
INT J COMPUT COMMUN, ISSN 1841-9836
7(5):879-891, December, 2012.

Client Side Internet Technologies in Critical Infrastructure
Systems

I. Lendak, N. Ivancevic, S. Vukmirovic, E. Varga, K. Nenadic, A. Erdeljan

Imre Lendak, Srdjan Vukmirovic,
Ervin Varga, Aleksandar Erdeljan, Kosa Nenadic
Faculty of technical sciences
Serbia, 21000 Novi Sad, Trg Dositeja Obradovica, 6
lendak@uns.ac.rs, srdjanvu@uns.ac.rs, evarga@uns.ac.rs,
ftn_erdeljan@uns.ac.rs,

Nikola Ivancevic
EXPRO I.T. Consulting Llc
Serbia, 23300 Kikinda, Svetosavska 43, I/2
ivancevic.nikola@gmail.com

Abstract:
This paper assesses the applicability of client side Internet technologies in software so-
lutions for critical infrastructure systems (CIS). It contains an in-depth analysis of four
significant and well known development platforms, namely JavaScript with jQuery,
the Google Web Tookit, Microsoft’s Silverlight and Adobe’s Flash/Flex. They were
compared by using the ISO software quality characteristics as comparison criteria.
Each of the technologies was applied in a real-life project and the results summarize
the authors’ experience. The ultimate goal of this research is to enable software engi-
neers to more easily choose a client-side Internet technology when developing a new
software solution for the CIS domain.
Keywords: critical infrastructure systems, Rich Internet Applications, comparative
analysis.

1 Introduction

Electric power systems, water distribution and telecommunication networks are large-scale
critical infrastructure systems (CIS), which can be categorized as safety critical [1, 2]. Their
improper use can lead to a discontinuity of critical services (e.g. power outages), or in extreme
cases, even to the loss of human lives (e.g. improper safety measures can harm the maintenance
crew members). They provide essential services and usually are operated from computerized
control centers utilizing various communication systems for data acquisition and control, differ-
ent software solutions for asset, crew and outage management, and simulation software allowing
engineers to plan system extensions, find week spots and optimize the operation of the CIS.
It is a complex task to build software solutions for the aforementioned control center operating a
safety critical system, and usually those solutions are highly distributed by their nature. When
developing a Web based Human Machine Interface (HMI) for such systems, the system architect
can choose from various Internet technologies suitable for production use. Viable technologies
exist on both sides of the spectrum: client and server. Relying on a proven technology does
speed up and improve development, and it is also a superb tactic for delivering quality into the
final product. It comes as no surprise that more and more critical software systems are built by
leveraging Internet technologies. Finally, recent tendencies show that even those software inten-
sive systems, which traditionally offered data exchanges solely via some proprietary mechanisms,
like a Supervisory Control and Data Acquisition (SCADA) system, are opening up, thus allowing
access to their various services through the Internet.
The main motivation behind this work is the authors’ aspiration to share with the readers their

Copyright c⃝ 2006-2012 by CCC Publications

880 I. Lendak, N. Ivancevic, S. Vukmirovic, E. Varga, K. Nenadic, A. Erdeljan

extensive experience in incorporating Internet based technologies into software intensive systems
built for the electric power and financial domains. That endeavor is still under way, since the
transition from a pre-Internet stage to a fully Internet based solution is usually carried out grad-
ually. This transition process is positively influenced by advances in Internet technologies, as
new possibilities for solving old problems emerge quite frequently. Thankfully also to the abili-
ties of modern Internet browsers the performance of the contemporary Web based applications
is comparable to their desktop counterparts [3, 4].
Modern Internet applications are quite different from the conventional notion of client-server
systems, i.e. the client is a lot more than a simple node merely capable of displaying some fully
processed static content from the server. Nowadays, the delineation between clients and servers
is pretty blurred. Clients are now totally equal with other nodes inside some multi-tiered dis-
tributed Web application. This is the principal reason why the authors have chosen to analyze
client side Internet technologies in the context of CIS. This paper elaborates some of the recog-
nized client side Internet technologies as development platforms without the intent of showing
a definite and complete list of each and every such technology. The analysis is limited to the
following technologies:

• Google Web Toolkit (GWT) - an open-source source development kit (SDK) [5] for devel-
oping complex cross-platform JavaScript-based front-end applications. The GWT-based
applications are written in Java and then compiled into JavaScript by the GWT compiler.

