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Abstract: This paper deals with the control of a quadruple tank process. A gain
scheduling controller, a linear parameter varying controller and an input-output feed-
back linearization controller are proposed for the quadruple tank process. The deriva-
tion of the three control schemes is presented in details. Moreover, the proposed con-
trol schemes are implemented using an experimental setup. The experimental results
indicate that the developed control schemes work well and are able to regulate the
output of the process to its desired value. Additionally, the implementation results
demonstrate that the input-output feedback linearization controller gave the best per-
formance.
Keywords: quadruple tank process, gain scheduling control, linear parameter vary-
ing control, input-output feedback linearization control.

1 Introduction

The quadruple tank process is a highly nonlinear system which has been used to test different
multivariable control schemes. Several controllers were designed for this process. For example,
a decentralized proportional integral (PI) controller [1, 2], a decentralized PI controller with
sliding mode features [3], a decoupled proportional integral and derivative (PID) controller [4],
an internal model controller [5], a model predictive controller [6, 7], a quantitative feedback
controller [8] and an H∞ controller [9] were proposed for the control of the quadruple tank
process. These control schemes were designed using the linearized model of the quadruple tank
process around different operating points. Therefore, these controllers can not guarantee good
performances of the controlled system over the whole operating range of the quadruple tank
process because of the inherent nonlinearities of the quadruple tank process.
In order to achieve good performances over the whole operating range of the quadruple tank
process, other control techniques were reported in the literature. Nonlinear model predictive
controllers where designed in [10, 11] for the process. In [12], a sliding mode controller was
designed and implemented on the process. However, it should be noted that a singularity is
encountered when using this controller. The singularity occurs when one of the four tanks is
empty. Hence, the proposed controller can not be implemented in such case. In [13], a linear
decentralized PI controller was designed based on the approximated nonlinear model of the
process over a selected range of operation of the process. The simulation results show a good
tracking behavior over the selected operating range. On the other hand, the work in [14] dealt
with the design of a gain scheduling PI controller for the process; the gain scheduling design is
done according to the operating input voltages.
In this paper, three well-known controllers consisting of a gain scheduling control [15-17], a linear
parameter varying control [18-21] and an input-output feedback linearization control [22,23] are
designed and implemented to control the water levels in the quadruple tank process over the
whole range of operation of the process. Moreover, an integral action is included in the three
control schemes in order to achieve good tracking performances [22]. The implementation results
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are presented to show the effectiveness of the proposed control schemes.
The paper is organized as follows. The dynamic model of the process and the control objective
of the paper are presented in sections 2 and 3 respectively. A gain scheduling controller, a linear
parameter varying controller, and an input-output feedback linearization controller are designed
in sections 4, 5 and 6 respectively. The experimental results are presented and discussed in
section 7. Finally, some concluding remarks are given in section 8.

2 The dynamic model of the quadruple tank process

A schematic diagram and a picture of the quadruple tank process are shown in Fig. 1. The
system consists of four cylindrical tanks and two pumps; these pumps are connected to valves
for water distribution. Pump 1 is used to distribute water from the water reservoir to tanks 1
and 4, while pump 2 is used to distribute water to tanks 2 and 3. Four pressure sensors which
are located at the bottom of each tank are used to measure the water levels in the tanks.

Figure 1: A schematic diagram (left) and a picture (right) of the quadruple tank process

The dynamic model of the quadruple tank process can be written as [1]:
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where p1 = a1
√
2g/A1, p2 = a3

√
2g/A1, p3 = γ1k1/A1, p4 = a2

√
2g/A2, p5 = a4

√
2g/A2,

p6 = γ2k2/A2, p7 = a3
√
2g/A3, p8 = (1 − γ2)k2/A3, p9 = a4

√
2g/A4, and p10 = (1 − γ1)k1/A4.

