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Abstract:
In classification based on multiple-criteria linear programming (MCLP), we need
to find the optimal solution of the MCLP problem as a classifier. According to
dual theory, multiple criteria can be switched to multiple constraint levels, and
vice versa. A MCLP problem can be logically extended into a multiple-criteria
and multiple-constraint levels linear programming (MC2LP) problem. In many
applications, such as credit card account classification, how to handle two types of
error is a key issue. The errors can be caused by a fixed cutoff between a "Good"
group and a "Bad" group. Two types of error can be systematically corrected by
using the structure of MC2LP, which allows two alterable cutoffs. In order to do so,
a penalty (or cost) is imposed to find the potential solution for all possible trade-offs
in solving MC2LP problem. Some correction strategies can be investigated by the
solution procedure. Furthermore, a framework of decision supporting system can be
illustrated for various real-life applications of the proposed method.

Keywords: Classification, Two Types of Error, Multiple-Criteria Linear Program-
ming, Multiple-Criteria and Multiple-Constraint Levels Linear Programming, Deci-
sion Supporting System.

1 Introduction

Taking advantage of many optimization based classification algorithms, the transactions data
collected by the bank can be analyzed in many ways. As a result, the profit of the new accounts
can be predicted, that is, which accounts are inclined to be bankrupt and which ones have good
credit. However, for many real-life problems, the accounts cannot be separated by the hyperplane
in spite of using some kernel techniques [1]. Thus, how to decrease the number of misclassified
samples becomes a big issue. In some applications, misclassifications have unequal importance.
For example, in credit card account classification, it is essential to classify credit card customers
precisely in order to provide effective services while avoiding losses due to bankruptcy from users’
debt. Actually, even 0.01 percent increase in early detection of bad accounts can save millions,
while losing a good account does not influence much [2], [3].

Linear programming (LP) is a useful tool for discriminating analysis of a problem given
appropriate groups (e.g., "Good" and "Bad") [4]. And multiple-criteria linear programming
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(MCLP) has improved the result by minimizing the sum external deviations and maximizing the
sum of the internal deviations simultaneously. Mostly, the cutoff of MCLP is fixed to be a given
number (e.g., 1), while this will cause some other problems. For instance, it cannot involve those
possible cases that can achieve the ideal cutoff score to be zero. Formally, this means that the
solutions obtained by linear programming are not invariant under linear transformations of the
data [2], [3]. Particularly, it is not invariant under vector addition. Furthermore, if the classes
of the samples exchange, i.e. "Good" and "Bad" classes swap to each other, the solutions are
different.

Noticing these problems, some researchers made many efforts on this topic. Consequently, a
new model based on multiple-criteria and multiple-constraint levels linear programming (MC2LP)
was posed [5], [6]. However, these methods were domain-driven, which meant they needed some
domain knowledge to help finding the best cutoff. Nevertheless, our new models are all auto-
matically solving. As a result, it is useful to solve the problems that no domain knowledge is
prepared. In particular, it solves classification problem twice. The maximal external deviation
is found for the first time, while MC2LP is exploited to search for the optimal hyperplane based
on minimizing two types of error for the second time.

In addition to this, we also provide another MC2LP based model for the purpose of errors
correction. In this model, we fix the cutoff to be 1 whereas we also add two more hyperplanes
to detect the misclassified points carefully. Accordingly, a subtle discussion is involved regarding
the relationship between two types of error and the deviations . In fact, in the statistics theory,
two types of error influence on each other oppositely. In other words, reducing of Type I error
will cause the increasing of Type II error, and vice versa. Hence, we focus on different types of
error respectively. Moreover, some more elaborate introductions are demonstrated in the next
sections.