• Javascript/jQuery (JJ) - a scripting language supported by all the latest web browsers.
Best suitable for those who require complete control over each line of the client side code.
Development is made a lot easier with modern tools, like jQuery [6], a cross-browser script-
ing library.

• Flex - a user interface (UI) source development kit (SDK) [7] for rich cross-platform Internet
applications based on the Adobe Flash platform [8].

• Silverlight (SL) - Microsoft’s web technology for Rich Internet Application (RIA) develop-
ment [9], [10] based on the Microsoft.NET Framework. It offers user interface functionality
which is nearing the desktop level.

While in referemce [11] the focus was on a general comparison of client side Internet technologies,
this paper performs a similar analysis with CIS in mind, i.e. reflecting on the aspects essential
for developing large, reliable and sensitive software intensive systems. The set of characteristics
taken into account in each of these technologies were selected from the standard quality model
defined in [12]. The following characteristics were selected for this analysis:

• Functionality: interoperability, security

• Reliability: maturity

• Usability: learnability, attractiveness

• Efficiency: time behavior, resource utilization

• Maintainability: stability

• Portability: installability

These characteristics were identified as applicable in the direct comparison of client side Internet
technologies when used in large scale critical infrastructure systems. The examination of the

Client Side Internet Technologies in Critical Infrastructure Systems 881

remaining characteristics (e.g. operability, suitability, accuracy, fault tolerance, recoverability,
changeability, testability, understandability, adaptability, analyzability) defined by the ISO qual-
ity standard was outside the scope of this paper, as they were deemed not entirely applicable
for comparing software technologies, i.e. they are more applicable for comparing the software
solutions which are developed by using those technologies.
Apart from this introduction and the vital conclusion at the end, this paper is comprised from
a detailed discussion of real-life solutions developed with the identified client side Internet tech-
nologies, and a comparative analysis of these technologies from the standpoint of industrial
systems.

2 Real Life Case Studies

The following three sections contain an in-depth report about each of the chosen Internet
technologies when applied in real life project implementations. The first case study describes
a modern control center solution for electric power systems [13] developed in both JavaScript
and GWT. It is followed by the descriptions of a Meter Data Management (MDM) [14] solution
developed in Silverlight, and finally a web based financial system developed in (Adobe) Flex.
Each section contains a short description of the project/problem which had to be solved with
the application of one of the above listed Internet technologies. These descriptions are followed
by short discussions of the applied technologies, focusing on the ISO quality model characteristics
listed in the previous section, and aim to analyze the technology itself (e.g. GWT, Flex), instead
of the applications developed.

3 DMS Web User Interface

Control center solutions for the operation of truly Smart Grids [16] require varying level of
web access. Some customers are content with a web based reporting system available to the
management, while others require (nearly) complete SCADA functionality to be available on
the Internet and accessible from everyday Internet browsers. While working on various control
center projects, the authors learned that in the electric power system domain, web based user
interfaces are often required to perform some or all the following operations:

• Visualize geographic diagrams of the grid (or its parts) [17]

• Visualize single-line diagrams of the grid (or its parts) [18]

• Visualize detailed substation single-line diagrams [19]

• Allow easy access to equipment details, e.g. the relevant characteristics of a breaker:
nominal current, nominal voltage, maximum breaking current, phases connected, etc.