The variables and the parameters of the process are the water level hi, the cross-section area Ai,
the outlet cross-section area ai of tank i (i = 1, 2, . . . , 4), the voltage vj applied to pump j, the
constant gain kj of pump j, the constant of the valve γj connected to pump j (j = 1, 2). The
output of the system is y and the gravitational acceleration is g.
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3 The control objective of the paper

The objective of the paper is to design control schemes such that the outputs of the process,
i.e. h1 and h2, asymptotically converge to the desired levels ho1 and ho2. The steady state
value of the applied voltage vector vo = [vo1, v

o
2]

T which can maintain the water level vector at
ho = [ho1, h

o
2, h

o
3, h

o
4]
T must satisfy the following equilibrium equations:

−p1
√
ho1+p2

√
ho3+p3v

o
1=0, −p4

√
ho2+p5

√
ho4+p6v

o
2=0, −p7

√
ho3+p8v

o
2=0, −p9

√
ho4+p10v

o
1=0 (2)

Clearly, equations (2) imply that one can only select the values of two water levels. For instance,
if we select the values of ho1 and ho2 (since they represent the desired outputs of the system)
then it can be shown that the steady state values of ho3 and ho4 must satisfy the following matrix
equation: [ √

ho3√
ho4

]
=

[
p2/p1 (p3p9)/(p1p10)

(p6p7)/(p4p8) p5/p4

]−1[ √
ho1√
ho2

]
(3)

It should be noted that the inverse of the matrix in (3) exists when p2p5p8p10 ̸= p3p6p7p9, which
is equivalent to γ1 + γ2 ̸= 1.

4 Design of a gain scheduling controller

In this section, a gain scheduling controller is designed using the classical approach of gain
scheduling design [15]. At first, the nonlinear dynamic model of the process under a linear con-
troller is linearized around several operating points. Then, a linear controller is designed at each
operating point to meet the required specifications. Finally, the resulting linear controllers are
interpolated according to the water levels h1 and h2 to produce a single gain scheduling con-
troller. The obtained controller is used to regulate the output of the process from one operating
point to another operating point.
Consider the following state feedback integral controller:

v = −Khh−Kσσ −Kee, σ̇ = e = r − y (4)

where r = [r1, r2]
T is the reference vector and Kh, Kσ, and Ke are the gains of the controller.

The closed loop system when using the controller (4) into the model of the process given by (1)
is such that:

ḣ = f(h)−B[(Kh −KeC)h+Kσσ +Ker], σ̇ = r − Ch, y = Ch (5)

When r = [ho1, h
o
2]
T , the closed loop system (5) has an equilibrium point at (ho, σo) where

ho satisfies (3), e = 0, and σo = −K−1
σ [Khh

o + vo] provided that the matrix Kσ ∈ R2×2 is
nonsingular. To obtain a linear system, we linearize the closed loop system (5) about (ho,σo) to
yield:

ẋ=(
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]
−
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B
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]
)

[
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]
︸ ︷︷ ︸

x
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 (6)

where A = ∂f(h)/∂h|h=ho . The gains Kh, Kσ, and Ke are designed using the linearized feedback
system (6) such that all closed loop poles lie inside a prescribed region shown in Fig. 2. Note
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that by placing the closed loop poles inside the shaded region, we ensure that good responses are
obtained. This is the case because by placing the closed loop poles inside this region results in
i) a minimum decay rate τ , ii) a minimum damping ratio ζ = cos(φ), and iii) acceptable control
gains penalized by ρ.
Now, assume that the output of the process needs to be regulated to the ith operating point
(ho

i

1 , h
oi
2 ) and then to the (i+ 1)th operating point (ho

i+1

1 , ho
i+1

2 ). To achieve this task, the lin-
earized feedback system given by (6) is used to obtain a set of gains {K l

h,K
l
σ,K

l
e}, (l = 1, . . . , 4),

which are designed to meet the above mentioned specifications at each of the following operat-
ing points: (hoi1 ,hoi2 ), (hoi1 ,hoi+1

