
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VII (2012), No. 1 (March), pp. 53-60

Adaptation Mechanism based on Service-Context Distance for
Ubiquitous Computing

M. Cremene, M. Riveill, A. Rarau, C. Miron, B. Iulian, V. Todica

Marcel Cremene, Anca Rarau, Costin Miron,
Benta Iulian, Valeriu Todica
Technical University of Cluj-Napoca Romania,
Cluj-Napoca, Memorandumului nr. 28, 400114
E-mail(s): cremene@com.utcluj.ro, anca.rarau@cs.utcluj.ro,
miron@bel.utcluj.ro, iulian.benta@com.utcluj.ro,
todicav23@yahoo.com

Michel Riveill
University of Nice, Sophia-Antipolis
I3S, Route de Colles, BP 145 - F-06903,
Sophia Antipolis CEDEX
E-mail: riveil@unice.fr

Abstract: Service adaptation is one of the main research subjects in Ubiq-
uitous Computing. Dynamic service adaptation, at runtime, is necessary for
services that cannot be stopped (banking, airport, etc.). The classical ap-
proaches for dynamic adaptation require predicting all service and context
states in order to specify service and context-specific adaptation policies. This
prediction may lead to a combinatorial explosion. The aim of this research
is to create a service and context-independent adaptation mechanism. Our
proposal is based on a service-context model that is causally connected with
the service and context, in a model@run.time paradigm. A closed-loop control
principle is used for the adaptation mechanism. We introduce an equivalent
for the error that is expressed by the notion of service-context distance. This
distance represents a measure of how adequate is a service to its context. This
distance is computed by some generic, reusable components. The adaptation
algorithm that minimizes this distance is also service and context-independent.
Keywords: Services, Dynamic Adaptation, Context, Autonomic computing,
Adaptation Control

1 Introduction

Background and motivation. Service adaptation to the context (physical infrastruc-
ture/resources, user needs, and environment) is one of the main research subjects in high interest
domains such as Ubiquitous/Pervasive/Mobile Computing. Adapting a service is to reconfigure
that service in order to maximize its QoS (Quality of Service) and also the efficiency of the
resource utilization. We use a component-oriented approach for services, thus the reconfigura-
tion concerns the service architecture: parameterize, add/remove, connect/disconnect or migrate
components.

Numerous situations require a dynamic service adaptation [1,2], at runtime, because there are
an important number of services that cannot be stopped (modified and recompiled). Examples
are: banking services, airport services, spatial services, corporate services, groupware services
and others. Even for services that may be stopped, the human intervention means important
time and costs.

Copyright c⃝ 2006-2012 by CCC Publications

54 M. Cremene, M. Riveill, A. Rarau, C. Miron, B. Iulian, V. Todica

Issues about dynamic adaptation control mechanism. The adaptation mechanism,
that encapsulates the system "intelligence", is the most important part of an adaptive system.
It main function is to decide when a service should be adapted and how to adapt it.

After studying several different approaches for dynamic service adaptation, some of them
presented in [3], we observed that the large majority of these solutions are based on the pre-
diction about all possible service and context states. This prediction is an essential condition
for specifying adaptation policies. Usually these policies are service and context-specific, they
are not reusable and they do not evolve as the context evolves, without human intervention. A
service can be adapted only inside the limits fixed a priori by these services and context-specific
polices. For instance, in the case of "Event-Condition-Action" adaptation mechanism, which is
one of the most used, a service cannot be adapted if the events, the conditions and the actions
have not been predicted/specified priori by a human expert. But these events, conditions and
actions are service and context-specific. This means that the human expert decides a priori when
and how to adapt a service.

The problem is that, the prediction of all possible service and context states, may lead
to a combinatory explosion. For instance, a state machine specification MDE (Model Driven
Engineering) approach leads to a extremely high number of possible artefacts, as it is shown
in [2]. Another problem of the classical state machine approach is that it does not deal with
adding/removing/changing dynamically new states and transitions. Thus, such an approach is
impossible to be used in practice for complex services and contexts.

