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Abstract:
This article deals with the problem of obtaining delay-dependent stability conditions
for a class of discrete-time systems with interval time-varying delay. Using the de-
composition the delay interval into two unequal subintervals by tuning parameter α,
a new interval delay-dependent Lyapunov-Krasovskii functional is constructed to de-
rive novel delay-dependent stability conditions which are expressed in terms of linear
matrix inequalities. This leads to reduction of conservatism in terms of the upper
bounds of the maximum time-delay. The numerical examples show that the obtained
result is less conservative than some existing ones in the literature.
Keywords: time-delay systems, interval time-varying delay, asymptotic stability,
delay-dependent stability, Lyapunov-Krasovskii methods.

1 Introduction

Time-delay frequently occurs in many practical systems, such as manufacturing systems,
telecommunication and economic systems etc. Since time-delay is an important source of insta-
bility and poor performance, considerable attention has been paid to the problem of stability
analysis and controller synthesis for continuous time-delay systems (see e.g. [3-5, 10, 11, 17-21,
23-26] and the reference therein). Inversely, less attention has been drawn to the corresponding
results for discrete-time delay systems (see e.g. [1, 2, 6-9, 12-15, 22, 24]). This is mainly due
to the fact that such systems can be transformed into augmented systems without delay. This
augmentation of the system is, however, inappropriate for systems with unknown delays and for
systems with time-varying delay which are the subject analysis in this work.

Recently, increasing attention has been devoted to the problem of delay-dependent stability
of linear systems with time-varying delay, including continuous-time (see e.g. [5, 10, 11, 18-21,
23], 25, 26]) and discrete-time systems (see e.g. [1, 2, 7-9, 12, 14, 15, 24]) and a great number of
delay-dependent stability criteria were derived. The key point for deriving the delay-dependent
stability criterions is the choice of an appropriate Lyapunov–Krasovskii functional (LKF). It is
known that the existence of a complete quadratic Lyapunov-Krasovskii functional (CQLKF) is
a sufficient and necessary condition for asymptotic stability of the time-delay system. Using the
CQLKF, one can obtain the maximum allowable upper bound (MAUB) of delay which is very
close to the analytical delay limit for stability. However, the CQLKF leads to a complicated
system of partial differential equations, yielding infinite dimensional linear matrix inequalities
(LMIs). Therefore, to develop simpler stability criteria, many authors have used special forms
of LKF rather than CQLKF, which give LMIs with finite order and a reduced value of MAUB.

Further, to reduce the conservativeness of the existing results, some new analysis methods
have been proposed, such as descriptor system transformation method [3-5], free weighting matrix
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method [8, 11, 23], matrix inequality method [10, 17, 18] and input–output approach [19]. Using
these methods, many stability criteria were derived by checking a variation of LKF in a whole
interval of the time-delay. Contrary to this approach, in [24, 25], in order to obtain some less
conservative stability conditions, the interval of the time delay is divided into multiple equidistant
subintervals and interval delay-dependent LKF (ID-D LKF) is constructed. By checking the
variation of the ID-D LKF defined on the subintervals, some new delay-dependent stability
criteria are derived. It is worth pointing out that the main difference between LKF and ID-D
LKF lies in that the former allows taking different weighing matrices on different subintervals.
Therefore, ID-D LKF, as expected, will yield less conservative delay-dependent stability criteria.

Inspired by the idea of Zhu and Yang [26] on splitting the delay of continuous-time systems
into two unequal subintervals, a new method is developed in this paper for stability analysis for
discrete-time systems with time-varying delay. The delay interval [k − hM , k − 1] in the ID-D
LKF is divided into two unequal subintervals: [k − hM , k − α− 1] and [k − α, k − 1], where
0 < α < hM is a tuning parameter. The new ID-D LKF is constructed with different weighing
matrices in various subintervals. Free-weighting matrices and model transformation are not used
in order to derive delay dependent criterion. It is shown that the presented stability condition is
much less conservative than the existing ones [1, 2, 6-9, 13-15, 22, 24], because it has a lower value
of MAUB. The derived condition can be seen as an extension of the methods in [24, 25], wherein
the whole delay range is divided to n ≥ 2 equal subintervals. As the number of subintervals in [24,
25] is greater than two, the decomposition approach is more complex and the resulting stability
conditions are more conservative and difficult to implement. To demonstrate the effectiveness of
the proposed method, numerical examples are given in section 3.