2 Multiple-criteria and Multiple-constraint Levels Linear Pro-
gramming for Classification

2.1 The MCLP model for classification

Given a set of n variables about the records XT = (x1, x2, ..., xl), and then let xi =
(xi1, xi2, ..., xin)

T be one sample of data, where i = 1, 2, ..., l and l is the sample size. In lin-
ear discriminant analysis, data separation can be achieved by two opposite objectives, that is,
minimizing the sum of the deviations (MSD) and maximizing the minimum distances (MMD) of
observations from the critical value [4]. That is to say, in order to solve classification problem,
we need to minimize the overlapping of data, i.e. α, at the same time, to maximize the distances
from the well classified points to the hyperplane, i.e. β.

However, it is difficult for traditional linear programming to optimize MMD and MSD simul-
taneously. According to the concept of Pareto optimality, we can check all the possible trade-offs
between the objective functions by using multiple-criteria linear programming algorithm.

The MCLP model can be described by Figure 1:
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Figure 1: MCLP model

Moreover, the first Multiple Criteria Linear Programming (MCLP) model can be described
as follows:

min
∑
i

αi

max
∑
i

βi

s.t. AiX = b+ αi − βi, Ai ∈ Bad,

AiX = b− αi + βi, Ai ∈ Good,

αi, βi > 0, i = 1, 2, ..., l

Here, αi is the overlapping and βi is the distance from the training sample xi to the discrim-
inator (w · xi) = b (classification separating hyperplane).

2.2 Discussion of the cutoff b

A boundary value b (cutoff) is often used to separate two groups, where b is unrestricted.
A problem caused by treating b as a variable will meet many cases of no solution. For some
applications, the user can choose a fixed value of b (b = 1) to get a solution as the classifier. As
a result, efforts to improve the accuracy rate of classification have been greatly confined to the
unrestricted characteristics of b (that is, a given b is put into calculation to find coefficients w)
according to the user’s experience facing the real time data set [3].

In such procedure, the goal of finding the optimal solution for classification question is re-
placed by the task of testing boundary b. That is to say, if b is given, we find a classifier using
an optimal solution by solving the model above.

However, now we will point out the drawbacks of handling model in this way. At first, fixing
b = 1 will make the solutions different under vector addition (one kind of linear transformations).
Besides, the solution will change if we swap the classes of "Bad" and "Good", which seems to
be illogical. Thus, we will introduce the examples below to illustrate these two issues in the rest
of this part.

Example 1. In figure 2, there are 20 points (10 points belong to class -1, 10 points belong to
class 1). On the left, there are coordinates of the points. On the right, the distribution of the
points is displayed. MCLP is applied to this data set and the solution is X = (0.58,−0.77).



Error Correction Method in Classification by Using Multiple-Criteria and Multiple-Constraint
Levels Linear Programming 979

Figure 2: data1

Figure 3: data2

And then, we transform the data by moving the points along the vector (1, 1), and the new data
coordinates and the distribution are shown in figure 3. It is obvious that the samples’ distribution
is the same as the former ones’, which means the optimal hyperplane will parallel to the former
one. Conversely, the result obtained by MCLP is X = (0.4,−0.4), which is quite different from
the former one.

In addition, if the classes are swapped, the result will change into X = (−0.15, 0.77), which
should be the same as the first one. For simplicity, in these experiments, the weight between two
criterions is always fixed to be (4, 1).

The discussion above shows that the result won’t be invariant under linear transformation.
This means when the data change, we cannot just keep b to be a fixed number, say 1, and then
solve the MCLP problem for different data set. Moreover, we need to take advantage of MC2LP
to trace a better b to decrease the number of errors.