Objective and approach. The aim of this research is to build a service and context-
independent (generic) adaptation mechanism. Our proposal is based on a model@run.time ap-
proach. According to this approach, we propose a service-context model describing the service
and the context as a whole system. This model is causally connected with the service and the
context. The service-context model is represented as a directed graph having as nodes the service
components and the context elements. Each node has attributes related to the entities (services′
components, context elements) and to the interactions between these entities.

A closed-loop control principle is used for the adaptation mechanism, as suggested by the
Autonomic Computing paradigm [4]. We introduce an equivalent for the notion of error that
is expressed in our model by the notion of service-context distance. This distance represents
a measure of how adequate is a service to its context in terms of user needs satisfaction and
resources utilisation. The adaptation algorithm is also service and context-independent.

Paper outline. This paper is organized as it follows: the next section is an overview about
the dynamic service adaptation issues and the models@run.time approach. Section three presents
the proposed solution that is based on the service-context model, service-context distance and a
generic adaptation algorithm. Section four present presents the conclusions.

2 Dynamic service adaptation in a models@run.time approach

2.1 Dynamic service adaptation

For defining more precisely what service adaptation means for us, we consider a mixture be-
tween the categories defined by the Autonomic Computing [4] and the adaptation types proposed
in [1]:

a. Self-healing/Corrective adaptation. The system automatically detects, diagnoses, and
repairs localized software (and hardware) problems. For example, if a system component responds
too slow it will be replaced by another component, with the same functions, that responds on
time (or the component will be moved on another physical machine). Self-healing/corrective
adaptation deals usually with failure cases, when a component must be replaced/moved.

Adaptation Mechanism based on Service-Context Distance for
Ubiquitous Computing 55

b. Self-adaptation. The adaptation is necessary when the context state changes. We may
have two cases of self-adaptation:Adaptive adaptation concerns the situations when the context
change and the service should change also in order to keep its functions. This type of adaptation
is usually transparent to the user.Extending adaptation concerns the situations when some new
user needs are discovered a posteriori and the service should be extended in order to satisfy these
new needs.

c. Self-optimization/Perfective adaptation. The system continuously searches for opportuni-
ties to improve its own performance. The performance is maximal when the QoS parameter are
maximized (for instance the response time) and when the resource utilization is minimal and well
balanced. Self-optimization/Perfective adaptation deals with a service that is working correctly
but it may be tuned in order to increase its efficiency/quality.

The adaptation is dynamic when the service reconfiguration happens at runtime. In the
last years, numerous researchers have concentrated on developing middleware that enables dy-
namic adaptation. For instance, the WComp middleware [5, 6] offers a support for composing
and adapting services at runtime. The design and the execution phases are simultaneous. An
event-based communication model is used. It offers the possibility to use services installed on
various devices and also web services from Internet. WComp manages also the dynamic service
apparition/extinction.

Fractal [7] proposes a middleware and a component model enabling hierarchical composition.
The middleware offers support for reflection and dynamic reconfiguration. A particularity of
Fractal is the possibility to share a component between two other composite components.

OpenCCM (Open CORBA Component Model) [8] is the first public available and open source
implementation of CCM (CORBA Component Model).

OSGi propose a platform based on dynamic modules/components that may be assembled
at runtime, it provides a service-oriented, component-based environment. A service-oriented
middleware allowing spontaneous distributed service composition at runtime, based on OSGi, is
proposed in [9]. Facing with a high number of existent middleware, our intention is to propose
an independent solution that may be adapted to different middleware.

2.2 The models@run.time approach

Models@run.time [10] represents a novel approach that aim is to extend the usage of software
models (MDE - Model Driven Engineering) to runtime. The need of such models is motivated
by the dynamic adaptation of mission-critical software issues. This is also related with Au-
tonomic Computing paradigm because the adaptation should be autonomous (without human
intervention).

