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Abstract: Ant colony algorithms such as Ant Colony Optimization (ACO) have
been effectively applied to solve the Traveling Salesman problem (TSP). However,
traditional ACO algorithm has some issues such as long iterative length and prone to
local convergence. To this end, we propose we embed ACO into Cultural Algorithm
(CA) framework by leveraging the dual inheritance mechanism. Best solutions are
evolved in both population space and belief space, and the communication between
them is achieved by accept and influence operations. Besides, we employ multiple
population spaces for parallel execution. Experiments show that the performance of
our proposed algorithm is greatly improved.
Keywords: Traveling Salesman Problem (TSP), Ant Colony Optimization (ACO),
Cultural Algorithm (CA).

1 Introduction

Traveling Salesman Problem (TSP) is a typical NP hard problem [1]. Given a number of
cities and the distances between them, TSP aims to calculate the shortest tour for the salesman
to visit each city exactly once and return to the starting point. Solving TSP problem can be
beneficial to applications such as deployment of network devices [2], transportation [3] and traffic
control [4].

Ant Colony Optimization (ACO) algorithm [5] is one possible solution for solving TSP prob-
lem. ACO simulates the foraging process of ants, where the routes with more pheromones are
more likely to be selected. The process of applying ACO algorithm for TSP can be described
as follows. Suppose there are ants and cities. The movement of each ant is to choose the next
unvisited city to visit by certain rules, and meanwhile update the amount of pheromones on that
route.

Although the advantages of ACO, such as positive feedback, distributed, parallel and self-
organization, facilitate the solving of TSP problem, there still remain some issues. For example,
at earlier iterations, the amount of pheromones is relative exile, so the accumulation of enough
pheromones costs a long time. Besides, at later iterations, the positive feedback mechanism
greatly increases the possibility of local convergence.

To deal with the above long iteration time and local convergence issues, we propose an
improved algorithm in this paper. The general idea is to accelerate the evolution and revise
the best solution at each iteration. To this end, we leverage the Cultural Algorithm (CA) [6]
framework to embed the traditional ACO algorithm. Indeed, as indicated in [7, 8], it is feasible
and efficient to adapt CA for optimize ACO. Our experiments prove that the dual inheritance
mechanism of CA helps to improve the performance of ACO.

The remainder of this paper is organized as follows. Section 2 reviews related work. The
proposed algorithm is discussed in Section 3. Empirical experiments of evaluating the improved
algorithm are conducted in Section 4. Finally, the paper is concluded in Section 5.
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2 Related work

Many efforts have been made to solve the problems of traditional ACO algorithm. For ex-
ample, Dorigo et al. [9] proposed an ant system with positive feedback, distributed computation,
and a constructive greedy heuristic. Bullnheimer et al. [10] proposed a new rank based ver-
sion of ant system. Gutjahr et al. [11] proposed a graph based ant system. Gambardella et
al. [12, 13] introduced Q-learning to ant system for solving TSP problem. Ciornei et al. [14]
developed a hybrid algorithm with ant colony and genetic algorithm, so that the proposed al-
gorithm can achieve faster convergence and better search capability for global best solution.
Stutzle et al. [15] designed a Max-Min Ant System (MMAS) for better exploitation ability and
accelerated the accumulating the pheromone of the best solutions. Walter and Thomas et al.
proved the convergence of ACO algorithm [16–18].

Indeed, ACO algorithms have been applied to many problems such as the TSP problem. Zhou
et al. [19] provided the theoretical convergence analysis on the traditional ACO, and proved the
feasibility of applying ACO algorithm for TSP. Zhang et al. [20] proposed an adaptive heteroge-
neous multiple ACO to solve TSP, which used an evolution coefficient to evaluate the solutions
obtained by the ant colony and then update the phenomenon. Tuba et al. [21] modified ACO by
improving the pheromone correction mechanism, where the pheromone values for highly unde-
sirable links are significantly lowered by a posteriori heuristic. Negulescu et al. [22] presented an
adapted ACO that incorporates methods and ideas from genetic algorithms (GA) by simulating
artificial ants with different behaviors as synthetic genes. Besides, ACO has been employed in
many applications. Gajpal et al. [23] applied ACO to the route selection of tucks, and the search
all the customers during the routing path using a multi-route search principle. Hu et al. [24]
employed a new method to update the phenomenon to deal with the continuous optimization
problems. Ghoseiri et al. [25] developed an algorithm to solve the dual-object shortest path
problem with a multi-objective ACO algorithm. Gajpal et al. [26] proposed a modified ACO
method for a vehicle routing problem. Secui et al. [27] applied ACO for optimal allocation of
capacitor banks in electric power distribution networks.