2.3 The MC2LP model for classification

According to the discussion above, a non-fixed b is very important to our problem. At the
same time, for the simplicity and existence of the solution, b should be fixed in some interval.
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As a result, for different data, we fix b in different pairs of interval [bl, bu], where bl and bu are
two fixed numbers. Now our problem is to search the best cutoff between bl and bu at every
level of their trade-offs, that is to say, to test every point in the interval [bl, bu]. We keep the
multiple-criteria the same as MCLP, that is, MMD and MSD. And then, the following model is
posed [3]:

min
∑
i

αi

max
∑
i

βi

s.t. AiX = [bl, bu] + αi − βi, Ai ∈ Bad,

AiX = [bl, bu]− αi + βi, Ai ∈ Good,

αi, βi > 0, i = 1, 2, ..., l

where Ai, bl and bu are given, and X is unrestricted.
In the model, [bl, bu] represents a certain trade-off in the interval. By virtue of the technical of

Multiple-criteria and multiple-constraint levels linear programming (MC2LP), we can test each
trade-off between the multiple-criteria and multiple-constraint levels as follows:

min λ1

∑
i

αi − λ2

∑
i

βi

s.t. AiX = γ1bl + γ2bu + αi − βi, Ai ∈ Bad,

AiX = γ1bl + γ2bu − αi + βi, Ai ∈ Good,

αi, βi > 0, i = 1, 2, ..., l

Here, the parameters of λ×γ are fixed for each programming problem. Moreover, the advantage
of MC2LP is that it can find the potential solutions for all possible trade-offs in the parameter
space systematically [7] [8], where the parameter space is

{(λ, γ)|λ1 + λ2 = 1, γ1 + γ2 = 1}.

Of course, in this model, choosing a suitable pair for the goal problem is a key issue and
needs domain knowledge. Consequently, a non-parameter choosing MC2LP method should be
posed.

3 A New Two Alterable Cutoffs Model based on MC2LP

3.1 A framework of the new MC2LP model

For the original MCLP model, one cutoff is used to predict a new sample’s class, that is to
say, there is only one hyperplane. The former MC2LP model points out that we can define two
cutoffs instead of the original single cutoff. And then a systematical method can be used to
solve this problem. Consequently, all potential solutions at each constrain level trade-off can be
acquired. However, one problem is how to find the cutoffs, that is, bl and bu.

On one hand, we utilize two cutoffs to discover the solution of higher accuracy; on the other
hand, we hope the cutoffs can be obtained from the system directly. Inspired by the idea above,
we address our first MC2LP model, which solves the classification problem twice.

For the first step, MCLP model is used to find the vector of external deviations α. It is
a function of λ. For simplicity, we set b = 1. And then, we fix the parameter of λ to get
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one potential solution. Now a non-parameter vector of external deviations α is acquired. The
component (αi > 0) means the corresponding sample in the training set is misclassified. In other
words, Type I and Type II errors occur. According to the idea of MC2LP, we can detect the
result of every single MCLP by fixing the parameter of γ at each level in the interval [bl, bu].
Now, we find the maximal component of α:

αmax = max{αi, 1 ≤ i ≤ l}. (1)

Indeed, the smaller the weight of external deviations is, the bigger αmax is.
The misclassified samples are all projected into the interval [1 − αmax, 1 + αmax] according

to the weight vector X obtained from the MCLP model. In this way, we define bl and bu as
1 − αmax and 1 + αmax, respectively. It is easy to see, if we want to lessen the number of two
types of error, in effect, we just need to inspect the cutoffs by altering the cutoff in the interval
[1− αmax, 1 + αmax].

Moreover, for the second step, a new MC2LP classification model can be stated as follows:

min λ1

∑
i

αi − λ2

∑
i

βi

s.t. AiX = [1− αmax, 1 + αmax] + αi − βi, Ai ∈ Bad,

AiX = [1− αmax, 1 + αmax]− αi + βi, Ai ∈ Good,

αi, βi > 0, i = 1, 2, ..., l

where Ai, αmax are given, and X is unrestricted, [1− αmax, 1 + αmax] means a certain trade-off
in the interval. At the same time, λ = (λ1, λ2) is the parameter chosen in the first step.

Claim 2. Furthermore, all the notations as [a, b] in the models displayed in this paper mean a
certain trade-off in the interval, where a and b are two real numbers.