This approach is also strongly related with the reflection paradigm and has a similar principle:
a model@run.time is an abstraction of a system that is causally connected with that system and
may be used for dynamic system adaptation. The difference comparing to reflection is that in
model@run.time we look for high-level models while in reflection paradigm the (meta)model is
strongly related to the low-level software aspects [10]. Such a model@run.time describes aspects
as: structure, behaviour and goals of the system, from a problem space perspective.

One of the advantages of the model@run.time approach is the possibility to treat indepen-
dently two main issues:

I. Propose a model that will be used at runtime for discovering the service-context adequacy
problems and for adapting the service by solving these problems. Our proposal is based on a
service-context model, a service-context distance that reflects the service-context adequacy
and an adaptation algorithm that aim is to minimize this distance (and to increase the
adequacy).

56 M. Cremene, M. Riveill, A. Rarau, C. Miron, B. Iulian, V. Todica

II. Create a middleware that will causally connect the two parts: a) the proposed service-
context model with b)the adapted system (a modification of one part will be reflected on
the other part). If we want to offer a general solution, a part of this middleware will make
the adaptation with a specific adaptation support-middleware (see the examples presented
in the section 2.1).

The second issue is more a technical issue than a scientific one because today many middleware
and context monitoring tools offers a large number of solutions that may be reused. That is why;
in this paper we are concentrated only on the first issue which is the most important and difficult.

3 The service-context model, the service-context distance and
the adaptation algorithm

3.1 Service-context model

We have introduced the service-context model concept in [3, 11] as a possible approach for
autonomic computing. In this paper we re-interpret this model from a models@run.time per-
spective, we extend it with the service-context distance.

Service-context graph. The service-context model (figure 1) aim is to describe the service
and the context as a whole system that may be analyzed from the service to context adequacy
point of view. This model is based on a directed graph composed by the following elements:

a. The nodes correspond to service and context entities. The service′ entities (S in fig. 1)
are the software components that constitute the service. In order to simplify the model, a
complex component is described by decomposing it in a sum of basic components having
only three types: source (1 output), sink (1 input) or filter (1 input, 1 output). The context
entities are context components: users (U in fig. 1), infrastructure elements (I in fig. 1)
such as devices, networks and environment elements (E in fig. 1).

b. The vertex corresponds to the relations and interactions existent between these entities. We
define three types of vertex corresponding to two types of possible relations/interactions:

- Informational flows interactions. The service components are communicating by ex-
changing information. Also, the user exchange information with the service. This
information has some attributes that describes it.

- Resource utilization interactions. The service components consume resources provided
by the hardware infrastructure (memory, cpu, bandwidth, etc).

- Environment influence interactions. The environment may influence the user needs
(ex. location) or the infrastructure (ex. the rain effect on a radio network).

For simplifying the model, we will discuss in this paper only the most important interactions
which are the first two: information flows and resource utilization.

Attributes. The graph is annotated with some attributes. Each node has attributes related
to the node itself or to the node ports (input and output vertex). These attributes are mak-
ing a semantic connection between the service nodes and the context nodes. For instance, the
’language’ attribute means the user U language but also the service S language, the ’memory’
attribute means the memory consumed by a component and the memory provided by a device.

Adaptation Mechanism based on Service-Context Distance for
Ubiquitous Computing 57

Figure 1: Service-Context general model

A common attribute vocabulary for service and context components should be respected by the
component developers/providers.

For each attribute a input and output domain are specified. For filter-type components,
a transfer function (input-output) should be specified. For instance, a translation component
change the language between the input and the output, a compression component change the
compression rate, etc.

The attributes, their input/output domains and the transfer functions should be specified for
each component by the component developer/provider, in a form of a profile (i.e. an XML-based
descriptor of the component). This is a necessary condition for enabling the machine to under-
stand what a component does. Same thing for the context elements, each one has a profile.