Notation : ℜn and Z+ denote the n-dimensional Euclidean space and positive integers.
Notation P > 0 (P ≥ 0) means that matrix P is real symmetric and positive definite (semi-
definite). For real symmetric matrices P and Q, the notation P > Q (P ≥ Q) means that matrix
P − Q is positive definite (positive semi-definite). I is an identity matrix with an appropriate
dimension. Superscript “T ” represents the transpose. In symmetric block matrices or complex
matrix expressions, we use an asterisk (∗) to represent a term which is induced by symmetry.
If dimensions of matrices are not explicitly given, then they are assumed to be compatible for
algebraic operations.

2 Main results

Consider the following system with an interval time-varying delay:

x(k + 1) = Ax(k) +Bx(k − h(k)) (1)

where x(k) ∈ ℜn is the state at instant k, matrices A ∈ ℜn×nand B ∈ ℜn×n are constant matrices
and h(k)is the positive integer representing the time delay of the system that we assume to be
time dependent and satisfies the following:

0 ≤ h(k) ≤ hM (2)

where hM is known to be a positive and finite integer.
The aim of this article is to establish the sufficient condition that guarantee the delay-

dependent stability of the system (1), which is less conservative than the existing results in
literature.

We first introduce the following result, which will be used in the proof of our main results.
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Lemma 1. Let y(k) = x(k + 1)− x(k). For any matrix R > 0 [24]

− (hM − hm)
k−1−hm∑
m=k−hM

yT (m)Ry(m) ≤

[
x(k − hm)

x(k − hM )

]T [
−R R

R −R

][
x(k − hm)

x(k − hM )

]
= − [x(k − hm)− x(k − hM )]T R [x(k − hm)− x(k − hM )]

(3)

Theorem 2. For given scalars hM (hM > 0) and α(0 < α < hM ), the system described by (1)-(2)
is asymptotically stable if there exists matrices P = P T > 0, Qi = QT

i ≥ 0 and Zi = ZT
i ≥ 0

(i = 1, 2, 3), such that the following LMIs hold:

Φ =



Φ11 Φ12 0 0 Φ15

∗ Φ22 Φ23 0 Φ25

∗ ∗ Φ33 Φ34 0

∗ ∗ ∗ Φ44 0

∗ ∗ ∗ ∗ Φ55

 < 0 (4)

Ψ =



Ψ11 Ψ12 Ψ13 0 Ψ15

∗ Ψ22 Ψ23 Ψ24 Ψ25

∗ ∗ Ψ33 0 0

∗ ∗ ∗ Ψ44 0

∗ ∗ ∗ ∗ Ψ55

 < 0 (5)

where
Φ11 = ATPA− P +Q1 +Q3 − 1

α (Z1 + Z3) ,

Φ12 = ATPB + 1
α (Z1 + Z3) , Φ15 = (A− I)T U1,

Φ22 = BTPB −Q3 − 1
α (2Z1 + Z3) , Φ23 =

1
αZ1, Φ25 = BTU1,

Φ33 = −Q1 +Q2 − 1
αZ1 − 1

hM−αZ2, Φ34 =
1

hM−αZ2,

Φ44 = −Q2 − 1
hM−αZ2, Φ55 = −U1,

Ψ11 = Φ11, Ψ12 = ATPB, Ψ13 =
1
α (Z1 + Z3) , Ψ15 = (A− I)T U2,

Ψ22 = BTPB −Q3 − 1
hM−α (2Z2 + Z3) , Ψ23 =

1
hM−α (Z2 + Z3) ,

Ψ24 =
1

hM−αZ2, Ψ25 = BTU2,

Ψ33 = −Q1 +Q2 − 1
α(Z1 + Z3)− 1

hM−α (Z2 + Z3) ,

Ψ44 = −Q2 − 1
hM−αZ2, Ψ55 = −U2,

U1 = αZ1 + (hM − α)Z2 + αZ3, U2 = αZ1 + (hM − α)Z2 + hMZ3

Proof: Construct the interval delay-dependent LKF as

V (k) = V1(k) + V2(k) + V3(k) (6)

where
V1(k) = xT (k)Px(k) (7)