• Monitor measurement values (obviously not in real-time, but with a certain delay)

• Show simulation function results, e.g. the results of state estimation, load flow [20], [21]

• Allow insight into operations performed by other users, e.g. oversee switching sequences
executed by dispatchers

Geographic and single-line views give a high level overview of the complete power system. They
provide a means for navigation, zooming and viewing different parts of the network. Detailed
substation diagrams allow the users to access information about substation equipment which

882 I. Lendak, N. Ivancevic, S. Vukmirovic, E. Varga, K. Nenadic, A. Erdeljan

*[tbhp]

Figure 1: Web view of substation one-line diagram with geographic view in background

is essential in case of outages. Equipment details should be accessible from lists and from the
graphical diagrams also. Analytic function results are necessary both online (finding weak spots
or overloads not directly measured) and offline (network optimization, planning). Measurement
value monitoring allows the user to see these values refresh in (near) real-time.
Fig. 1 shows a snapshot taken from the web user interface developed as part of the Telvent
DMS software solution [22]. Apart from presenting the up-to-date state of the electric power
system in both geographic (visible in the background in Fig. 1) and one-line diagram views, it
also allows insight into the internal structure of substations (as shown in the foreground in Fig.
1) and details of each relevant piece of equipment. Fast navigation in large diagrams is available
through the pilot view in the lower right corner. Users can easily navigate to particular network
devices using the search tool which allows name and identifier based searches. Besides that, there
is a set of handy tools placed on each diagram which improve user experience (e.g. zoom in/out,
quick access buttons).
Two versions of this web based user interface were developed: the first technology of choice was
the GWT for creating a functional prototype. The second technology of choice was JavaScript/j-
Query (JJ). Although quite similar, these two solutions will be discussed separately for clarity.
Both are truly thin client applications, fetching diagrams in a graphical format and additional
information (e.g. equipment details, names, etc.) in the JavaScript Object Notation (JSON)
format [23] from the server side.

3.1 Google Web Toolkit

The Google Web Toolkit (GWT) is an open-source source development kit (SDK) for de-
veloping complex cross-platform JavaScript-based front-end applications running in regular web
browsers. The GWT-based applications are written in Java and then compiled into JavaScript

Client Side Internet Technologies in Critical Infrastructure Systems 883

by the GWT compiler. GWT was used to build one of the early prototypes of the web based
DMS solution, as a kind of a proof of the concept version of the system.
Interoperability was excellent and the GWT proved to be a truly cross platform development
platform, allowing the client applications to work on a wide range on destination systems and
browsers (Windows, Linux, Apple iOS, Symbian). Security was average, e.g. client side code
security available through code obfuscation. Maturity was moderate in early 2010 and it has
considerably improved since then.
Learnability is a matter of knowing or not knowing Java as a programming language and plat-
form, i.e. GWT is straightforward for Java developers and not so accessible for the rest. GWT
enables usage of any mature Java tooling system for source code editing, refactoring, testing
and debugging. As far as Integrated Development Environment (IDE) support goes, GWT can
utilize the well-known Java IDEs. Comparing to a pure JavaScript approach, GWT makes the
development process highly efficient. Attractiveness is guaranteed by the numerous built-in wid-
gets and libraries which make it possible to implement solutions which resemble the look and
feel of desktop applications.
Time behavior on the client side was entirely dependent on JavaScript engine performance, the
generated code itself did not have any issues. The GWT compiler optimizes the output code and
resource utilization to an extent not necessarily possible when writing JavaScript code manually.
The GWT profiler (Speed Tracer) allows developers to fine-tune their GWT applications for the
best performance. The execution speed of the JavaScript engine in the latest versions of Internet
browsers (Internet Explorer 8, Safari 5, Chrome 19, Firefox 13) allows programmers to develop
very complex desktop-like user interfaces with significant computational demands.
Stability was excellent during the complete development cycle of the prototype. Resource uti-
lization was considerable at times, slowing down the PC based clients and making it necessary
to implement a standalone application for mobile phones instead of running the application in
their built-in Internet browsers.
Installability of the solutions built with GWT was excellent and no plug-ins were necessary In
order to satisfy one mandatory system requirement from the specification that a full control is
necessary over the source code of the application the GWT was (temporarily) abandoned. Al-
though GWT does offer the JavaScript Native Interface (JSNI), which allows developers to write
parts of the application in (native) JavaScript, this was not sufficient to satisfy the stringent
source code control related system requirement. Nevertheless, by judging the pace with which
GWT is improved from version to version, the authors of this web based interface are considering
to implement the next version of the system fully in GWT, which might reduce complexity and
maintenance costs (compared to JavaScript - see its description below). The stability and quality
of the latest version of the GWT obviates the need for such rigorous source code control aspects
of the system.