Composition. One of the most important property of the service-context model is the compo-
sition. By composition we understand here to assimilate a graph to a node. This is a necessary
condition for describing the service behaviour and properties using only the service’s internal
components behaviour and properties. We propose a composition mechanism based on the at-
tributes specified by the profiles. The elementary composition cases are described in figure 2.
The composition means to determine the equivalent node for a graph composed by two nodes.

C1
C2 C1 C2

Figure 2: Serial and parallel composition

The composition operation depends on the attribute nature. The composition is different
for information flows interactions and for resource utilization interactions. These operators are
described in the figure 3.

3.2 Service-context distance

The first idea for describing the service-context adequacy, used in [11], was to use a binary
approach: a service is adequate or not to its context. In order to have a more general approach,
we introduce in this paper the concept of service-context distance. The distance is minimal when
the service to context adequacy is maximal. This distance has two components: the S-U distance
measures the distance from the information flow point of view and the S-I distance measures the
distance from the resource utilization point of view.

58 M. Cremene, M. Riveill, A. Rarau, C. Miron, B. Iulian, V. TodicaInformation flow composition Atribute name Serial composition Parallel composition response_time Sum, + Max function security_level Min function Min function language language of the output component Intersection type_hmi type_hmi of the output component Reunion Resource utilization composition Atribute name Paralel composition Serial composition Shared composition memory Sum, + Max function m1 + m2 – mshared cpu_time Sum, + Max function t1 + t2 – tshared screen_surface Reunion Max function Reunion Figure 3: Composition operators for different attributes

Each distance is represented as a vector having as components the distances corresponding
to each attribute. For each attribute we define a specific distance that will be computed by some
dedicated components/services. In some cases the distance is expressed by a simple formula or
set of rules. Some examples are described in figure 4.Information flow distance evaluation Attribute name Domain Distance response_time 0..inf security_level {none, low, medium, high, very high} d = 0 if security_level(S) >= security_level(U) and ∞ else language {RO, FR, DE, ES…….} d = 0 if language(S) == language(U) and ∞ else Resource utilization distance evaluation Attribute name Domain Distance memory 0…100% d = memory(S) / memory(I) * 100 cpu_time 0..100% d = cpu_time(S) / cpu_time(I) * 100 network_capacity 0..100% d = network_capacity(S) / network_capacity(I) * 100 Figure 4: Distance expressions for different attributes

A more complex distance is the distance between the user requests expressed in natural
language and the service features. For such complex distances we cannot present a simple
formula but we use dedicated component/services that implement the algorithm for computing
the distance. Such an algorithm is proposed in [12].

The model may be extended by adding new attributes definitions and new distances measur-
ing components.

Adaptation Mechanism based on Service-Context Distance for
Ubiquitous Computing 59

3.3 Adaptation algorithm

The adaptation algorithm goal is to minimize the service-context distance. For doing that,
the adaptation algorithm dynamically transforms the service-context graph from a less adequate
one toward a more adequate one.

The primitive operations used by the adaptation algorithm are the following: changing a node
parameter, connecting/disconnecting a node, inserting a new node, removing a node, replacing a
node. In order to minimize the service-context distance, the adaptation algorithm should find a
list of primitive operations that transforms the graph from the current state into the desired state
(for the desired state the service-context distance is minimal). Several alternative solutions may
exists. In order to make a difference between these possible solutions, we associate an adaptation
cost to each primitive operation. For instance, the parameterization has a cost equal to 1 while
the insertion cost is 5. This is because it is faster and easier to apply a parameterization than
an insertion.

We have implemented an algorithm, described in [11], that uses one attribute and one adap-
tation strategy: the insertion of a new component. This algorithm starts from a mismatch
between the desired value V2 for an attribute A and the current value V1 and search for a new
component that transforms the value of the attribute from V1 to V2. The place where the new
component may be inserted is searched based on the syntactic interface compatibility. The user
is confirmation is asked before transforming the service.

We are working in present on a general adaptation algorithm, able to apply a succession of
different primitive operations and deal with several attributes simultaneously. We have done
some tests with genetic algorithms which seem promising but are not very fast.

