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Abstract:
The data mining techniques and their applications are widely recognized as powerful
tools in various domains. In the domain of education there is a variety of data of
various types that are collected. The important question is: Is it possible to process
collected data with the data mining technique and what are main advantages of data
mining and e-learning interaction? If an e-learning system accumulates a huge volume
of data, then it is possible to deploy techniques and tools from the domain of data
mining in order to gain valuable information. The research presented in this paper
is conducted on real-life data that originates from the Balkan region. The software
system Weka is used to generate association rules. The main result of this research is
the assessment of the parameters that are associated with the opinion that computer
skills will be helpful in the future, from the students point of view. This result is
very important because it gives the exact insight to computer technology usage in
the Balkans schools. Furthermore, some advantages of the usage of data mining
techniques in the domain of education are determined.
Keywords: association rules, education, data mining.

1 Introduction

In the past few years e-learning techniques have significantly improved as the result of progress
and increased use of the Internet. The "desktop" e-learning systems, in many cases, have been
replaced by systems that operate using the Internet. Some of the web-based systems allow the
determination of preferences for each participant in the process and adjustment of activities in
accordance with the profile of participants [1]. Recently, techniques from the domain of data min-
ing have been incorporated into systems for e-learning. The changes that are constantly taking
place in terms of rapid technical and technological developments affect society as a whole. The
educational system is experiencing changes in terms of modernization and globalization. How-
ever, the educational system that is "inert" is not suitable for rapid change and modernization.
The educational processes in Serbia and some other countries in the region of western Balkans
are changing so that the "reproduction" style of learning is replaced with the style that prefers
"understanding" of the learning content and usage of the acquired knowledge. The theories of
learning that are used are no longer associative and behavioral, but have become constructive
and cognitive. Students are required to improve the style of self-training and their skills. In these
processes the information capacity is an important factor in development, especially the Internet
and the resources that are available through World Wide Web. The usage of the Internet by
some Course Management System (CMS) is not unusual occurrence in Serbia, but cannot be
said that such systems are widely present.

Efforts that have been invested in the integration of CMS and Data Mining (DM) systems
are evident. This integration often means adding DM modules to the existing CMS [1, 2], but
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it is possible to approach to CMS and DM system integration through serial connection [3, 4].
Serial connection, in this case, means collecting data with CMS, and then processing collected
data by DM system. The results of DM analysis are fed back to CMS in order to improve their
effectiveness.

However, this paper lists the basic DM techniques and some tools that allow the application
of these techniques in domain of education, but CMS and their application is not the topic of
this paper, although the importance of CMS is evident. This paper deals with some special
DM techniques when applied to data collected in the domain of education. The application of
DM techniques results in some rules or patterns that can be used as feedback to CMS. Rather
than investigation of the connection between CMS and DM system, this paper deals with DM
techniques when applied to data in the domain of education and gives some conclusions and
remarks about the importance of inferred knowledge. Special contribution is the analysis of the
results of DM technique when applied to real-life data collected from the region of Serbia and
Bosnia and Herzegovina.

The paper is organized as follows: section two gives the short description of various DM
techniques used in the domain of education. One of DM techniques is chosen to be used for
the analysis of the real-life data. It is explained why this DM technique is the most suitable
in this particular case. Section three contains data description, as well as the methodology
description. Section four lists the results obtained by application of the DM technique, as well as
the interpretation of these results. Finally, section five contains conclusions and remarks about
applicability of DM techniques in the domain of education.

2 Previous Work and DM Techniques

The well-known CMS that are in use are: Blackboard, WebCT, ANGEL and Moodle. In
previous papers DM techniques are used as a functional element (module) of CMS [2, 5]. The
DM module can be an integral part of CMS but, in some cases, can be used separately. The
field of data mining, like statistics, concerns itself with "learning from data" or "turning data
into information" [6]. According to [5,7], DM can be defined as the intersection of the domain of
statistics, computer science, artificial intelligence, machine learning, database management and
data visualization. Data mining is the process of identifying valid, novel, potentially useful, and
ultimately comprehensible and understandable patterns or models.

The basic techniques of data mining are [7]:

• Classification - examining the feature of a newly presented object and assigning it to a
predefined set of classes.

• Affinity grouping or association rules - determining which things go together, also known
as dependency modeling.

• Clustering - segmenting a population into a number of subgroups or clusters. Description
and visualization - exploratory or visual data mining.