V2(k) =
k−1∑

i=k−α

xT (i)Q1x(i) +
k−1−α∑
i=k−hM

xT (i)Q2x(i) +
k−1∑

i=k−h(k)

xT (i)Q3x(i) (8)

V3(k) =
−1∑

i=−α

k−1∑
j=k+i

yT (j)Z1y(j) +
−1−α∑
i=−hM

k−1∑
j=k+i

yT (j)Z2y(j) +
−1∑

i=−h(k)

k−1∑
j=k+i

yT (j)Z3y(j) (9)
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where P = P T > 0, Qi = QT
i ≥ 0 and Zi = ZT

i > 0 (i = 1, 2, 3). Note, the delay interval
[k − hM , k − 1] in the LKF is divided into two unequal subintervals: [k − hM , k − α− 1] and
[k − α, k − 1], where 0 < α < hM is a tuning parameter.

Taking the difference of ∆Vi(k) = Vi(k + 1)− Vi(k), we can obtain

∆V1(k) = xT (k)
(
ATPA− P

)
x(k) + 2xT (k)ATPBx (k − h(k))

+xT (k − h(k))BTPBx (k − h(k)) (10)

∆V2(k) = xT (k)Q1x(k)− xT (k − α)Q1x(k − α)
+xT (k − α)Q2x(k − α)− xT (k − hM )Q2x(k − hM )

+xT (k)Q3x(k)− xT (k − h(k))Q3x (k − h(k))
(11)

∆V3(k) =
−1∑

i=−α

[
yT (k)Z1y(k)− yT (k + i)Z1y(k + i)

]
+

−1−α∑
i=−hM

[
yT (k)Z2y(k)− yT (k + i)Z2y(k + i)

]
+

−1∑
i=−h(k)

[
yT (k)Z3y(k)− yT (k + i)Z3y(k + i)

]
= αyT (k)Z1y(k)−

−1∑
i=−α

yT (k + i)Z1y(k + i)

+ (hM − α) yT (k)Z2y(k)−
−1−α∑
i=−hM

yT (k + i)Z2y(k + i)

+h(k)yT (k)Z3y(k)−
−1∑

i=−h(k)

yT (k + i)Z3y(k + i)

= yT (k) [αZ1 + (hM − α)Z2 + h(k)Z3] y(k)

−
k−1∑

m=k−α

yT (m)Z1y(m)−
k−1−α∑

m=k−hM

yT (m)Z2y(m)

−
k−1∑

m=k−h(k)

yT (m)Z3y(m)

= yT (k) [αZ1 + (hM − α)Z2 + h(k)Z3] y(k)

−
k−1∑

m=k−α

yT (m)Z1y(m)−
k−1−α∑

m=k−hM

yT (m)Z2y(m)

−
k−1∑

m=k−h(k)

yT (m)Z3y(m)

(12)

It is know from (2) that, for any k ∈ Z+, h(k) ∈ [0, α− 1] or h(k) ∈ [α, hM ]. Define two sets

Ω1 =
{
k : h(k) ∈ [0, α] , k ∈ Z+

}
(13)

Ω2 =
{
k : h(k) ∈ [α+ 1, hM ] , k ∈ Z+

}
(14)

In the following, we will discuss the variation of ∆V (k) for two cases (k ∈ Ω1 and k ∈ Ω2).
Case 1. For k ∈ Ω1, i.e. 0 ≤ h(k) ≤ α.

k−1∑
m=k−α

yT (m)Z1y(m) =

k−1−h(k)∑
m=k−α

yT (m)Z1y(m) +
k−1∑

m=k−h(k)

yT (m)Z1y(m) (15)
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∆V3(k) = yT (k) [αZ1 + (hM − α)Z2 + h(k)Z3] y(k)−
k−1−h(k)∑
m=k−α

yT (m)Z1y(m)