3.4 Implementation

As a proof of concept, in [11] we have implemented a simple forum service that is adapted
dynamically to the user language. The components are developed in Java, using the CCM (Corba
Component Model) specifications. The adaptation consists in inserting a translation component,
at runtime. We have used a mechanism based on ISL (Interaction Specification Language) that
is used also in WComp middleware [6].

In present we are developing a general service-context simulator, based on the open source
JGraphX API that should allow us to test the adaptation at the model level by simulating various
service and context states.

4 Conclusions

The issue discussed in this paper was to propose a service and context-independent adap-
tation mechanism for dynamic service adaptation. We have proposed a solution, based on
the service-context model and service-context distance concepts, that fits into the very re-
cent model@run.time approach. The generality of the proposed model is given by its following
properties: the service attributes/behaviour are determined automatically by composing the at-
tributes/behaviour of its internal components, the service-context distance depends only on the
model attributes nature and are not dependent to a particular service/context and the adapta-
tion algorithm is also service/context independent. As future work we intend to generalize the
adaptation algorithm.

60 M. Cremene, M. Riveill, A. Rarau, C. Miron, B. Iulian, V. Todica

Acknowledgments

This work was supported by CNCSIS-UEFISCSU, PNII-IDEI, project number 1062/2007.
Thanks to members of the Rainbow team, I3S laboratory, Sophia-Antipolis.

Bibliography

[1] A. Ketfi, N. Belkhatir, and P.-Y. Cunin, “Automatic adaptation of component-based software:
Issues and experiences,” in PDPTA ’02: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, pp. 1365–1371, CSREA
Press, 2002.

[2] B. Morin, O. Barais, J. M. Jezequel, F. Fleurey, and A. Solberg, “Models@ run.time to
support dynamic adaptation,” vol. 42, pp. 44–51, October 2009.

[3] M. Cremene, Adaptation Dynamique de Services. PhD thesis, Double coordination between
University of Savoie, France and Technical University of Cluj-Napoca, Romania, 2005.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36,
no. 1, pp. 41–50, 2003.

[5] D. Cheung-Foo-Wo, J.-Y. Tigli, S. Lavirotte, and M. Riveill, “Self-adaptation of event-driven
component-oriented middleware using aspects of assembly,” in MPAC ’07: Proceedings of the
5th international workshop on Middleware for pervasive and ad-hoc computing, (New York,
NY, USA), pp. 31–36, ACM, 2007.

[6] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-Wo, E. Callegari, and M. Riveill,
“WComp Middleware for Ubiquitous Computing: Aspects and Composite Event-based Web
Services,” Annals of Telecommunications (AoT), vol. 64, Apr. 2009.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The fractal component
model and its support in java: Experiences with auto-adaptive and reconfigurable systems,”
Softw. Pract. Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

[8] S. Gorappa and R. Klefstad, “Empirical evaluation of openccm for java-based distributed,
real-time, and embedded systems,” in SAC ’05: Proceedings of the 2005 ACM symposium on
Applied computing, (New York, NY, USA), pp. 1288–1292, ACM, 2005.

[9] A. Bottaro, A. Gerodolle, and P. Lalanda, “Pervasive service composition in the home net-
work,” in AINA ’07: Proceedings of the 21st International Conference on Advanced Net-
working and Applications, (Washington, DC, USA), pp. 596–603, IEEE Computer Society,
2007.

[10] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Computer, vol. 42, no. 10,
pp. 22–27, 2009.

[11] M. Cremene, M. Riveill, and C. Martel, “Autonomic adaptation solution based on service-
context adequacy determination,” Electron. Notes Theor. Comput. Sci., vol. 189, pp. 35–50,
2007.

[12] M. Cremene, J.-Y. Tigli, S. Lavirotte, F.-C. Pop, M. Riveill, and G. Rey, “Service composi-
tion based on natural language requests,” in IEEE SCC, pp. 486–489, 2009.