3.2 JavaScript/JQuery

Due to the high level of complexity of the web based Distribution Management System
(DMS) [24] graphical user interface (GUI), and because the developers required absolute con-
trol over the JavaScript code. Therefore the decision was made to migrate the solution to pure
JavaScript/JQuery. This transition was completed in 2010 and the JavaScript version was suc-
cessfully tested on mobile devices (e.g. mobile phones) just as well as on personal computers.
Interoperability was just as excellent as with the GWT and the JJ solution proved to be a truly
cross platform development platform, allowing the client applications to work on a wide range
on destination systems and browsers (Windows, Linux, Apple iOS, Symbian). Some limitations
to cross-browser support exist and developers in certain cases have to write browser specific

884 I. Lendak, N. Ivancevic, S. Vukmirovic, E. Varga, K. Nenadic, A. Erdeljan

JavaScript code. Security was above average, e.g. client side code security is available through
code obfuscation.
Maturity of the JavaScript engine and tools was excellent, which came as no surprise as they
were around for more than a decade.
Learnability is a major disadvantage of JJ, both because of language limitations and the lack of
truly integrated and advanced development environments. Attractiveness of JJ as a technology
is very limited - people might get put back because of the steep learning curve. Other than that,
JJ gives full control and can utilize the rendering capabilities of web browsers to their full extent.
Time behavior was similar to the one achieved with GWT and entirely dependent on JavaScript
engine performance - the full control given to JJ developers might mean a slight advantage over
the GWT, as the performance of these applications is entirely under the developer’s control.
With well optimized Document Object Model (DOM) [25] structures one can implement respon-
sive client applications. It is often better to use the JavaScript Object Notation’s (JSON) [23]
simple text format for data exchange with the server side as it incurs less parsing overhead and
bandwidth use than the eXtensible Markup Language (XML). Resource utilization was similar
to GWT, i.e. considerable at times, slowing down the PC based clients and making it necessary
to implement a standalone application for mobile phones instead of running the application in
their built-in Internet browsers. Stability was unquestionable during the complete endeavor.
Installability of the JJ based solutions was excellent as no plug-ins were necessary.
At the moment of writing, the latest, JavaScript version of the discussed web based GUI was in
its production phase with successful installations worldwide as part of the Telvent DMS software
platform [22].

4 Meter Data Management User Interface

Smart metering systems are information systems used in electric power systems which gather
measurement values from distant measurement devices (usually ’smart’ meters) and integrate
them into a complex and unified system for acquisition and control in power distribution sys-
tems. These systems are essential components of most Smart Grid [16] initiatives. With the
introduction of modern meters it is now possible to control consumption per individual con-
sumers. Meter Data Management (MDM) systems within smart metering infrastructures gather
meter data and perform data processing (validation, estimation, editing - VEE).
Large power utilities can have millions of smart meters which periodically report their current
consumption rate and receive commands. For the application of algorithms which allow fine
grained control of distribution management systems, it is often necessary that these meters send
consumption rates as often as possible. This raises significant problems as the millions of meters
sending a few measured and status values consume bandwidth, processing and storage resources.
Data loss and even compression is not allowed as meter data is used for various mission critical
purposes, e.g. billing, load-shedding, etc. The data gathered by smart meters has to be easily
accessible to other services within a more complex smart grid (e.g. simulation functions taking
into account latest consumption data) as well as to financial people. Therefore, very efficient
data processing and storage solutions, a modern user interface and application interfaces built
by following the latest industry standards are all necessary components of these systems.
Telvent DMS’ Meter Data Management (MDM) system [14] was developed to address the fol-
lowing requirements:

• Search meters and access detailed meter data

• Group meters into groups and areas

Client Side Internet Technologies in Critical Infrastructure Systems 885

• Run validation and estimation functions (where values are not available - linear or spline
interpolation is used)

• Display meters on a geographical background

• Data exchange with other software components, e.g. simulation functions, outage manage-
ment, customer information system, work order management

• Send commands to meters, e.g. on demand read, disconnect, reconnect, ping

The actual implementation of this MDM solution relies on a number of state-of-the-art technolo-
gies and tools:

• Meter data is stored in a PI database [26]

• Data access is provided through Microsoft Windows Communication Foundation (WCF)
written in Microsoft’s C# programming language

• The user interface components were developed in Microsoft Silverlight in combination with
Microsoft RIA Services [27]

• Meter visualization on a geographical background is implemented with a specialized com-
ponent developed by Miner & Miner for their ArcFM (an extension of ESRI’s ArcGIS for
power utilities) [28]

Fig. 2 shows a SL form from the MDM solution’s user interface which displays meter readings
with tree view selection and data displayed in both a grid view and a chart. The screenshot was
taken during a test session run in the Internet Explorer web browser. The user interface is a thin
client running in any web browser with a Silverlight plug-in. The client side consists of approx-
imately fifty forms utilizing advanced components, e.g. grids, charts and the above mentioned
geographical background. Drag and drop, direct data editing in grids and deep zoom (i.e. load
only visible elements at a certain zoom level) are supported. The thin client was optimized for
web based use. The WCF interface is used to exchange custom meter objects which are in line
with industry standards [29]. Data security is ensured by data encryption (HTTPs) and user
groups with varying access levels.
An MDM form can contain data of up to twenty meters thereby reducing load times. When

more than twenty meters should be fetched, paging is used on the client side. The geographical
view allows the visualization of up to 3000 meters only on deeper zoom levels.
Interoperability of SL applications is limited to the platforms for which Microsoft issues the latest
Silverlight plug-ins. Security is inherited from the .NET development platform and the developer
has excellent tools for directly influencing security behavior.
As far as maturity goes, at the moment of writing Silverlight was becoming a stable and well
recognized RIA development platform. The authors’ experience was positive, with only a few
glitches and memory leaks.
Learnability is excellent due to the use of .NET programming languages which can be easily
mastered, the excellence of development tools (i.e. Microsoft Visual Studio) and the high avail-
ability of both official learning material and free online resources. Attractiveness is excellent and
the built applications have a truly desktop-like look and feel. Numerous user interface controls
are immediately accessible after installation. .NET version 4.0 comes with an extended set of UI
controls which cover most of the needs for business style web applications: grid, chart, tree view
control, etc. There is a wide range of open source projects offering additional components, e.g.
scheduler, extended charts and grids, etc.

886 I. Lendak, N. Ivancevic, S. Vukmirovic, E. Varga, K. Nenadic, A. Erdeljan

Figure 2: Meter reading data screen developed in Microsoft Silverlight

Time behavior on the client side was above average and quite acceptable even for large numbers
of meters with a few optimizations (e.g. paging). Resource utilization proved to be moderate
which came as no surprise knowing that the code itself is executed by a runtime environment.
Network bandwidth utilization is configurable and entirely depends on the developer: the choice
of available protocol and serialization formats is wide and can be tailored to specific needs.
Stability was very good on the client side during the complete development lifecycle. There were
a few memory leaks.
Installability is somewhat impaired as a plug-in is necessary to run Silverlight based applications.
Plug-ins also might not be available for all available hardware and operating system platforms.
At the moment of writing the above discussed MDM project was in a release candidate status.

5 Flex in Live Betting

Live, online betting supports the modification of betting instruments (betting markets and
prices) during the course of a sporting event. Live betting systems provide the following func-
tionalities:

• management of betting entities (bookmakers, sports, competitions, teams, betting events)

• management of betting instruments (betting markets, prices)

• risk management

• betting events and markets publishing

• accepting players’ bets

• betting history management

Client Side Internet Technologies in Critical Infrastructure Systems 887

• processing financial transactions

One such live betting solution is Juliet [30] which the authors of this paper developed in
Flash/Flex. It consists of the following major components:

• Core - the component responsible for maintaining the Juliet data model and processing all
requests made by the other Juliet components

• BO Console (the back-office) - the back-end application for maintaining the live betting
entities (betting events, bookmakers, sports, competitions, etc.)