3.2 Discussion of the new MC2LP model

The most direct modification of the new MC2LP model is to transfer the single objective
function to be a multiple-criteria one. Because the vector of external deviations is a function of
λ, it is easy to observe that if the weight between external deviations and internal deviations
changes, α changes. Consequently, αmax alters. And the ideal α is the one that makes αmax not
too huge. In other words, we do not hope to check the weight that satisfies λ1 not too small.
Actually, some papers have proved that only if λ1 > λ2, then α · β = 0, which makes the model
meaningful [9]. As a result, we only need to check the parameters of objective functions that
make αmax not too big, in short, not too far away from the original one.

On the other hand, we expect αmax not too small. That is to say, we hope the model has
some generalization. Hence, two small positive numbers ϵ1 and ϵ2 are chosen manually. And
then, the interval is builded as [[1−αmax− ϵ1, 1−αmax+ ϵ1], [1+αmax− ϵ2, 1+αmax+ ϵ2]]. This
means that the lower and the upper bound of the interval should be trade-off of some intervals,
i.e. the multiple-constrained levels are actually multiple-constrained intervals. Indeed, checking
every trade-off of the intervals is the same as checking every trade-off of 1 − αmax − ϵ1 and
1 + αmax + ϵ2. In this case, we can consider the objective function as a multiple-criteria one. It
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Figure 4: the solutions for MC2LP

can be stated as follows:

min
∑
i

αi

max
∑
i

βi

s.t. AiX = [1− αmax − ϵ1, 1 + αmax + ϵ2] + αi − βi, Ai ∈ Bad,

AiX = [1− αmax − ϵ1, 1 + αmax + ϵ2]− αi + βi, Ai ∈ Good,

αi, βi > 0, i = 1, 2, ..., l

(2)

where Ai, αmax, ϵ1 and ϵ2 are given, and X is unrestricted. Here, ϵ1 and ϵ2 are two nonnegative
number.

Example 3. A numeric experiment will be introduced to demonstrate that our new MC2LP
model is effective. The data is the same as data1 that has been displayed in figure 2. As we have
shown above, the solution for MCLP is X = (0.58,−0.77). According to the result, we find there
are 6 misclassified points in the data, that is, point 5, 7 for class 1 and point 13, 15, 17, 19 for
class -1. Moreover, according to the solution, αmax is 1.57. Then, we keep ϵ1 = ϵ2 = 0. As a
result, [bl, bu] = [−0.57, 2.57] is obtained. Next, some trade-offs between multiple-constraint levels
have been chosen and the solutions are listed below. For consistency, we keep the weight between
the objective function to be (4, 1). The result is laid out in Figure 4. The green hyperplane
0.02 ∗ x1 − 0.08 ∗ x2 = 1 is obtained from negative cutoff. From the solutions, we can see that
different trade-offs between the constraint levels yield different results, while the solutions will be
the same when b is set to be the same sign. That is to say, for all the positive b, the solutions
generate the same hyperplane, and then, for all the negative b, the solutions create the same
hyperplane. Moreover, we want to prove this result as a lemma.
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Lemma 4. For certain trade-off between the objective functions, if b is maintained to be the same
sign, then hyperplanes, which are obtained in the MCLP model , keep the same. Furthermore,
different signs result in different hyperplanes.