2.1 The Application of the DM

In practice, there are a lot of general and specific data mining tools [2]. The commercial
mining tools are: DBMiner [8], SPSS Clementine: [9] and DB2 Intelligent Miner [10], etc. Some
public domain mining tools are: Weka [11] and Keel [12]. There are also specific educational
data mining tools such as: Mining tool [13] for association and pattern mining, MultiStar [14]
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for association and classification, KAON [15] for clustering and text mining and CIECoF [16] for
association rule mining. The application of these systems in the field of education includes the
selection of suitable DM techniques. It is not unusual that multiple DM techniques are applied
to the same data sample.

As in [2, 7] the main steps of application of DM techniques are:

1. Collection of the data. The CMS system is used and the collected data are stored in
database. This step can be executed by a questionnaire or some other data collection
technique instead of CMS usage.

2. Preprocessing the data. The data is "cleaned" and transformed into an appropriate format
to be mined.

3. Application of suitable DM technique. The DM technique is applied to build the model
that discovers new rules, patterns and knowledge. To execute this step, either a general or
a specific data mining tool, or a commercial or a free data mining tool can be used.

4. The interpretation, evaluation and deployment of the results.

In particular, it is necessary to apply and elaborate in detail each of these steps depending
on the data to be analyzed. Some of the systems for data mining that are used to analyze data
from different domains are:

• Rosetta system, developed by researchers from the University of Warsaw and the Uni-
versity of Trondheim [17, 18]. Rosetta is capable of synthesis of the IF ... THEN rules by
usage of the Rough sets theory. This system is based on classification, reduction of data
and decision rules synthesis.

• Weka system was developed by researchers from the University of Waikato, New Zealand
[19].

Rosetta system allows data to be loaded from MS Excel table; the format of the loaded data
can also be CSV (Comma Separated Values). Rosetta system performs the extraction of the
IF...THEN rules. The data can be collected by various methods; the format of the collected data
does not have to be specially adapted to DM techniques implemented in Rosetta.

On the other hand, the Weka GUI Chooser provides a starting point for launching Wekas main
GUI applications and supporting tools. The Weka system can be used to start the particular
DM applications:

• Explorer - An environment for exploring data with Weka.

• Experimenter - An environment for performing experiments and conducting statistical tests
between learning schemes.

• KnowledgeFlow - This application supports essentially the same functions as the Explorer
but with a drag-and-drop interface. One advantage is that it supports incremental learning.

• SimpleCLI - Provides a simple command-line interface that allows direct execution of Weka
commands for operating systems that do not provide their own command line interface.

System Weka allows (see Figure 1):
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Figure 1: The main menu of Weka system

• Classification (Classify) - A classifier is a mapping from a (discrete or continuous) feature
space X to a discrete set of labels Y [20]. Classification or discriminant analysis predicts
class labels. This is supervised classification which provides a collection of labeled pre-
classified patterns; the problem being to label a newly encountered, still unlabeled, pattern.
In e-learning, classification has been used for: discovering potential student groups with
similar characteristics and reactions to a specific pedagogical strategy [21]; predicting stu-
dents performance and their final grade [22]; detecting students misuse or students playing
around [23]; predicting the students performance, as well as assessing the relevance of the
attributes involved [24]; grouping students as hint-driven or failure-driven and finding stu-
dents common misconceptions [25]; identifying learners with little motivation and finding
remedial actions in order to lower drop-out rates [26]; for predicting course success [27].

• Clustering (Cluster) - Clustering is a process of grouping objects into classes of similar
objects [28]. It is an unsupervised classification or partitioning of patterns into groups or
subsets (clusters) based on their locality and connectivity within an n-dimensional space.
In e-learning, clustering has been used for: finding clusters of students with similar learning
characteristics, and for promoting group-based collaborative learning, as well as for pro-
viding incremental learner diagnosis [29]; grouping students and personalized itineraries
for courses based on learning objects [30]; grouping students in order to give them differ-
entiated guiding according to their skills and other characteristics [31]; grouping tests and
questions into related groups based on the data in the score matrix [32].