• Live Console - the back-end application used by bookmakers for creating and maintaining
betting events’ status, markets and prices

• database (DB) - the Juliet system database

• channel server (CS) - the intermediate component between the UI instances and the rest
of the Juliet components

• the user interface (UI) enables players to watch betting events’ status, markets and prices
and to place bets

The requirements for the Juliet UI were stringent:

• cross-platform application that supports all major browsers

• display information about betting events and markets in a real-time fashion

• easy integration in an existing web site

• possibility to change the look and feel of the UI to match the design of the hosting web
site

Fig. 3 shows a screenshot of the Juliet user interface. The left-most block displays the list of
betting events (sporting events) available for betting, grouped by the match’s sport. The list is
automatically updated and contains the betting events which have already started or are about
to start in a short time. The status of every betting event in the list (the start time or the current
match time, the score, etc.) is shown and updated in real-time. These messages are pushed to
the UI from the channel server.
The UI components are constantly connected to the CS and they are receiving notifications as
soon as some change occurs. The user interaction is executed completely within the client side
(within the hosting HTML page) and the server-side (the CS) is involved only when it is abso-
lutely necessary (e.g. sending a place-bet request). The Juliet UI (see Fig. 3) is implemented
as a set of components which can be placed in an HTML page as one or more Flash (SWF)
files. This allows an easy integration of the UI components into virtually any website layout the
hosting HTML page can have. Also, in order to fit the design of the hosting HTML page, the
visual appearance (the look and feel) of the UI components is implemented using a new Flex
skinning technique.

The communication layer (the event bus) for exchanging notification events between the UI
components and to/from the CS is implemented in JavaScript using the jQuery library.
The Flex experience can be boiled down to the following: the highest level of interoperability
is ensured by the existence of the Flash player plugin implementations for all major browsers
(Internet Explorer, FireFox, Chrome, Safari, Opera) on different destination systems (Windows,
Linux, iOS, Android). Security of the client side code is excellent as it is stored in compiled

888 I. Lendak, N. Ivancevic, S. Vukmirovic, E. Varga, K. Nenadic, A. Erdeljan

Figure 3: Juliet live betting user interface

meta-code (the byte code for the Flash player platform).
Maturity is excellent as the Flex SDK has been present and constantly improved since 2004.
Learnability is directly affected by mastering new languages that the Flex SDK supports - Ac-
tionScript and MXML. In spite of this, the learnability is good because of Adobe’s visual tools
and excellent knowledge base and documentation. Attractiveness is above average as creating
visually attractive rich user interfaces quickly, a wide set of server-side integration components
and the abundance of third-party widgets makes the Adobe Flex attractive choice.
Time behavior on the client side, once the framework is loaded and initialized, is excellent. The
rendering performance of the user inteface is constant and smooth even in cases of great load.
The Flex compiler compiles the Flex-based application into SWF byte code while performing
possible optimizations. The Flash player itself is able to exploit hardware graphic acceleration
to increase the execution speed of graphically intensive application tasks. Resource utilization is
considerable at the initialization time and load, when the plugin has to download and initialize
the Flex framework before the application is ready to start.
Stability is in direct relation to the stability of the Flash player plugin and it was very high even
in case of complex demands.
Installability was a bit impaired due to the necessity to install a plug-in. The situation is further
aggravated by the fact that some platforms do not have a Flash plug-in, i.e. support for Flash
based applications.
The decision to develop this web based, highly sensitive solution in Flex has proven to be correct,
as Juliet is online, quite functional with no major issues or downtime during its lifetime.

Client Side Internet Technologies in Critical Infrastructure Systems 889

6 Comparative Analysis

The overview of the client side Internet technologies when utilized in critical systems is
shown in Table 1. The table neither contains the definite list of tools for client side application
development, nor is the list of applied criteria complete. Each of the analyzed characteristic is
assigned a mark between one and five, one being poor and five being excellent. The marks are
based on the authors’ experience working with the latest versions of the discussed technologies
during the complete development cycle of the critical systems discussed in the previous sections
of this paper. These marks are a rough indicator of the usability of these tools for developing
client side user interfaces in critical systems.
It is visible even after a brief look at the marks in Table 1 that both Silverlight and JavaScript
are a ’roller coaster’ experience: although they have some excellent characteristics which stand
out, they also have serious limitations hampering their immediate use in certain situations,
e.g. cross-platform support with Silverlight and learnability and changeability with JavaScript.
While Flash has a smoother curve connecting the marks, the smoothest curve and the highest
score in general goes to the Google Web Toolkit, which does not excel in all of the analyzed
characteristics, but does not disappoint in any of them either.
The marks shown in Table 1 were given based on the experience gained during the development