2 ), (hoi+1

1 ,hoi2 ) and (hoi+1

1 ,hoi+1

2 ), respectively. The corresponding
set of controllers are given by vl = −K l

hh − K l
σσ − K l

ee for l = 1, 2, . . . , 4. Using the bilinear
interpolating method [16], these control outputs are interpolated according to the water levels
h1 and h2 to produce the following gain scheduling controller:

v = η1v
1 + η2v

2 + η3v
3 + η4v

4 (7)

where η1=(ho
i+1

1−h1)(ho
i+1

2−h2)/((ho
i+1

1−ho
i

1 )(h
oi+1

2−ho
i

2 )), η2=−(ho
i+1

1−h1)(ho
i

2−h2)/((ho
i+1

1−ho
i

1 )(h
oi+1

2−ho
i

2 )),
η3=−(ho

i

1− h1)(ho
i+1

2− h2)/((ho
i+1

1− ho
i

1 )(h
oi+1

2− ho
i

2 )) and η4=(ho
i

1− h1)(ho
i

2− h2)/((ho
i+1

1− ho
i

1 )(h
oi+1

2− ho
i

2 )).
The controller given by (7) is applied to the quadruple tank process to regulate (h1, h2) to
the operating point (ho

i

1 , h
oi
2 ) and then to the next operating point (ho

i+1

1 , ho
i+1

2 ). It should be
noted that the controller (7) does not guarantee the stability and the performance of the system
over the whole range of operation of process; this drawback can be overcome by using the LPV
approach developed in the next section.

Im

Re

Figure 2: Pole-placement region

5 Design of a linear parameter varying controller

This section presents the design of a linear parameter varying (LPV) controller for the quadru-
ple tank process. In order to design an LPV controller, the process model (1) needs to be written
as a quasi-LPV model. To achieve this goal, a standard polynomial fitting technique [26] is used
to approximate the nonlinear terms

√
hi with ihi for 0 ≤ hi ≤ hi = 30 cm, where i is obtained

as i = 0.583− 4.036× 10−2hi+1.73× 10−3h2i − 3.659× 10−5h3i +2.981× 10−7h4i for i = 1, . . . , 4.
It can be shown that the parameters i are bounded such that 0.1 = i ≤ i ≤ i = 0.6. Notice that
the parameter vector = [1, 2, 3, 4]

T is varying inside a hyper-rectangle region with 24 vertices
defined as Λj ∈ {(υ1,j , . . . , υ4,j)| υi,j ∈ {i, i}} for j = 1, . . . , 24, where υi,j ∈ R is the ith element
of Λj ∈ R4.
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Therefore, the process model (1) can be written in the following quasi-LPV form:
ḣ1

ḣ2

ḣ3

ḣ4
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
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]
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
h1

h2

h3

h4


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(8)

Let the LPV state feedback integral controller be such that:

v = −(K̄h0 +

4∑
i=1

iK̄hi︸ ︷︷ ︸
K̄h()

)h− K̄σσ − K̄ee, σ̇ = e = r − y (9)

where the controller gains K̄hl
(l = 0, 1, . . . , 4), K̄σ, and K̄e are designed such that the required

specifications are met for all admissible values of the parameter vector .
The closed loop dynamic model of the process when using (8) and (9) is such that:

ẋ = (

[
A() 04×2

−C 02×2

]
︸ ︷︷ ︸

Ā()

−

[
B

02×2

]
︸ ︷︷ ︸

B̄

[
K̄he() K̄σ

]︸ ︷︷ ︸
K̄()

)

[
h

σ

]
︸ ︷︷ ︸

x

+

[
−BK̄e

I2×2

]
︸ ︷︷ ︸

Bc

r, y =
[
C 02×2

]︸ ︷︷ ︸
Cc

x(10)

The gain K̄() = [K̄he() K̄σ] is designed to guarantee the stability of the closed loop system for
any possible trajectory . To obtain a good performance of the closed loop system, the closed
loop poles of the system (10) (at the 24 vertices) are forced to lie in the left half of the complex
plane and inside the region shown in Fig. 2. This objective is achieved by considering the LPV
gain L() such that L() = L0 +

∑4
i=1 iLi = K̄()P , where P is a positive definite matrix. Then,

the following set of LMIs [20] are solved for P and Ll (l = 0, 1, . . . , 4):

M(Λj) +MT (Λj) + 2τP < 0,[
−ρP M(Λj)

MT (Λj) −ρP

]
< 0,

[
sin(φ)(M(Λj)+M

T (Λj)) cos(φ)(M(Λj)−MT (Λj))

cos(φ)(MT (Λj)−M(Λj)) sin(φ)(M(Λj)+M
T (Λj))

]
< 0(11)

where M(Λj) = Ā(Λj)P − B̄L(Λj) for j = 1, 2, 3, . . . , 24. Once the matrices P and Ll (l =
0, 1, . . . , 4) are obtained using any available software such as the LMI Control Toolbox [25], the
controller gains K̄h0 , K̄hl

and K̄σ are calculated using the matrix equations
[
K̄h0 − K̄eC K̄σ

]
=

L0P
−1 and

[
K̄hl 02×2

]
= LlP

−1 for l = 1, . . . , 4, where the gain K̄e is designed to improve
the closed-loop performance of the system.
The following proposition gives the main result of this section.