Proof: Let’s assume that the trade-off between the objective functions is λ = (λ1, λ2) and X1

is the solution obtained by fixing b to be 1. And then, set b1 as an arbitrary positive number.
The MCLP model can be transformed as follows:

min λ1

∑
i

αi − λ2

∑
i

βi

s.t. AiX = b1 + αi − βi, Ai ∈ Bad,

AiX = b1 − αi + βi, Ai ∈ Good,

αi, βi > 0, i = 1, 2, ..., l

The problem above is the same as:

min λ1

∑
i αi

b1
− λ2

∑
i βi
b1

s.t. Ai
X

b1
= 1 +

αi

b1
− βi

b1
, Ai ∈ Bad,

Ai
X

b1
= 1− αi

b1
+

βi
b1
, Ai ∈ Good,

αi, βi > 0, i = 1, 2, ..., l

And then, we let α′
i =

αi
b1
, β′

i =
αi
b1
, X ′ = X

b1
. It is obvious that the solution is X ′ = X1

b1
and the

hyperplane AX ′ = b1 is the same as AX1 = 1.
Similarly, we can prove that when b is a negative number, the solution is the same as the one

that is obtained from b = −1.
As a result, we just need to compare the solutions (hyperplanes) resulted from b = 1 and

b = −1. For this case, it is easy to see that the signs before αi and βi swap when we transform
b = −1 into b = 1. If this happens, then the objective function changes into −λ1

∑
i αi+λ2

∑
i βi.

This means that the solutions will be different. 2

According to the lemma, we have the theorem below:

Theorem 5. For our MC2LP model (2) above, according to the solutions (hyperplanes), space
γ is divided into two non-intersect parts.

Remark 6. When [1 − αmax, 1 + αmax] is achieved, ϵ1 and ϵ2 are chosen to satisfy that 0 is
contained by the interval [1 − αmax − ϵ1, 1 + αmax + ϵ2]. In this case, for any λ, the solutions
belong to the trade-offs with same sign will result in the same hyperplane. In other words, there
are only two different hyperplanes corresponding to model (2). In short, the flexibility of model
(2) is limited.
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4 A New Model based on Correcting of Two Types of Error

In many classification models, including original MCLP model, two types of error is a big
issue. In credit card account classification, to correct two types of error can not only improve
the accuracy of classification but also help to find some important accounts.

Accordingly, many researchers have focused on this topic. Based on this consideration, more
attention should be paid to the samples that locate between two hyperplanes acquired by the
original MCLP model, that is, the points in the grey zone [10]. Consequently, we define the
external deviations and internal deviations related to two different hyperplanes, the left one and
the right one, that is, αl, αr, βl and βr.

Definition 7. The conditions the deviations should satisfy are stated as follows:

αl
i =


0, AiX < 1− αmax and Ai ∈ Bad;

AiX − (1− αmax), AiX ≥ 1− αmax and Ai ∈ Bad;

0, AiX ≥ 1− αmax and Ai ∈ Good;

(1− αmax)−AiX, AiX < 1− αmax and Ai ∈ Good.

αr
i =


0, AiX < 1 + αmax and Ai ∈ Bad;

AiX − (1 + αmax), AiX ≥ 1 + αmax and Ai ∈ Bad;

0, AiX ≥ 1 + αmax and Ai ∈ Good;

(1 + αmax)−AiX, AiX < 1 + αmax and Ai ∈ Good.

βl
i =


(1− αmax)−AiX, AiX < 1− αmax and Ai ∈ Bad;

0, AiX ≥ 1− αmax and Ai ∈ Bad;

AiX − (1− αmax), AiX ≥ 1− αmax and Ai ∈ Good;

0, AiX < 1− αmax and Ai ∈ Good.

βr
i =


(1 + αmax)−AiX, AiX < 1 + αmax and Ai ∈ Bad;

0, AiX ≥ 1 + αmax and Ai ∈ Bad;

AiX − (1 + αmax), AiX ≥ 1 + αmax and Ai ∈ Good;

0, AiX < 1 + αmax and Ai ∈ Good.

