandor

Classical quantizer with µ-law compression characteristic (see Fig. 1, µ = 255) has limited
range of input variances. We will solve that problem with switching quantization application.
One simple technique is switched codebook adaptive scalar quantization. The basic scheme of
robust and switched codebook adaptation is shown in [8]. This technique uses a classifier that
looks at the contents of the input frame buffer and decides that the next block of samples belongs
to a particular statistical class of samples from a finite set of K possible classes. Namely, the
index specifying the class is used to select a particular codebook from a redesigned set of K
codebooks. In addition, this index is transmitted as side information to the receiver. Then, each
sample in the block is encoded by the scalar quantizer, which performs a search through the
selected codebook. One frame has length of M . The index to identify the class is sent on the
end of block. If each of the K codebooks has size N , the bit rate per sample is:

R = log2N +
log2K

M
. (11)

Codebook size N depends on number of bits that are used for the encoding n. The relation
between N and n is N = 2n, where n is the number of bits per sample.

We will use this switching technique for our problem solving. We have K codebooks, i.e.,
K nonuniform scalar quantizers designed for particular values σ0j to cover input power range
σ20j/σ

2
0 ∈ [σ21j/σ

2
0, σ

2
2j/σ

2
0),where σ0 denotes referent value of input power and ∪K

j=1[σ
2
1j/σ

2
0[dB],

σ22j/σ
2
0j [dB]) = [−20, 20). Maximal amplitude for each quantizer xmaxj (each codebook j) is

chosen in a way, that for each input power range σ20j/σ
2
0 ∈ [σ21j/σ

2
0, σ

2
2j/σ

2
0) the total distortion

has a minimum. The procedure is as follows: We optimize total distortion (9) to have a minimum.
The optimization is going over parameter c, witch denotes ratio xmax/σ. After finding copt, for
corresponding µ, which satisfies the following term:

∂D(Q)

∂c
= 0 ⇒ c = copt. (12)

We can easily evaluate xmaxj for each input power range σ20j/σ
2
0 ∈ [σ21j/σ

2
0σ

2
2j/σ

2
0), from the

expression xmaxj = coptσ0j . Each particular value σ0j can be represented as σ0j = kjσ0, where kj
is called adaptation factor. During the switched quantizer design, a particular type of memory is
needed. Each input class j = 1, 2, . . . ,K requires one quantizer, for which we know adaptation
factor kj and input power range [σ21j/σ

2
0, σ

2
2j/σ

2
0) for which the quantizer is designed. Also we

have to store in memory the corresponding µ and copt.
First, let us examine switched codebook adaptive scalar quantization model with only one

quantizer present. Here, only parameter that can be optimized, for achieving high quality of
transmission by increasing SNRQ, in a wide range of signal volumes (variances) with respect to
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it’s necessary robustness over a broad range of input variances is the ľ parameter in expression
for SNRQ. Parameter µ can be optimized, for the case when expression for SNRQ has his
maximum, which means that expression (9) for total distortion should have his minimum. Opti-
mization of total distortion is derived in two steps. First, we accomplish adaptation on maximal
amplitude of input signal, or the optimization for parameter c in corespondents to µ, which is
described as:

∂D(Q)

∂c
= 0 ⇒ c = copt(µ). (13)

Then in the second step, we find required µopt, for witch total distortion should have his minimum,
which is described as

∂D(Q)

∂µ

∣∣∣∣
c=copt(µ)

= 0 ⇒ µ = µopt, D(Q)(µopt) = Dmin(Q). (14)

These two steps can be represented as the following equation system:

∂D(Q)

∂c
= σ2

−
√
2e−

√
2c +

(
2c
µ2 +

√
2
µ

)
ln2(1 + µ)

3N2

 = 0 (15)

∂D(Q)

∂µ

∣∣∣∣
c=copt(µ)

= σ2

2
(
1 +

c2opt(µ)

µ2 +
√
2copt(µ)

µ

)
ln(1 + µ)

3N2(1 + µ)

−

(
2c2opt(µ)

µ3 +
√
2copt(µ)
µ2

)
ln2(1 + µ)

3N2

 = 0. (16)

For N1 = 128 and N2 = 256, numerical solutions for presented systems are copt1 = 8.8, µopt1 = 15
and copt2 = 9.9 and µopt2 = 17, respectively. If there are not restrictive limitations about memory
size and sample bit rate for the transmission system, then there is a possibility to choose optimal
number of quantizers in our model, for which we can achieve high quality measured by SQNR, in
a wide range of signal volumes (variances) with respect to it’s necessary robustness over a broad
range of input. If we increase number of quantizers K, there is a way to flatten the SQNR
dependence of input power in such a way that, if the memory size isn’t the limiting factor, with
data compression being disregarded, we will achieve a signal-to-noise ratio that does not have
a large variation during input power changes which is shown in Figs 1 and 2. In Fig 2, we can
see that SQNR varies from it’s peak value, for maximum 0.282 dB and 0.313 dB for each input
power range [σ21j/σ