Proposition 1. The LPV controller (9) with gains obtained using (11) guarantees the stability
of the closed loop system (10) and the regulation of the system output y to its desired value over
the whole range of operation of the process. Furthermore, the closed loop poles at each vertex of
the scheduling variable are located inside the region shown in Fig. 2.

Proof: Consider the matrix equation K̄() = L()P−1. Let V = xTP−1x be a Lyapunov function
candidate for the system (10), then the time derivative of V along the trajectories of the system
while assuming that r = 0 is given by V̇ = (P−1x)T [A()P −B L()+PAT

()−L()TBT
](P−1x) =
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(P−1x)T [M() +MT ()](P−1x). Given that M(Λj) +MT (Λj) < −2τP < 0 at each vertex Λj .
then M()+MT () < −2τP < 0 for all admissible values of which implies that V̇ < 0. Therefore,
the LPV controller (9) guarantees the stability of the closed loop system (10). Furthermore, the
integral term in the LPV controller (9) ensures the regulation of the output to its desired level.
Moreover, the LMIs (11) ensure that the closed loop poles at each vertex Λj are located inside
the region shown in Fig. 2 (see [20]). 2

The LPV control design approach is computationally intensive because the LMIs (11) need
to be solved at the 24 vertices. Therefore, the following section presents a controller which is less
computationally intensive than the proposed LPV controller.

6 Design of an input-output feedback linearization controller

This section deals with the design of an input-output feedback linearization controller for the
quadruple tank process.
Let the input-output feedback linearization controller be such that:

v1 = (1/p3)[κ1e1+κ2

∫ t

0
e1dt́+p1

√
h1−p2

√
h3], v2 = (1/p6)[κ3e2+κ4

∫ t

0
e2dt́+p4

√
h2−p5

√
h4] (12)

where e1 = r1 − h1 and e2 = r2 − h2. The positive controller gains κ1, κ2, κ3, and κ4 are chosen
such κ1 > 2

√
κ2 and κ3 > 2

√
κ4.

The following proposition gives the main result of this section.

Proposition 2. The input-output feedback linearization controller controller (12) when applied
to the quadruple tank process (1) guarantees the exponential convergence of the water levels h1 and
h2 to their desired values ho1 and ho2 respectively as t tends to infinity. Moreover, the controller
(12) guarantees the boundedness of the water levels h3(t) and h4(t) (i.e., 0 ≤ h3(t) ≤ q1, and
0 ≤ h4(t) ≤ q2 for some positive constants q1 and q2).

Proof: The application of the controllers v1 and v2 given by (12) to the dynamical model of the
quadruple tank process (1) results in the following error dynamics:

ė1 = −κ1e1 − κ2
∫ t

0
e1dt́, ė2 = −κ3e2 − κ4

∫ t

0
e2dt́ (13)

The error dynamics (13) can be written as ë1 + κ1ė1 + κ2e1 = 0 and ë2 + κ3ė2 + κ4e2 = 0.
By choosing κ1 > 2

√
κ2 and κ3 > 2

√
κ4, we are guaranteed that the characteristic equations

s2 + κ1s+ κ2 = 0 and s2 + κ3s+ κ4 = 0 have negative real roots. In this case, the solutions of
(13) are given by:

e1(t) = c1exp(−λ1t) + c2exp(−λ2t), e2(t) = c3exp(−λ3t) + c4exp(−λ4t) (14)

where −λi (i = 1, . . . , 4) are the roots of the above characteristic equations, and ci (i = 1, . . . , 4)
are constants which depend on the initial conditions and the values of the λi. Therefore, the
errors e1 and e2 exponentially converge to zero as t tends to infinity (i.e., the water levels h1 and
h2 exponentially converge to their desired levels ho1 and ho2 respectively as t tends to infinity).
Using equations (12)-(14), it can be shown that ḣ3 and ḣ4 in (1) can be written as follows:

ḣ3 = −p7
√
h3 − (p5p8/p6)

√
h4 +m1(t), ḣ4 = −(p2p10/p3)

√
h3 − p9

√
h4 +m2(t) (15)
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where,

m1(t) = (p8/p6)(c3λ3exp(−λ3t) + c4λ4exp(−λ4t) + p4

√
ho2 − c3exp(−λ3t)− c4exp(−λ4t))

m2(t) = (p10/p3)(c1λ1exp(−λ1t) + c2λ2exp(−λ2t) + p1

√
ho1 − c1exp(−λ1t)− c2exp(−λ2t))

It can be shown that m1(t) and m2(t) are bounded from above for all t ≥ 0, i.e., m1(t) ≤ m1

and m2(t) ≤ m2 where m1 and m2 are some constants. Hence, it can be concluded that ḣ3 ≤
−p7
√
h3 +m1 and ḣ4 ≤ −p9

√
h4 +m2.

Consider the differential equation ˙̂
h3 = −p7

√
ĥ3 + m1 with the initial value ĥ3(0) = h3(0).

Let Lyapunov function candidate V1(ĥ3) = ĥ23, then V̇1 = −2ĥ3(p7
√
ĥ3 − m1). Notice that

V̇1 is negative when
√
ĥ3 > (m1/p7) (which corresponds to V1 > (m1/p7)

4). This means that
all solutions starting such that V1(0) > (m1/p7)

4 will decrease monotonically but will never
go below the line V1 = (m1/p7)

4, while all solutions starting such that V1(0) ≤ (m1/p7)
4 will

increase monotonically but they will never cross the line V1 = (m1/p7)
4 because V̇1 is negative

for V1 > (m1/p7)
4. Therefore, we can conclude that V1 ≤ max{V1(0), (m1/p7)

4} or ĥ3 ≤
max{ĥ3(0), (m1/p7)

2}. The comparison principle [22] leads us to conclude that h3(t) ≤ ĥ3(t).
Since h3(t) ≥ 0, we can conclude that 0 ≤ h3(t) ≤ q1 := max{h3(0), (m1/p7)

2}. Similar
arguments can be used to conclude that 0 ≤ h4(t) ≤ q2 := max{h4(0), (m2/p9)

2}. 2

Therefore, it can be concluded that the proposed controller (12) guarantees the exponential
convergence of h1 and h2 to their desired values as well as the boundedness of h3 and h4.

20 40 60 80 100 120
Time (s)

20 40 60 80 100 120

Time (s)

Figure 3: The water levels of tank 1 (solid: left) and tank 2 (solid: right) when using the gain
scheduling controller. The references r1 and r2 are depicted using the dashed lines

20 40 60 80 100 120

Time (s)

20 40 60 80 100 120
Time (s)

Figure 4: The inputs v1 (left) and v2 (right) when using the gain scheduling controller
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20 40 60 80 100 120
Time (s)

20 40 60 80 100 120
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Figure 5: The water levels of tank 1 (solid: left) and tank 2 (solid: right) when using the linear
parameter varying controller. The references r1 and r2 are depicted using the dashed lines

20 40 60 80 100 120
Time (s)

20 40 60 80 100 120
Time (s)

Figure 6: The inputs v1 (left) and v2 (right) when using the linear parameter varying controller

7 Experimental results

The three proposed control schemes are implemented using an experimental setup of the
quadruple tank process manufactured by Quanser Consulting Inc. [24]. The physical parameters
of the quadruple tank system are as follows: A1 = A2 = A3 = A4 = 15.5179 cm2, a1 = a2 =
a3 = a4 = 0.1781 cm2, g = 981 cm/s2, k1 = k2 = 3.3 cm3/V s, γ1 = 0.66, and γ2 = 0.75. The
sampling rate of the process is 10−3 seconds. The reference signal r = [r1, r2]