Cultural algorithm (CA) was first proposed by Reynolds [6]. Then, Chung et al. [28] developed
a new framework to embed the evolutionary programming into the population space to simulate
the evolution process. Liu et al. [29] combined CA with particle swarm optimization algorithm
and applied it to the numerical optimization problem. Ma et al. [30] applied CA to solve the TSP
problem and utilized the idea from simulated annealing to ensure the accuracy and efficiency.

Unlike existing work, in this paper we design a modified ACO algorithm by leveraging CA
framework, that is, to employ a dual inheritance mechanism into the traditional ACO algorithm.
Besides, we apply the modified algorithm on TSP problem. Note that, for the consideration of
parallelism, we use multiple population spaces.

3 Proposed algorithm

The disadvantages of the traditional ACO algorithm include slow convergence and prone to
stagnation. Although there are some modifications over the traditional ACO version, most of
them are built upon the traditional computing structure to determine the internal status of the
algorithm and estimate the search capabilities of the ant colony through qualitative analysis. For
example, the improvements are made by updating pheromones, changing evaporation coefficient
or the amount of released pheromones in order to avoid stagnation.

Different from existing efforts, we embed the ACO algorithm into another framework, Cul-
tural Algorithm (CA) [6], which could essentially improve the performance. The intuitive is that
both algorithms are population based and share information through interactions among the
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population. We perceive that the ACO algorithm can benefit from the dual inheritance of CA.
Besides, the inherent nature of parallelism of ACO indicates that parallel algorithm can improve
the efficiency due to the mature of hardware and software. Therefore, in this section, we propose
a parallel ACO algorithm based on CA algorithm, and then apply it for solving the traditional
TSP problem.

Figure 1: The framework of culture algorithm

CA simulates the evolution process of human society, which regards culture as the infor-
mation carrier. While the culture is accepted by the whole population of the society, it can
be used to direct the behavior of each individual in turn. There are two evolution spaces in
CA algorithm: belief space, which is composed of the experience knowledge acquired during
the evolution process; and population space, which is composed of the individuals. These two
spaces communicate through specific protocols. The framework of CA is illustrated as Figure
2. Generally, the lower space contributes to the upper space periodically, and the upper space
continuously evolves, which in turn influences the lower space. This is called dual inheritance
mechanism.

As shown in Figure 2, the major operations of CA algorithm are accept() and influence(),
while other operations are performed inside belief or population space independently. Therefore,
it is feasible to embed other algorithms into CA framework by adding specific logics into belief
and population spaces and implementing accept() and influence() operations between them.
The parallel version of CA is illustrated as Figure 3, where exist multiple population spaces.
Each population space performs parallel evolution, and then produces local best individuals for
next generation. Then accept() operation is performed by all population spaces periodically to
update belief space in a synchronous way. On the other hand, belief space conducts evolution as
well, and calls influence() operation to direct the evolution process of each population space.

3.1 Designing population space

Let m be the number of ants, n be the number of cities C = {C1, C2, . . . , Cn}, dij(i, j =
1, 2, . . . , n, i ̸= j) be the distance between any two cities, and τij be the amount of pheromones
from i to j. At the beginning, τij is initialized as a constant, that is, τij(0) = c , where c is
a constant. At t-th iteration, the pheromones on path i, j is notated as τij(t). According to
MMAS [12] algorithm, τij(t) is restricted between τmin and τmax in order to avoid premature
local convergence.
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Figure 2: The process flow of culture algorithm

Figure 3: The framework of culture algorithm

τmax(t) =
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where L(t) is the length of the best solution at iteration t, ρ is the evaporation coefficient of
pheromones, and σ is the number of best solutions at iteration t.

Suppose ηij(t) denotes the heuristic information on path (i, j). The general idea is that ants
would select closest path with larger amount of pheromones. Therefore, the probability of ant k
transferring from city i to j is calculated as:

pkij(t) =


[
τij(t)

]α · [ηij(t)]β∑
j∈allowedk

[
τij(t)

]α · [ηij(t)]β , j ∈ allowedk,

0, otherwise,

(3)

where allowedk denotes the available nodes to choose at the next step for ant k, α is the heuristic
factor, meaning the importance of path with remaining pheromones, β is the heuristic factor for
ηij(t), denoting the affect of heuristic information.

After ants iterate all the nodes, remaining pheromones are updated as follows:

τij(t+ 1) = (1− ρ)τij(t) +
m∑
k=1

∆τkij(t) (4)

where 1 − ρ is the residual coefficient of pheromones, and ρ ∈ [0, 1). ∆τkij(t) is the amount of
pheromones remaining on the path at current iteration for ant k, which can be calculated as:

∆τkij(t) =

{
Q
Lk
, if ant k passes (i, j) at current iteration,

0, otherwise,
(5)

where Q is a constant, and Lk is the total length of ant k’s tour.