−
k−1∑

m=k−h(k)

yT (m) (Z1 + Z3) y(m)−
k−1−α∑

m=k−hM

yT (m)Z2y(m)

(16)

Because Z1 + Z3 > 0, h(k) ≤ α and α− h(k) ≤ α, using Lemma 1, it follows

−
k−1∑

m=k−h(k)

yT (m) (Z1 + Z3) y(m)

≤ − 1
h(k) [x(k)− x (k − h(k))]

T (Z1 + Z3) [x(k)− x (k − h(k))]
≤ 1

αx
T (k) (−Z1 − Z3)x(k) +

1
α2x

T (k) (Z1 + Z3)x (k − h(k))
+ 1

αx
T (k − h(k)) (−Z1 − Z3)x (k − h(k))

(17)

−
k−1−h(k)∑
m=k−α

yT (m)Z1y(m)

≤ − 1
α−h(k) [x (k − h(k))− x (k − α)]

T Z1 [x (k − h(k))− x (k − α)]
≤ 1

αx
T (k − h(k)) (−Z1)x (k − h(k)) + 1

α2x
T (k − h(k))Z1x (k − α)

+ 1
αx

T (k − α) (−Z1)x (k − α)

(18)

−
k−1−α∑

m=k−hM

yT (m)Z2y(m)

≤ − 1
hM−α [x (k − α)− x(k − hM )]T Z2 [x (k − α)− x(k − hM )]

≤ 1
hM−αx

T (k − α) (−Z2)x (k − α) + 1
hM−α2x

T (k − α)Z2x (k − hM )

+ 1
hM−αx

T (k − hM ) (−Z2)x (k − hM )

(19)

Combining (10)-(19), it yields

∆V (k) ≤ ξT (k)Φ̂ξ(k)

Φ̂ =


Φ11 + (A− I)TU1(A− I) Φ12 + (A− I)TU1B 0 0

∗ Φ22 +BTU1B Φ23 0

∗ ∗ Φ33 Φ34

∗ ∗ ∗ Φ44


ξ(k) =

[
xT (k) xT (k − h(k)) xT (k − α) xT (k − hM )

]T
(20)

Obviously, ∆V (k) < 0 for k ∈ Ω1 if Φ̂ < 0. Using the Schur complement, it is easy to see that
∆V (k) < 0 holds if Φ < 0 and h(k) ∈ [0, α].

Case 2. Similarly, for k ∈ Ω2, i.e. α + 1 ≤ h(k) ≤ hM , using the Schur complement, it is
easy to see that ∆V (k) < 0 holds if Ψ < 0.

From the above discussions, we can see that for all k ∈ Z+ if (4)-(5) hold, ∆V (k) < 0, which
completes the proof. 2

Remark 3. Theorem 2 presents a stability result which depends on the maximum delay bound
hM . The conditions in Theorem 2 are expressed in terms of LMIs, and therefore, they can be
easily checked by using standard numerical software.

Remark 4. The delay interval [k − hM , k − 1] in the ID-D LFK is divided into two unequal
subintervals: [k − hM , k − α− 1] and [k − α, k − 1], where 0 < α < hM is a tuning parameter.
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Consequently, the different weighing matrices in the Lyapunov functional are used in various
subintervals and the information of delayed state x(k − α) can be taken into full consideration.
Further, using the subintervals and Lemma 1, the upper bounds of some terms in ∆V3(k) are
more accurately estimated than by using the previous methods since the upper bound hM of delay
h(k) on the interval 0 ≤ h(k) ≤ hM is substituted with two less conservative upper bounds α and
hM on the subintervals 0 ≤ h(k) ≤ α and α < h(k) ≤ hM , respectively. So the decomposition
method presented in Theorem 2 can reduce the value of MAUB.

An algorithm for seeking a corresponding values of α (0 < α < hM ) subject to (4)-(5), such
that the MAUB of hM has maximal value, can easily be obtained.

Algorithm 5. Step 1. Let h = 0 and α = 0.
Step 2. h = h+ 1.
Step 3. α = α+ 1.
Step 4. If inequalities (4)-(5) is feasible, then αm = α, α = 0 and go to step 2; otherwise, go

to step 5.
Step 5. If α = h− 1, go to step 6; otherwise, go to step 3.
Step 6. The maximal delay is hM = h− 1 and the minimal value of tuning parameterαis αm.