T is chosen such
that r1 changes its amplitude from 5 cm to 10 cm at t = 50 sec and r2 changes its amplitude
from 4 cm to 8 cm at t = 50 sec.
At first, the gain scheduling controller given by (7) is used to regulate the output y to the
operating point (ho

i

1 , h
oi
2 ) = (5 cm, 4 cm) and then to the operating point (ho

i+1

1 , ho
i+1

2 ) =
(10 cm, 8 cm). The controller gains, at each operating point, are designed such that the closed
loop poles lie inside the region shown in Fig. 2 where τ = 0.03, ζ = 20◦ and ρ = 2. The
experimental results are shown in Figs. 3-4. Fig. 3 shows the water levels in tanks 1 and 2, while
Fig. 4 shows the input voltages to pump 1 and pump 2. It can be seen from the figures that the
water levels h1 and h2 track the desired reference signal r. However, the water level h1 exhibits
a percent overshoot of about 20 % and a settling time of about 20 seconds while the water level
h2 exhibits a percent overshoot of about 6 % and a settling time of about 20 seconds. Also, the
input voltages stay within reasonable ranges. It should be noted that the performance of the
system can be further improved through proper tuning of the parameters of the controller.

Secondly, the linear parameter varying controller given by (9) is designed and implemented
such that the system is stable over the whole operating range 0 ≤ hi ≤ 30 cm; the closed loop
poles are located inside the region shown in Fig. 2 where τ = 0.03, ζ = 20◦ and ρ = 2. The
experimental results are shown in Figs. 5-6. Fig. 5 shows the water levels in tanks 1 and 2, while
Fig. 6 shows the input voltages to pump 1 and pump 2. It can be seen from the figures that the
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Figure 7: The water levels of tank 1 (solid: left) and tank 2 (solid: right) when using the input-
output feedback linearization controller. The references r1 and r2 are depicted using the dashed
lines
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Figure 8: The inputs v1 (left) and v2 (right) when using the input-output feedback linearization
controller

water levels h1 and h2 track the desired reference signal r with no overshoot and a settling time
of about 10 seconds for both h1 and h2. Also, it can be seen that the input voltages stay within
reasonable ranges.
Thirdly, the input-output feedback linearization controller given by (12) is applied to the quadru-
ple tank process. The parameters of the controller are taken to be κ1 = κ3 = 3 and κ2 = κ4 = 1.
The experimental results are shown in Figs. 7-8. Fig. 7 shows the water levels in tanks 1 and 2,
while Fig. 8 shows the input voltages to pump 1 and pump 2. It can be seen from the figures
that the water levels h1 and h2 track the desired reference signal r very well. Also, the input
voltages stay within reasonable ranges (but display a bit more chattering).
To compare the performances of the proposed control schemes, the errors e1 = r1 − h1 and
e2 = r2−h2 are plotted in Fig. 9. It is clear from this figure that all the errors converge to zero.
However, the errors for the input-output feedback linearization controller are less than the errors
of the other two controllers. In addition, the figures show that the linear parameter varying
controller gave better results than the gain scheduling controller. Furthermore, it is noted that
the input-output feedback linearization controller can be implemented easily.
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Figure 9: The errors e1 (left) and e2 (right) when using the gain scheduling controller (a), the
linear parameter varying controller (b) and the input-output feedback linearization controller (c)
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8 Conclusion

A gain scheduling controller, a linear parameter varying controller, and an input-output feed-
back linearization controller are proposed for the quadruple tank process. At first, we propose
to use a gain scheduling controller. However, this controller does not ensure the stability and
the performance of the closed loop system over the whole operating range. Therefore, a linear
parameter varying controller which guarantees the stability and the performance of the system
over the desired operating range is proposed to control the process. However, the design of the
linear parameter varying controller is quite complicated. Therefore, to reduce the design/imple-
mentaion complexity, an input-output feedback linearization controller is derived for the process.
Experimental results are presented for the three control schemes. The implementation results
indicate that the three proposed control schemes work well and are able to regulate the output
of the system to its desired value. However, the implementation results indicate that the input-
output feedback linearization controller gave the better performance in comparison with the
other two controllers. Future research will address the design of fault-tolerant control schemes
for the quadruple tank process.
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