Figure 5 is a sketch for the model. In the graph, the green and the red lines are the left
and right hyperplane, bl and br respectively, which are some trade-offs in two intervals, i.e.
[1−αmax − ϵ2, 1] and [1, 1+ αmax + ϵ1]. And all the deviations are measured according to them
in different colors. For instance, if a sample in "Good" class is misclassified as "Bad" class, it
means αr

i > βl
i ≥ 0 and αl

i = βr
i = 0. And then, if a sample in "Bad" class is misclassified

as "Good" class, it means αl
i > βr

i ≥ 0 and αr
i = βl

i = 0. Thus, for the misclassified ones,
αr
i + αl

i − βr
i − βl

i should be minimized.
As a result, a more meticulous model could be stated as follows:

min
∑
i

(αr
i + αl

i)

min
∑
i

(αl
i − βr

i )

min
∑
i

(αr
i − βl

i)
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Figure 5: MC2LP model

max
∑
i

(βr
i + βl

i)

s.t. AiX = 1 + [0, αmax + ϵ1] + αr
i − βr

i , Ai ∈ Bad,

AiX = 1− [0, αmax + ϵ2] + αl
i − βl

i, Ai ∈ Bad,

AiX = 1 + [0, αmax + ϵ1]− αr
i + βr

i , Ai ∈ Good,

AiX = 1− [0, αmax + ϵ2]− αl
i + βl

i, Ai ∈ Good,

αr
i , α

l
i, β

r
i , β

l
i > 0, i = 1, 2, ..., l.

where Ai, αmax, ϵ1 > 0, ϵ2 > 0 are given, and X is unrestricted.
In Figure 5, for each point, there are at most two kinds of deviations nonzero. The objec-

tive functions appear to deal with the deviations according to the position shown in Figure 5,
respectively, whereas they have their own special meaning. That is to say, it measures two types
of error in some degree by means of the second and third objective functions. As a result, in
this new version of MC2LP, we not only consider the deviations respectively, but also take the
relationship of the deviations based on two types of error into account in the objective functions.
By virtue of MC2LP method, each trade-off between 1−αmax− ϵ2 and 1 for the left hyperplane
as well as each trade-off between 1 and 1 + αmax + ϵ1 for the right hyperplane can be checked.

After obtaining the weight vector X of the hyperplane, AX = 1 is still used to be the
classification hyperplane. However, in our new model, we minimize the distance between the
left hyperplane and the right one. In other words, we discover the hyperplane that genders the
smallest grey area.

Example 8. We show how the new MC2LP model based on error correction works. The data is
the same as data1 that has been displayed in figure 2. Two kinds of situations will be considered in
this example, that is, the pairs of hyperplanes are AX = 0.57, AX = 2.57 and AX = −6, AX =
10. We choose ϵ1, ϵ2 bigger than 10, so that we can get the pair of hyperplanes AX = −6, AX =
10. From the new model, we obtain two hyperplanes, which are displayed in Figure 6. The blue
hyperplane is obtained from AX = 0.57, AX = 2.57, while the green one is corresponding to
AX = −6, AX = 10. In both experiments, we fix the weight between αl

i, α
r
i and βl

i, β
r
i to be (4,1).

According to the result, we can see that the point marked is a misclassified sample corresponding
to the former pair, while it is classified correctly based on the latter one.
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Figure 6: solutions for new MC2LP model

Actually, in statistics, Type I and Type II errors are two opposite objectives. That is to say,
it is very hard to correct both of them at the same time. As a result, we modify the former
model into two different models focusing on two types of error respectively as follows:

min
∑
i

(αr
i + αl

i)

min
∑
i

(αl
i − βr

i )

max
∑
i

(βr
i + βr

i )

s.t. AiX = 1 + [0, αmax + ϵ] + αr
i − βr

i , Ai ∈ Bad,

AiX = 1 + αl
i − βl

i, Ai ∈ Bad,

AiX = 1 + [0, αmax + ϵ]− αr
i + βr

i , Ai ∈ Good,

AiX = 1− αl
i + βl

i, Ai ∈ Good,

αr
i , α

l
i, β

r
i , β

l
i > 0, i = 1, 2, ..., l.