• Association rule mining (Associate) - Association rule mining discovers relationships
among attributes in databases, producing if-then statements concerning attribute-values
[33]. An association rule expresses a close correlation between items (attribute-value)
in a database with values of support and confidence. The confidence of the rule is the
percentage of transactions that contains the consequence in transactions that contain the
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antecedent. The support of the rule is the percentage of transactions that contains both
antecedent and consequence in all transactions in the database. Association rule mining
has been applied to web-based educational systems for: building recommender agents that
could recommend on-line learning activities or shortcuts [34]; diagnosing student learning
problems and offering students advice [35]; guiding the learners activities automatically
and recommending learning materials [36]; determining which learning materials are the
most suitable to be recommended to the user [37]; identifying attributes characterizing
patterns of performance disparity between various groups of students [38]; discovering
interesting relationships from students usage information in order to provide feedback to
the author of the course [39]; finding out relationships in learners behavior patterns [40];
finding students mistakes that often accompany each other [41]; guiding the search for
the best fitting transfer models of student learning [42]; and optimizing the content of the
e-learning portal by determining what most interests the user [43].

• Selecting Attributes (Select attributes) - Attribute selection involves searching through
all possible combinations of attributes in the data to find which subset of attributes works
best for prediction. To do this, two objects must be set up: an attribute evaluator and a
search method. The evaluator determines what method is used to assign a value to each
subset of attributes. The search method determines what style of search is performed.

• Visualization (Visualize) - Information visualization [44] is a branch of computer graphics
and user interface which is concerned with the presentation of interactive or animated
digital images so that users can understand data. These techniques facilitate analysis
of large amounts of information by representing the data in some visual display. Weka
visualization section allows visualizing 2D plots of the current relation.

Rosetta system and Weka are particularly suitable for data analysis in the field of education
because they offer a selection of DM techniques and are relatively easy to use.

3 Methodology

The data sample, in form of MS Excel document, consists of a total of 256 instances (stu-
dents). It is important to mention that the data are not collected with the aim to be analyzed
by DM techniques. The survey was conducted on students from the territory of the Republic of
Serbia and the territory of Bosnia and Herzegovina. The computer technology that is used in this
region is mostly out of date but is sufficient for elementary usage in education. Description of the
data, presented in Table 1, shows the names of attributes and their possible values. Attribute
names and associated values comply with the form of survey.

Various techniques can be used on this small data set: First of all, there are statistical
techniques, for example students distribution that is used when estimating the mean of a normally
distributed population when the data set is small; then there are techniques for inferring decision
rules (based on Pawlaks rough sets theory, decision trees, etc.), even neural networks can be
trained on small data set [45]. In addition, the data sample which is described in Table 1 can be
analyzed by various DM techniques or DM systems. The association rule mining is adopted as
the most suitable DM technique.

As defined by Agrawal et al. [33] the problem of association rule mining is defined as:
Let U = {u1, u2, ..., um} be a discrete universe, a finite set of objects. Let A = {a1, a2, ..., an}

be a finite set of attributes with binary values. Each object of universe U is described by
attributes ai, i = 1, 2, ..., n thus generating a data set. An associative rule is defined as an
implication of the form X ⇒ Y where X,Y ∈ A and X ∩ Y ̸= ⊘. The set of attributes X is
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Table 1: Description of used data, attribute names and their possible values
Name Value, number of objects and distribution Description of the attribute
A1 1. yes, 210 , 82.03125% Does the student

2. no, 46, 17.96875% has a computer at home
A2 1. do not know, 31, 12.109375% What type of computer

2. other, 7, 2.734375% do the student have
3. PII, 7, 2.734376%
4. PIII, 60, 23.4375%
5. PIV, 144, 56.25%
6. laptop, 7, 2.734376%

A3 1. yes, 123, 48.046875% Does the student
2. no, 133, 51.953125% use the Internet

A4 1. 1 hour per day, 98, 38.28125% How many hours per day
2. 2 hours per day, 85, 33.203125% does the student use
3. 3 hours a day, 23, 8.984375% the computer
4. 4 hours a day, 24, 9.375%
5. 5 hours a day, 26, 10.15625%

A5 1. 0 hours a day, 67, 26.171875% How many hours
2. 1 hour per day, 74, 28.90625% per day
3. 2 hours per day, 64, 25.0% the student
4. 3 hours a day, 18, 7.03125% use the Internet
5. 4 hours a day, 12, 4.6875%
6. 5 hours a day, 21, 8.203125%

A6 1. yes, 89, 34.765625% Does the student use
2. no, 167, 65.234375% e-mail

A7 1. web sites on Serbian, 142, 55.46875% What web sites does
2. web sites on other lenguages, 114, 44.53125% the student visit

most frequently
A8 1. educational, 27, 10.546875% What kind of web sites

2. entertainment, 116, 45.3125% is the most visited
3. other, 113, 44.140625% by student