3 Numerical examples

In this section, two examples are presented. The obtained results have been compared with
several existing criteria in the literature.

Example 1. Consider system (1) with the time-varying delay h(k) satisfying (2) and

A =

[
0.8 0

0 λ

]
, B =

[
−0.1 0

−0.1 −0.1

]
, λ ∈ {0.91, 0.97}

Case 1 (λ = 0.91). This system was considered in [13] and [22]. Table 1 lists the MAUB of delay
obtained from Theorem 2 of this paper. For comparison, results from [13, 22] are also listed in
the table. It is clear that Theorem 2 leads to better results than those in [13, 22].

Table 1. Comparison of MAUB of delay based on different ex-
isting methods for λ = 0.91

Method hM
[13] 41
[22, Corollary 1] 42
Theorem 2 in this paper 46 for α = 19, · · · , 30

Case 2 (λ = 0.97). For comparison, the results from [2, 6, 7, 9] and this paper are listed in
Table 2. It is clear that Theorem 2 gives much better results than the existing delay-dependent
criteria.

Example 2. Consider system (1) with the time-varying delay h(k) satisfying (2) and
Case 1. [1, 14, 15]

A =

[
0.6 0

0.35 0.7

]
, B =

[
0.1 0

0.2 0.1

]
Case 2. [8, 9, 15, 24]

A =

[
0.8 0

0.05 0.9

]
, B =

[
−0.1 0

−0.2 −0.1

]
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Table 2. Comparison of MAUB of delay based on different ex-
isting methods for λ = 0.97

Method hM
[9, Theorem 1] 4
[7, Theorem 3] 8
[6, Lemma 2] 8
[2, Theorem 1] 10
Theorem 2 in this paper 17 for α = 9, 10, 11

For the above systems, the LMIs conditions for delay-independent stability [16]

P = P T > 0, Q = QT > 0,

 −P +Q 0 ATP

∗ −Q BTP

∗ ∗ −P

 < 0

are feasible, from which we deduce that both systems are stable for 0 ≤ h(k) < ∞. Using the
existing delay-dependent criteria, it can be obtained only the finite value of MAUB, which will
guarantee the stability of the given systems. Tables 3 (Case 1) and 4 (Case 2) list the intervals
of time delay for different methods. Based on Theorem 2 in this paper, large numerical values of
MAUB are obtained (hM → ∞). Hence, using of Theorem 2 leads to better results than those
in [1, 8, 9, 14, 15, 25].

Table 3. Interval of time delay for Case 1
Method Interval
[1, Th. 3.1] 2 ≤ h(k) ≤ 10

[15, Theorem 1], [15, Theorem 2] 2 ≤ h(k) ≤ 13

[14, Theorem 3.2] 0 ≤ h(k) ≤ 12

[2, Theorem 1] 2 ≤ h(k) ≤ 15

Theorem 2 in this paper 0 ≤ h(k) ≤ 10 · 1021

Table 4. Interval of time delay for Case 2
Method Interval stability
[9, Theorem 1] 0 ≤ h(k) ≤ 6

[15, Theorem 2] 0 ≤ h(k) ≤ 10

[8, Theorem 1] 0 ≤ h(k) ≤ 12

[24, Theorem 5] 2 ≤ h(k) ≤ 19

[24, Theorem 7] 2 ≤ h(k) ≤ 20

Theorem 2 in this paper 0 ≤ h(k) ≤ 9.61 · 108
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4 Conclusion

In this paper, the problem of obtaining delay dependent stability conditions for a class of
systems with interval time-varying delay is discussed. A new interval delay-dependent Lyapunov–
Krasovskii functional is constructed by splitting the delay interval into two unequal intervals by
tuning parameter α. The free-weighting matrices and model transformation are not used in order
to derive delay-dependent criteria. Numerical examples show that the results proposed in this
paper are much less conservative while comparing the maximum allowable upper bound of delay
with the existing results in the literature.
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