2
0, σ

2
2j/σ

2
0), ∪K

j=1[σ
2
1j/σ

2
0[dB], σ22j/σ

2
0j [dB]) = [−20, 20), for which the quantizer

is designed, in case of codebook size of 128 and 256, with 16 codebooks. There is a conclusion,
that if we want to satisfy the same standard for varying of SQNR in twice larger input power
range of [-40dB,40dB], we will have to use same codebook size for 32 codebooks. If we want to
satisfy less restrictive standards of SQNR variance for each input power range [σ21j/σ

2
0, σ

2
2j/σ

2
0),

we can use smaller number of codebooks, and if we want to achieve smaller peak value of SQNR,
we can use smaller size of each codebook, for each input power range. If we analyze bit sample
rate in function of frame length with respect to number of quantizers K, we can se that for
relatively small frame length of 80 samples, bit sample rate rapidly convergates to the value
of bit sample rate of transmission without side information. So we can derive conclusion that
memory size is much more restrictive limitation for multi-quantizer implementation, than sample
rate is.
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From Fig. 2, we can see that presented nonuniform switched quantizer with optimized µ
outperform classical µ = 255 switched quantizer characteristic for 3 dB and 2.7 dB in the cases
of N = 128 and N = 256, respectively.

4 Switched piecewise uniform scalar quantization and numerical
results for µ-logarithmic compandor

This paper utilizes the basic concept of the Jayant quantizer model in order to provide the
development of the adaptive piecewise uniform scalar quantizer [4]. Particularly, the model avails
the Jayant manner of maximum amplitude adaptation, which means according to the one word
memory. Finally, since one of the main goals when designing quantizers is to provide as high
as possible quality, i.e. as low as possible distortion, an analysis will be conducted in order to
provide optimal values of µ. In this section, it is showed that segmental µ-law better than method
presented in Section 3, when the required hardware solution because they can be realized using
linear electronic circuits, and provide almost the same results for quality. Switched piecewise
uniform scalar quantization of memoryless Laplacian source is asymptotically analyzed for the
case where the power of input signal varies in a wide range. One possible solution for encoder
design is given for the same quantizer. Switched quantization is used in order to give a higher
quality in a wide range of signal volumes (variances). These systems, although not optimal, may
have asymptotic performance arbitrarily close to the optimum. Furthermore, their analysis and
implementation can be simpler than those of optimal systems. We also define granular distortion
Dg(Q) and overload Dol(Q) distortion by:

Dg(Q) = 2

L∑
i=1

∆2
i

12
Pi(σ) (17)

Dol(Q) = 2

∫ +∞

xmax

(x− yL,nunif
)2p(x)dx. (18)

where are amplitudes quant in the i-th segment defines es:

∆i =
xi − xi−1

N
2L

(19)

and yL,nunif is representation layer in the last cell of L-th segment:

yL,nunif = xmax −
∆L

2
≈ xmax (20)

Finally p(x) is the PDF of inner signal on quantizer, which define probability Pi(σ) that quantum
of signal belong the i-th segment:

Pi(σ) =

∫ xi

xi−1

p(x, σ)dx. (21)

As we know D(Q) = Dg(Q) +Dol(Q). After sam basic mathematical operations we can get
that:

D(Q) =
x2max

12(N/2L)2µ2

L∑
i=1

(1 + µ)
2(i−1)

L ((1 + µ)
1
L − 1)2e

−
√

2xmax
µσ

((1+µ)
i−1
L −1)

×
(
1− e

−
√
2xmax
µσ

((1+µ)
i
L−(1+µ)

i−1
L )
)
+ σ2e−

√
2xmax

σ . (22)
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Optimizing the previous expression in the same manner as in Section 3, we get the results given
in the Table 1 and Figure 2. In Figure 2 we can observe that our L = 4 switching piecewise
uniform method with N1 = 128 and N2 = 256 outperforms the classical µ = 255 law method
for 2.5 dB and 2.2dB, respectively. Comparatione is also made with G.711 standard, and it is
also shown that our model satisfy the G.712 standard with 1 bit compression obtained. Our
switching piecewise uniform model, with L = 8 segments and L = 16 segments (see table 1),
gives almost same results as switching nonuniform method, with much more simpler realization
structure of hardware.

Figure 1: Improvement of quality of transmission (SNRQ), for model implementations with two
quantizers over robust quantization.

Figure 2: Comparatione of quality of transmission (SQNR), for model implementations with
sixteen quantizers for standard and optimized value of parameter µ.

5 Conclusions and Future Works

We have suggested switched nonuniform and piecewise uniform scalar quantzation of Lapla-
cian source that solve the problem of variable input power in a wide range. We also have presented
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L SQNRN=128 SQNRN=256

2 32.76 38.21

4 34.35 39.96

8 34.73 40.37

16 34.82 40.48

64 34.85 40.51

128 34.85 40.52

Table 1: Comparison between values of SQNR of piecewise uniform scalar quantizers for different
values of bitrate R, i.e. N1 = 128, µ1 = 15 and N2 = 256, µ2 = 17.

how they can accomplish high quality of SNRQ by optimization on maximal amplitude of input
signal, by optimization on parameter µ, and by adaptation on input variance range length. They
can be applied for coding of speech signals and other continuous signals. The dependence of
quality and robustness of quantized signals is analyzed over the broad range of input variances
and corresponding number of codebooks with respect to system memory and sample bit rate.
Presented switching piecewise uniform model gives almost same results as switching nonuniform
method, with much more simpler realization structure of hardware.
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