A9 1. yes, 185, 72.265625% Does the student use
2. no, 71, 27.734375% his/her home computer

for learning
A10 1. educational, 42, 16.40625% What type of media does

2. film, 18, 7.03125% the student use most
3. music, 130, 50.78125% frequently at home
4. other, 66, 25.78225%

A11 1. yes, 159, 62.109375% Does the student want
2. no, 5, 1.953125% more educational
3. do not know, 92, 35.9375% computer software to be

used in school in order to
improve teaching

A12 1. yes, 192, 75.0% Does the student want to
2. no, 30, 11.71875% review learning materials
3. do not know, 34, 13.28125% used in school, by Distant

Learning System at home
A13 1. games, 78, 30.46875% What type of software is

2. educational, 11, 4.296875% most frequently used by
3. games, educational, 167, 65.234375% student

A14 1. yes, 221, 86.328125% Does the student like the
2. no, 35, 13.671875% subject of informatics

A15 1. yes, 219, 85.546875% Does the student believe
2. no, 37, 14.453125% that he/she gained enough

knowledge to work
independently on a
computer

A16 1. independently, 82, 32.03125% From who or where has
2. from others, 36, 14.0625% the student learned most
3. at school, 138, 53.90625% about computer usage

A17 1. yes, 235, 91.796875% Does the student think
2. no, 21, 8.203125% that his/her computer skills

will help him/her in the
future
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Table 2: Simple example of data set
Object The student has The student uses The student thinks that

a computer at home the Internet his/her computer skills
will help him/her in the future

(A1) (A2) (A3)
1. yes yes no
2. no yes yes
3. no no no
4. yes yes yes
5. no yes no

called antecedent (left-hand-side or LHS) of the rule; the set of attributes Y is called consequent
(right-hand-side or RHS) of the rule.

There are many rules of the form X ⇒ Y , but to select interesting rules from the set of
all possible rules, various measures of significance can be used; the best-known are minimum
thresholds on support and confidence. The support supp(X) is defined as the proportion of
objects in the data set which contains the attributes from X. The confidence of a rule is defined
as:

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)

The previous concepts are explained in next simple example. For a data set given in Table 2
it is possible to infer some association rules, as well as the confidence and support parameters.

For X = {A1, A2, A3} supp(X) =
1

5
= 0.2 because there is one object (number four) for

which there is a "yes" value for every attribute.
For example, the confidence of the rule X ⇒ Y , where X = {A1, A2} and Y = {A3} is:

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
=

0.2

0.4
= 0.5

The previous rule X ⇒ Y is interpreted as follows: The student who has a computer at
home and uses the Internet is associated with the opinion that his/her computer skills will help
him/her in the future.

There are many algorithms for association rule computation, but so called apriori algorithm
[46] is the best-known algorithm to mine association rules. It is based on breadth-first search
strategy [47]. In the data set described by Table 2 attribute selection is more complicated by
the fact that some attribute values are not binary so this involves more extensive search.

The association rule generation is chosen to be performed due to multiple reasons:

1. This is an exact method and therefore excludes any subjective influence while analyzing
data set.

2. The result is presented in a readable and easy-to-understand form.

3. It is expected that number of generated association rules would not be high (data set
contains 256 instances) due to computation of confidence for each rule and selection of
rules with the highest confidence.

4. It is expected that association rules have a great value when inferred from data set in
education domain because association rules can be treated as a hypothesis.
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The experiment was conducted on data set by software system Weka in order to generate
association rules. After loading, the data are ready for pre-processing and application of DM
techniques. Weka system requires that the attributes with numerical values do not participate
in the association rule mining, so they are ignored. Association rules generated by Weka system
(apriori algorithm is used) are shown in Table 3.

Table 3: Association rules generated by apriori algorithm
Rule IF THEN Rule confidence

1 A11=yes, 159 A17=yes, 154 0.97
2 A9=yes AND A14=yes, 159 A17=yes, 154 0.97
3 A13=games, educational, 167 A17=yes, 159 0.95
4 A9=yes AND A15=yes, 166 A17=yes, 158 0.95
5 A12=yes AND A14=yes, 169 A17=yes, 160 0.95
6 A9=yes, 185 A17=yes, 174 0.94
7 A14=yes AND A15=yes, 195 A17=yes, 183 0.94
8 A12=yes, 192 A17=yes, 180 0.94
9 A6=no, 167 A17=yes, 156 0.93
10 A14=yes, 221 A17=yes, 206 0.93

There are 10 rules generated. The IF part of every rule is followed by support measure, as is
the case with the THEN part of each rule. The confidence for each rule is given in the separate
column.