3.2 Designing belief space

Belief space is responsible for updating knowledge, that is, to further optimize the best
solutions provided by the population space, which are transferred through accept() operation.
For TSP problem, we employ 3-OPT algorithm to evolve belief space. Suppose there exist any
three nodes i, j, k, and current best solution is C = {Cs · · ·CiCi+1 · · ·CjCj+1 · · ·CkCk+1 · · ·Ct}.
As shown in Figure 4, if d(Ci, Ci+1) + d(Cj , Cj+1) > d(Ci, Cj) + d(Ci+1, Cj+1), then reverse sort
is performed on C = {Ci+1, . . . , Cj}; if d(Cj , Cj+1) + d(Ck, Ck+1) > d(Cj , Ck) + d(Cj+1, Ck+1),
then reverse sort is performed on C = {Cj+1, . . . , Ck}.

3.3 Accept operation

We accept a fixed ratio of all population spaces as the belief space, e.g. 20%. The accept()

operation passes the local best solution of each population space R∗ and the corresponding length
of route L∗ to the belief space.

When accept() operation is performed, the relative poor individuals are replaced by the
current best one of each population space. Suppose tcurrent is the current iteration, tend is the
predefined maximum iterations, and taccept is the iteration where accept() is called, which can
be calculated as:

taccept = fix
(
C1 +

tcurrent

tend
C2

)
(6)

where fix() is a rounding function, and C1, C2 are constants.
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Figure 4: 3-OPT algorithm

3.4 Influence operation

After further optimization via 3-OPT in belief space, influence() operation passes the short-
est path and its length to each population space periodically, and updates the global pheromones.
Suppose the iteration where influence() operation is performed is tinfluence, which can be rep-
resented as:

tinfluence = fix
(
C1 +

tend − tcurrent

tend
C2

)
(7)

where fix() is a rounding function, and C1, C2 are constants.
The improved algorithm has one belief space and multiple population spaces. Each space

evolve independently, and the communication between them is achieved by accept() and influence()

operations. The process flow of belief space is shown in Figure 5. In belief space, the update is
achieved by 3-OPT algorithm for computing the shortest path. When accept() is called, the
solution is updated by the local best from population space. When influence() is called, the
global best solution in belief space is transferred to each population space. If the termination
condition is satisfied, the algorithm is completed.

As shown in Figure 6, the update of population space is achieved by ACO algorithm. When
accept() is called, the local best solution from each population space is updated up to the belief
space. When influence() is called, the global best solution in belief space is transferred down
to each population space. If the termination condition is satisfied, the algorithm is completed.

4 Experiment

The environment of our experiments is Intel 2.3 GHz, 2GB RAM, Windows 7 operating
system, and MATLAB 7.0 for programming. The dataset is achieved from TSPLIB library .
The parameters settings are as follows: ρ = 0.5, α = 1, β = 5, Q = 100, tend = 200. We use 4
population spaces, and the maximum number of evolution of both belief space and population
space is 200. We compare our algorithm with the traditional ACO. Both algorithms are ran
independently for 50 times, and the average execution time is supposed to the performance.

As shown in Table 1, we evaluate three examples from TSPLIB, i.e., eil51, berlin52 and st70.
We can see that our proposed algorithm outperforms the typical ACO method for solving TSP
problem. Moreover, the best solution provided by our method is much better than the known
best.
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Figure 5: Flow chart of evolution of belief space

Table 1: Results of ACO and our algorithm with different datasets
Example Example Example Example Our

cities solution ACO algorithm
eil51 51 426 428.87 412.12

berlin52 52 7542 7542 7088.34
st70 70 675 677.11 652.80

Besides, take eil51 as an example, we compare the best tour and convergence speed between
our algorithm and traditional ACO for TSP in Figure 7. The blue line denotes the performance
of ACO, while the green line is for our algorithm. The result shows that our algorithm can
achieve shorter tour with rapid speed of convergence.
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Figure 6: Flow chart of evolution of population space

Figure 7: Evolution of best tour length of eil51 for ACO and proposed algorithm
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5 Conclusions

In this paper, we propose a new ant colony algorithm and apply it to the typical traveling
salesman problem. Specifically, we embed the traditional ACO algorithm into cultural algorithm
framework, where the set of ants makes up the population space, and the best solutions found
at specific iteration are updated up to the belief space. The evolution of population space is
indeed based on ACO, and that of the belief space is based on 3-OPT algorithm for calculating
the shortest path. The communication between population space and belief space is performed
by accept and influence operations. Moreover, to minimum the execution cost, we design mul-
tiple population spaces for parallel execution. The experiments evaluate that our algorithm
outperform the traditional ACO algorithm.
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