of multiple web based solutions for critical systems. JavaScript/JQuery gives complete control
to the developer but needs more time to master then the rest of the tools. Full cross platform
support, i.e. operating system and hardware platform independence can be achieved with GWT
and JavaScript/JQuery. On the other hand, these two technologies usually incur a bit higher
network load, as part of the provided functionality might have to be delivered through bitmap
transfer.
Plug-ins are necessary for Silverlight and Flex. These tools themselves and their development
environments also require some form of licensing. Application startup is slower as it takes some
time while the complete application is loaded into the browser from the server. Silverlight might
require a bit higher resource utilization due to the additional overhead introduced by the .NET
Common Language Runtime (CLR) running the code.
Each of the above client side technologies has its pros and cons. For very specific and highly
specialized user interfaces it might be necessary to choose JavaScript/JQuery or in certain cases
GWT, which is only slightly less flexible. On the other end of the range are Flash and Silverlight
which are quite modern and allow fast development cycles. Their most notable downsides are
the lack of complete cross-platform support and developer freedom.

Table 1: Client side overview (* = poor, ***** = excellent)

Criterion/Technology Flash GWT Silverlight JavaScript
Interoperability ** **** * ****
Security *** *** ***** ***
Maturity *** ** ** ****
Learnability ** ** **** *
Attractiveness **** *** ***** *
Time behavior ** **** ** ****
Resource utilization * *** * ***
Stability *** *** ** ***
Installability ** ***** * *****

890 I. Lendak, N. Ivancevic, S. Vukmirovic, E. Varga, K. Nenadic, A. Erdeljan

Applications requiring large amounts of graphical data (see section 3 for an example) might be
equally complicated to develop whichever of the shown technology is chosen. Experience gained
in the development of such graphically intensive solutions shows that partial, on-demand loading
of graphical data (e.g. loading and refreshing only the visible parts of the visualized system)
might need custom development with all four presented technologies.

7 Conclusion

The results of this work help mitigate risks in software projects building Internet based critical
systems by providing a pragmatic guidance in choosing the right client side Internet technology.
The analysis is based on the authors’ own practical experience in the domain of critical (infras-
tructure) systems. A set of ISO standardized quality attributes were used in the assessment of
these technologies. They were described through real life case studies from the electric power
systems and financial systems domain.
The conclusion is that although modern Internet based client side technologies still have their
weaknesses, they are gaining a foothold in critical systems. Applications relying on these tech-
nologies can be made fast, secure, reliable and maintainable. The technologies analyzed in this
paper will surely become even more widely adopted, as a vehicle in supplying software solutions
for critical systems in the near future.
As a future work, the authors plan to extend the list of technologies to be researched, and to
create a similar comparison of server side Internet technologies used in the CIS domain.

Bibliography

[1] Karsai, G.; Massacci, F.; Osterweil, L. J.; Schieferdecker, I. (2010); Evolving embedded
systems, IEEE Software, 43: 34?40.

[2] Parks, R.C.; Rogers, E. (2008); Vulnerability Assessment for Critical Infrastructure Control
Systems, IEEE Secuirty & Privacy, 6: 37-43.

[3] Fraternali, P.; Rossi, G.; Sánchez-Figueroa, F. (2010), Rich Internet Applications, IEEE
Internet Computing, 14: 9-12.

[4] Melia, S.; Gómez, J.; Pérez, S.; Díaz, O. (2010); Architectural and Technological Variability
in Rich Internet Applications, IEEE Internet Computing, 14: 24-32.

[5] Google Web Toolkit; http://code.google.com/webtoolkit; accessed 2011-03-29.

[6] jQuery library; http://jquery.com; 2011-03-29.