(3)

where Ai, αmax and ϵ > 0 are given, and X is unrestricted. In this model,
∑

i(α
r
i − βl

i) is not
contained in the objective functions. This model can deal with Type II error, that is, classifying
a "Good" point to be a "Bad" one. Now we provide an example to illustrate the effect of model
(3).

Example 9. The data set is the same as data1 that has been displayed in figure 2. Here, the
label "-1" is regarded as "Good" class, and the label "1" is regarded as "Bad" class. Two kinds of
situations will be considered in this example, that is, the pairs of hyperplanes are AX = 1, AX =
2.57 and AX = 1, AX = 8. The left hyperplane is always kept to be AX = 1, which is also the
hyperplane that is used to be the classification hyperplane at last. We set ϵ as 10. It is obvious
that more remarkable result will be obtained from bigger ϵ. After fixing the weight of the objective
functions as (4,0.1,1), the outcome is shown in Figure 7. The blue hyperplane is obtained from
AX = 1, AX = 2.57, while the green one is corresponding to AX = 1, AX = 8. Two marked
points are the ones corrected by model (3) after the right hyperplane moving to the right.
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Figure 7: solutions for new MC2LP model (3)

As the result shown above, model (3) can correct Type II error in some degree. We conclude
this in the proposition below.

Proposition 10. Model (3) can correct Type II error by moving the right hyperplane to the right
based on the concept of multiple-constraint levels.

Remark 11. The second objective function in model (3) is nonzero for the samples in class "Bad"
and getting negative when the right hyperplane moving to the right. That is to say, we tolerate
some Type I errors. At the same time, the first objective function in model (3) renders Type II
errors an increasing punishment with moving the right hyperplane to the right. As a result, it
can correct Type II error in some degree.

Similarly to model (3), we pose model (4) which can deal with Type I error as follows:

min
∑
i

(αr
i + αl

i)

min
∑
i

(αr
i − βl

i)

max
∑
i

(βr
i + βr

i )

s.t. AiX = 1 + αr
i − βr

i , Ai ∈ Bad,

AiX = 1− [0, αmax + ϵ] + αl
i − βl

i, Ai ∈ Bad,

AiX = 1− αr
i + βr

i , Ai ∈ Good,

AiX = 1− [0, αmax + ϵ]− αl
i + βl

i, Ai ∈ Good,

αr
i , α

l
i, β

r
i , β

l
i > 0, i = 1, 2, ..., l.

(4)

where Ai, αmax and ϵ > 0 are given, and X is unrestricted. In this model,
∑

i(α
l
i − βr

i ) is not
contained in the objective functions. This model focuses on Type I error, that is, classifying a
"Bad" point to be a "Good" one.

Example 12. In order to compare model (3) and model (4), we draw two hyperplanes obtained
from these two models in the same graph. Figure 8 is the result of using pair AX = 1, AX = 8
for model (3) and pair AX = −0.57, AX = 1 for model (4).
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Figure 8: comparison of model (3) (4)

In figure 8, the green hyperplane is obtained from model (3) with less Type II errors, while
the blue one is acquired from model (4) with less Type I errors.

In the last two models introduced above, the first one defines AX = 1 as the left hyperplane,
at the same time, AX = 1+ [0, αmax + ϵ] as the right one. Oppositely, the second model defines
AX = 1 − [0, αmax + ϵ] as the left hyperplane, and then, AX = 1 as the right one. For each
trade-off, our model can deal with the misclassifications. In this way, two types of error can be
corrected respectively.

5 Conclusion

This paper focuses on how to correct two types of error. At first, the disadvantage of MCLP
by fixing the cutoff is addressed. And then, a MC2LP based model is introduced. According to
the topic of error correction, we develop MC2LP by measuring the deviations of the misclassified
points more sophisticatedly. In this way, we obtain a brand new hyperplane that is different
from the one obtained by MCLP model. Moreover, focusing on correcting two types of error, a
result with less errors is gained.
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