4 Results

The Analysis of generated association rules provides insight into the dependence of the mon-
itored parameters. Each rule is accompanied by a factor of confidence that takes a value in the
range [0, 1]. Ten association rules have been generated, see Table 3.

By association rule 1 attribute A11 (Does the student want more educational computer
software to be used in school in order to improve learning) is associated with attribute A17
(Does the student think that his/her computer skills will help him/her in the future). The factor
of confidence for this rule is 0.97, that rule is guaranteed to a great extent. If the value of
attribute A11 is "yes" then, by this association rule, the value of attribute A17 is also "yes".
A possible conclusion which can be drawn is that most of the students think that usage of
computer technology in school generates skills and knowledge that could be used in the future.
This students opinion is a good indicator of the importance of the usage of computer technology
and educational software in teaching process. It is evident that technology usage in future is
closely related to computer technology software and methods which are used at present. Other
association rules can be interpreted in analogous way.

The rule 2 can be interpreted as follows. Two facts: The fact that student uses home computer
for learning and the fact that student likes the subjects of computer science, are associated with
opinion that computer skills will be helpful in the future. Rule number 3 associates the type of
software that is most frequently used by student (games, educational software) with the opinion
that computer skills will be helpful in the future.

The opinion that computer skills will be helpful in the future is mostly associated with:
believing that student gained enough knowledge to work independently on a computer, the usage
of the computer for learning and aspiration to use distant learning system at home to review
learning materials previously used in school. Attribute A14 (The student likes the subject of
computer science) is most frequently associated with opinion that computer skills will be helpful
in the future.
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However, rule number nine associate the students that are not satisfied with the usage of
e-mail with the opinion that computer skills will be helpful in the future. In fact, this may be
in accordance with rule number eight: The usage of distant learning system at home to review
learning materials previously used in school is associated with the opinion that computer skills
will be helpful in the future. So, in students opinion, distant learning system makes e-mail service
obsolete in a way.

5 Conclusions and Future Works

The application of association rule mining allows automatic generation of hypotheses and
factors of confidence that are related to them. Considering rule number one (see Table 3) the
hypothesis is: If a student wants more educational computer software to be used in school in order
to improve learning then the student thinks that his/her computer skills will help him/her in the
future. Other rules may also be interpreted as a hypothesis. Obviously the factor of confidence
has a great impact on confirmation of hypotheses. At the Technical Faculty "Mihajlo Pupin"
in Zrenjanin, Serbia, extensive research is underway, investigating the possibilities of applying
DM techniques to data from the domain of education, extracted from a survey conducted in the
wider Balkan region. The fact that it is not obligatory that the data are collected with the aim
to be analyzed by DM techniques, offers an excellent chance to assess real possibilities in the
actual practice. In future, this leads to identification of the advantages of DM techniques over
standard statistical techniques. So far, there have been identified the following advantages of
application of the DM techniques to data from the domain of education:

• It is possible to extract the "special" cases of the statistical rarity that are often discarded
as "noise". The discovery of such "isolated" cases is conducted by automated IF ... THEN
rule synthesis. As in [48] the association data mining based on a uniform support misses
some patterns of low support. Although it is possible to exploit support constrains, which
specifies some minimum supports, we opted to use automated IF ... THEN rules synthesis
by Rosetta system or similar.

• Clustering technique allows the exact definition of average student and special groups (clus-
ters) of students, so that further action of e-learning can be implemented while respecting
the characteristics of each cluster.

• Analysis of generated association rules provides insight into the dependence of the moni-
tored parameters.

• Ranking of attributes (parameters) in order of importance of influence on a selected at-
tribute allows the rejection of the parameters of lesser importance.

• Data visualization provides a figurative description of the data, so we can actually see
patterns which may exist.

The usage of Weka system, or a similar system, is of great help because it generates associa-
tion rules (hypotheses) automatically. Furthermore, Weka system generates association rules for
which the factor of confidence is high. This method can be used in any case of data, but Weka
system requires that attributes with numerical values do not participate in generating the asso-
ciation rule mining, so they are ignored. This is not a great handicap because linguistic terms
are frequently used in queries and surveys. The final conclusion is: the usage of Weka system
in order to generated association rules automatically is of great help because the hypotheses of
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little importance are avoided.

Future work will be practical and it will refer to the selection of a particular CMS and
integration with DM system.
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