[7] Adobe Flex; http://www.adobe.com/products/flex; accessed 2011-03-29.

[8] Adobe Flash; http://en.wikipedia.org/wiki/Adobe_Flash; accessed 2011-03-29.

[9] Microsoft Silverlight; http://www.silverlight.net; accessed 2011-03-29.

[10] Pendleton, C. (2010); The World According to Bing, IEEE Computer Graphics and Appli-
cations, 30: 15-17.

[11] Lammarsch, T. et al (2008); A Comparison of Programming Platforms for Interactive Vi-
sualization in Web Browser Based Applications, 12th International Conference Information
Visualization, 194-199.

Client Side Internet Technologies in Critical Infrastructure Systems 891

[12] International Standardization Organization (ISO); ISO/IEC 9126-1:2001 Software engineer-
ing - Product quality - Part 1: Quality model.

[13] Bose, A (2010); Smart Transmission Grid Applications and Their Supporting Infrastructure,
IEEE Transactions on Smart Grid, 1: 11-19.

[14] Vukmirovic, S.; Erdeljan, A; Lendak, I.; Capko, D (2010); A novel software architecture for
smart metering systems, Journal of Scientific & Industrial Research, 69: 937-941.

[15] Vukmirovic, S.; Erdeljan, A.; Kulic, F.; Lukovic, S. (2010); Software architecture for Smart
Metering systems with Virtual Power Plant, 2010 15th IEEE Mediterranean Electrotechnical
Conference, 448 ? 451.

[16] Santacana, E.; Rackliffe, G.; Tang, L.; Feng, X. (2010); Getting Smart, IEEE Power and
Energy Magazine, 8: 41-48.

[17] Ong, Y.S.; Gooi, H.B.; Chan, C.K. (2000); Algorithms for Automatic Generation of One-line
Diagrams, IEE Proceedings Generation, Transmission and Distribution, 147: 292 ? 298.

[18] Lendak, I.; Erdeljan, A.; Capko, D.; Vukmirovic, S. (2010); Algorithms in electrical power
system one-line diagram creation, 2010 IEEE International Conference on Systems, Man,
and Cybernetics, Istanbul, Turkey, 2867-2873.

[19] Yongli, Z.; Malik, O.P. (2003); Intelligent Automatic Generation of Graphical One-Line
Substation Arrangement Diagrams, IEEE Transactions on Power Delivery, 18: 729-735.

[20] Cheng, S.; Shirmohammadi, D. (1995); A three phase power flow method for real time
distribution system analysis, IEEE Transactions on Power Systems, 10: 671?679.

[21] Lendak, I.; Varga, E.; Erdeljan, A.; Gavric, M. (2010), RESTful Access to Power System
State Variables, 2010 IEEE Region 8 International Conference on Computational Technolo-
gies in Electrical and Electronics Engineering (SIBIRCON), Irkutsk, Russia, 450-454.

[22] Telvent DMS Llc official website; http://www.telventdms.com; accessed 2011-03-28.

[23] JSON.org; Introducing JSON; http://www.json.org/; accessed 2012-06-22.

[24] Popovic, D.; Varga, E.; Perlic, Z. (2007); Extension of the Common Information Model with
a Catalog of Topologies, IEEE Transactions on Power Systems, 22: 770 ? 777.

[25] World Wide Web Consortium (W3C); Document Object Model (DOM);
http://www.w3.org/DOM/; accessed 2012-06-22.

[26] OSI Soft; What is PI; http://www.osisoft.com/software-support/what-is-
pi/what_is_pi_.aspx; accessed 2011-03-29.

[27] Microsoft; WCF RIA Services; http://msdn.microsoft.com/en-
us/library/ee707344(VS.91).aspx; accessed 2011-03-29.

[28] ESRI; ArcGIS: A complete integrated system; http://www.esri.com/software/arcgis/index.html;
accessed 2011-03-29.

[29] IEC (2003); IEC 61968-1: Application integration at electric utilities - System interfaces for
distribution management - Part 1: Interface architecture and general requirements.

[30] Juliet Live Betting system; http://www.parspro.com/fp/products/live-betting; accessed
2011-03-21.

